ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Stability and Control
  • 2005-2009  (168)
  • 1945-1949  (76)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: A guidance and control method was developed to detect and exploit thermals for energy gain. Latency in energy rate estimation degraded performance. The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology. Many UAVs have similar mission constraints to birds and sailplanes. a) Surveillance; b) Point to point flight with minimal energy; and c) Increased ground speed.
    Keywords: Aircraft Stability and Control
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: The primary objective of the UAVSAR Project is to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or minimally piloted vehicle. This viewgraph presentation reviews NASA Dryden's role in the UAVSAR program. The G-III aircraft is described and shown, as well as a high level system architecture. The goals of the Platform Precision Autopilot (PPA) that it are shall fly the G-III within a 10 m (32.8 ft) diameter tube for at least 90% of each data take in conditions of calm to light atmospheric disturbances, as defined in MIL-STD-1797. That it minimize motion during data collection. It is critical to operate the UAVSAR System on a steady platform.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: This viewgraph presentation reviews the use of Intelligent Flight Control System (IFCS) for the F-15. The goals of the project are: (1) Demonstrate Revolutionary Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions (2) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs. The motivation for the development are to reduce the chance and skill required for survival.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: A guidance and control method was developed to detect and exploit thermals for energy gain. Latency in energy rate estimation degraded performance. The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology. Many UAVs have similar mission constraints to birds and sailplanes. a) Surveillance; b) Point to point flight with minimal energy; and c) Increased ground speed.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-02
    Description: This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
    Keywords: Aircraft Stability and Control
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-02
    Description: In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.
    Keywords: Aircraft Stability and Control
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: An experimental investigation was made of a preloaded spring-tab flutter model to determine the effects on flutter speed of aspect ratio, tab frequency, and preloaded spring constant. The rudder was mass-balanced, and the flutter mode studied was essentially one of three degrees of freedom (fin bending coupled with rudder and tab oscillations). Inasmuch as the spring was preloaded, the tab-spring system was a nonlinear one. Frequency of the tab was the most significant parameter in this study, and an increase in flutter speed with increasing frequency is indicated. At a given frequency, the tab of high aspect ratio is shown to have a slightly lower flutter speed than the one of low aspect ratio. Because the frequency of the preloaded spring tab was found to vary radically with amplitude, the flutter speed decreased with increase in initial displacement of the tab.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7G18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Low-speed tests of a pilotless aircraft were conducted in the Langley propeller-research tunnel to provide information for the estimation of the longitudinal stability and. control, to measure the aileron effectiveness, and to calibrate the radome and the Machmeter pitot-static orifices. It was found that the model possessed a stEb.le variation of elevator angle required for trim throughout the speed range at the design angle of attack. A comparison of the airplane with and without JATO units and with an alternate rocket booster showed that a large loss in longitudinal stability and control resulting from the addition of the rocket booster to the aircraft was sufficient to make the rocket-booster assembly unsatisfactory as an alternate for the JATO units. Reversal of the aileron effectiveness was evident at positive deflections of the vertical wing flap indicating that the roll-stabilization system would produce roiling moments in a tight right turn contrary to its design purpose. Vertical-wing-flap deflections caused large errors in the static-pressure reading obtained by the original static-tube installation. A practical installation point on the fuselage was located which should yield reliable measurement of the free-stream static pressure.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1474 , AD-A801528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: Tests of a partial-span model of a large bomber-type air1ane were conducted to determine the. aerodynamic characteristics of the wing equipped with full-span flaps and a retractable spoiler end aileron lateral control system. The arrangement consisted of (1) a double slotted flap extending over aproximate1y 86 percent of the wing semispan, (2) a 20-percent constant-percentage-chord aileron extending from the outboard end of the flap to the wing tip, and (3) a retractable spoiler, located at the 65-percent wing-chord station and extending from approximately 63 percent of the wing semispan to the wing tip. In addition, tests were made of a wing vent (of 1 and 2 percent of the wing chord located directly behind the spoiler), perforations in the spoiler, a blot or cut-out along the lower edge of the spoiler and spoilers of various spans. With full-span flaps deflected and with the 2-percent vent open or closed the initial stalling of the wing occurred at the tips, but with the vents closed there probably would be no appreciable loss in lateral control until maximum lift was reached. The l-percent vent increased the rolling effectiveness of the spoiler at small spoi1er deflections, particularly at high angles of attack with flaps deflected. With flaps deflected the 2-percent vent caused a large reduction in both the wing lift and rolling effectiveness of the spoiler at large angles of attack. However, at small angle of attack the 2-percent vent increased the rolling effectiveness of the spoiler at small spoiler deflections. The simultaneous operation of the spoiler and vent (in contrast to a vent fixed in the wing) would result in a large increase in the effectiveness of the spoiler and would avoid any loss in wing lift as in a fixed vent arrangement. The tests of the spoiler modifications revealed that (1) the spoiler perforations reduced the rolling-moment and yawing-moment coefficients but caused the spoiler hinge-moment coefficients to become more positive; (2) the spoiler slot had no notable effect on the rolling-moment and yawing-moment characteristics but produced a positive increase in the spoiler hinge-moment coefficients at large spoiler deflections; (3) the effects produced by the individual modifications were additive when the various modifications were combined. In general, progressively decreasing the spoiler span by removing the segments from the inboard end of the spoiler caused a decrease in rolling effectiveness approximately proportional to the span of the segment.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1409
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: The results of a theoretical analysis of the hinge-moment characteristics of various sealed-internal-balance arrangements for control surfaces are presented. The analysis considered overhands sealed to various types of wing structure by flexible seals spanning gaps of various widths or sealed to the wing structure by a flexible system of linked plates. Leakage was not considered; the seal was assumed to extend the full spanwise length of the control surface. The effect of the developed width of the flexible seal and of the geometry of the structure to which the seal was anchored was investigated, as well as the effect of the gap width that is sealed. The results of the investigation indicated that the most nearly linear control-surface hinge-moment characteristics can probably be obtained from a flexible seal over a narrow gap (about 0.1 of the overhang chord), which is so installed that the motion of the seal is restricted to a region behind the point of attachment of the seal to the wing structure. Control-surface hinge moments that tend to be high at large deflections and low or overbalanced at small deflections will result if a very narrow seal is used.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-L-174 , NACA-ARR-L5F30 , AD-A801569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-05
    Description: In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.
    Keywords: Aircraft Stability and Control
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an HI1 rocket on November 27,1997 and transitioned in August, 2001 from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro data. After the orbit boost, the attitude errors shown by the PR roll have a smooth sine-wave type signal because of the way that attitude errors propagate with the use of gyro data. Yaw errors couple at orbit period to roll with '/4 orbit lag. By tracking the amplitude, phase, and bias of the sinusoidal PR roll error signal, it was shown that the average pitch rotation axis tends to be offset from orbit normal in a direction perpendicular to the Sun direction, as shown in Figure 2 for a 200 day period following the orbit boost. This is a result of the higher accuracy and stability of the Sun sensor measurements relative to the magnetometer measurements used in the Kalman filter. In November, 2001 a magnetometer calibration adjustment was uploaded which improved the pointing performance, keeping the roll and yaw amplitudes within about 0.1 degrees. After the boost, onboard ephemeris errors had a direct effect on the pitch pointing, being used to compute the Earth pointing reference frame. Improvements after the orbit boost have kept the the onboard ephemeris errors generally below 20 kilometers. Ephemeris errors have secondary effects on roll and yaw, especially during high beta angle when pitch effects can couple into roll and yaw. This is illustrated in figure 3. The onboard roll bias trends as measured by PR data show correlations with the Kalman filter's gyro bias error. This particularly shows up after yaw turns (every 2 to 4 weeks) as shown in Figure 3, when a slight roll bias is observed while the onboard computed gyro biases settle to new values. As for longer term trends, the PR data shows that the roll bias was influenced by Earth horizon radiance effects prior to the boost, changing values at yaw turns, and indicated a long term drift as shown in Figure 4. After the boost, the bias variations were smaller and showed some possible correlation with solar beta angle, probably due to sun sensor misalignment effects.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-28
    Description: Tests were made of a model representative of a single-engine tractor-type airplane for the purpose of determining the stability and control effects of a propeller used as an aerodynamic brake. The tests were made with single-and dual-rotation propellers to show the effect of type of propeller rotation, and with positive thrust to provide basic data with which to compare the effects of negative thrust. Four configurations of the model were used to give the effects of tilting the propeller thrust axis down 5 deg., raising the horizontal tail, and combining both tilt and raised tail. Results of the tests are reported herein. The effects of negative thrust were found to be significant. The longitudinal stability was increased because of the loss of wing lift and increase of the angle of attack of the tail. Directional stability and both longitudinal and directional control were decreased because of the reduced velocity at the tail. These effects are moderate for moderate braking but become pronounced with full-power braking, particularly at high values of lift coefficient. The effects of model configuration changes were small when compared with the over-all effects of negative-thrust operation; however, improved stability and control characteristics were exhibited by the model with the tilted thrust axis. Raising the horizontal tail improved the longitudinal characteristics, but was detrimental to directional characteristics. The use of dual-rotation propeller reduced the directional trim charges resulting from the braking operation. A prototype airplane was assumed and handling qualities were computed and analyzed for normal (positive thrust) and braking operation with full and partial power. The results of these analyses are presented for the longitudinal characteristics in steady and accelerated flight, and for the directional characteristics in high- and low-speed flight. It was found that by limiting the power output of the engine (assuming the constant-speed propeller will function in the range of blade angles required for negative thrust) the stability and control characteristics may be held within the limits required for safe operation. Braking with full power, particularly at low speeds, is dangerous, but braking with very small power output is satisfactory from the standpoint of control. The amount of braking produced with zero power output is equal to or better than that produced by conventional spoiler-type brakes.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-A-19 , NACA-ARR-5C01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-27
    Description: The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.
    Keywords: Aircraft Stability and Control
    Type: SETP 50th Symposium & Banquet; 27-30 Sept. 2006; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-27
    Description: The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2005-6996 , Infotech@Aerospace; Sept. 26-29, 2005; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-27
    Description: A viewgraph presentation describing an analytical thermal model used to enable research on autonomous soaring for a small UAV aircraft is given. The topics include: 1) Purpose; 2) Approach; 3) SURFRAD Data; 4) Convective Layer Thickness; 5) Surface Heat Budget; 6) Surface Virtual Potential Temperature Flux; 7) Convective Scaling Velocity; 8) Other Calculations; 9) Yearly trends; 10) Scale Factors; 11) Scale Factor Test Matrix; 12) Statistical Model; 13) Updraft Strength Calculation; 14) Updraft Diameter; 15) Updraft Shape; 16) Smoothed Updraft Shape; 17) Updraft Spacing; 18) Environment Sink; 19) Updraft Lifespan; 20) Autonomous Soaring Research; 21) Planned Flight Test; and 22) Mixing Ratio.
    Keywords: Aircraft Stability and Control
    Type: Soaring Society of America Western Workshop; 5 Sept. 2004; Tehachapi, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-27
    Description: F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.
    Keywords: Aircraft Stability and Control
    Type: DFRC-956
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-27
    Description: In the beginning, there was FORTRAN, and it was... not so good. But it was universal, and all flight simulator equations of motion were coded with it. Then came ACSL, C, Ada, C++, C#, Java, FORTRAN-90, Matlab/Simulink, and a number of other programming languages. Since the halcyon punch card days of 1968, models of aircraft flight dynamics have proliferated in training devices, desktop engineering and development computers, and control design textbooks. With the rise of industry teaming and increased reliance on simulation for procurement decisions, aircraft and missile simulation models are created, updated, and exchanged with increasing frequency. However, there is no real lingua franca to facilitate the exchange of models from one simulation user to another. The current state-of-the-art is such that several staff-months if not staff-years are required to 'rehost' each release of a flight dynamics model from one simulation environment to another one. If a standard data package or exchange format were to be universally adopted, the cost and time of sharing and updating aerodynamics, control laws, mass and inertia, and other flight dynamic components of the equations of motion of an aircraft or spacecraft simulation could be drastically reduced. A 2002 paper estimated over $ 6 million in savings could be realized for one military aircraft type alone. This paper describes the efforts of the American Institute of Aeronautics and Astronautics (AIAA) to develop a standard flight dynamic model exchange standard based on XML and HDF-5 data formats.
    Keywords: Aircraft Stability and Control
    Type: 2006 Fall Simulation Interoperability Workshop; 10-15 Sept. 2006; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-19
    Description: NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN121 , International Powered Lift Conference; Jul 22, 2008 - Jul 24, 2008; London; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-19
    Description: The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to a survivable runway landing using TOC. The PCAR project objective was a set of pilot procedures for operation of a specific aircraft without hydraulics that (a) have been validated in both simulation and flight by relevant personnel, and (b) mesh well with existing commercial operations, maintenance, and training at a minimum cost. As a result of this study, a procedure has been developed to assist a crew in making a survivable landing using TOC. In a simulation environment, line pilots with little or no previous TOC experience performed survivable runway landings after a few practice TOC approaches. In-flight evaluations put line pilots in a simulated emergency situation where TOC was used to recover the aircraft, maneuver to a landing site, and perform an approach down to 200 feet AGL. The results of this research, including pilot observations, procedure comments, recommendations, future work and lessons learned, will he discussed. Flight data and video footage of TOC approaches may also be shown.
    Keywords: Aircraft Stability and Control
    Type: DFRC-650 , International Test and Evaluation Association; Nov 12, 2007 - Nov 15, 2007; Hawaii
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN-369 , AIAA Infotech@Aerospace Conference and Exhibit; Apr 06, 2009 - Apr 09, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: The NASA Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) program is developing a Synthetic Aperture Radar (SAR) for ground measurements. A key element for the success of this program is a Platform Precision Autopilot (PPA). An interim vehicle (NASA C-20AJGlll) was selected to carry the radar pod and develop the PPA. The PPA interfaces with the C- 20AIG Ill aircraft by imitating the output of an Instrument Landing System (ILS) approach. This technique retains the safeguards in the aircraft's autopilot. The PPA entered initial flight testing in early 2007. The PPA uses a Kalman filter to generate a real-time position solution with information from the C-20AIGIII and a real-time differential GPS unit designed by JPL. The real-time navigation solution is used to compute commands (Guidance and Control subsystems) which in turn drive two modified ILS testers. The ILS tester units produce modulated RF signals fed to the onboard navigation receiver. These correction signals allow the C-20NGIII autopilot to fly a simulated ILS approach that meets the PPA requirements for UAVSAR applications. The PPA requirement is to make repeat pass flights within a ten meter tube over a 200 kilometer course in conditions of cairn to light turbulence. Flight test results are expected to be available at the time of the NASA Science Technology Conference 2007
    Keywords: Aircraft Stability and Control
    Type: DFRC-658 , 2007 NASA Science Technology Conference; Jun 19, 2007 - Jun 21, 2007; Adelphia, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-19
    Description: The primary objective of the Quiet Spike flight research program was the aerodynamic and structural proof-of-concept of a telescoping, 24 ft, sonic-boom suppressing nose boom on a F-15B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. In the area of stability and controls the primary concern was to assess the effect of the spike on the stability, controllability and handling qualities of the aircraft. The primary goal of this test philosophy was maintaining safety of flight. Two main issues are discussed in this paper: the stability and controls approach and analysis in the presence of uncertain spike influenced aerodynamics on the F-15B aircraft flight dynamics; and the analysis of F-15B flight dynamics implications due to spike induced air flow in the vicinity of air data and angle-of-attack sensors. Also addressed are flight test implications based on the analysis
    Keywords: Aircraft Stability and Control
    Type: DFRC-654
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: In recent flight tests of F-15 Intelligent Flight Control System (IFCS), software simulated aircraft control surface failures were inserted to evaluate the IFCS adaptive systems. The failure commanded the left stabilator to a fixed position. The adaptive system uses a neural network that is designed to change control law gains, in the event of damage (real or simulated), that allows the aircraft to fly as it had before the damage. The performance of the adaptive system was assessed in terms of its ability to re-establish good onboard model tracking and its ability to decouple roll and pitch response.
    Keywords: Aircraft Stability and Control
    Type: DFRC:873 , AIAA Infotech at Aerospace Conference and Exhibit; Apr 06, 2009 - Apr 09, 2009; Washington; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: This paper describes the performance of a simplified dynamic inversion controller with neural network supplementation. This 6 DOF (Degree-of-Freedom) simulation study focuses on the results with and without adaptation of neural networks using a simulation of the NASA modified F-15 which has canards. One area of interest is the performance of a simulated surface failure while attempting to minimize the inertial cross coupling effect of a [B] matrix failure (a control derivative anomaly associated with a jammed or missing control surface). Another area of interest and presented is simulated aerodynamic failures ([A] matrix) such as a canard failure. The controller uses explicit models to produce desired angular rate commands. The dynamic inversion calculates the necessary surface commands to achieve the desired rates. The simplified dynamic inversion uses approximate short period and roll axis dynamics. Initial results indicated that the transient response for a [B] matrix failure using a Neural Network (NN) improved the control behavior when compared to not using a neural network for a given failure, However, further evaluation of the controller was comparable, with objections io the cross coupling effects (after changes were made to the controller). This paper describes the methods employed to reduce the cross coupling effect and maintain adequate tracking errors. The IA] matrix failure results show that control of the aircraft without adaptation is more difficult [leas damped) than with active neural networks, Simulation results show Neural Network augmentation of the controller improves performance in terms of backing error and cross coupling reduction and improved performance with aerodynamic-type failures.
    Keywords: Aircraft Stability and Control
    Type: DFRC-599 , AIAA Infotech@Aerospace 2007 Conference and Exhibit; May 07, 2007 - May 10, 2007; Rohnert Park, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-19
    Description: A 1/5-scale model of the Republic x-84 airplane (Army Project MX-578) was tested in the Langley 300 MPH 7- by 10-foot tunnel. The primary object of the tests was twofold: to determine, a practicable method of increasing the longitudinal 3tability in the landing configuration, and to investigate the effects on longitudinal and lateral Stability of various external stored (fuel tanks, bombs, and rockets). The effects of the fuselage dive brakes were also determined, and the critical Mach numbers of certain of the airplane components were estimated. The use of the revised horizontal tail (of larger aspect ratio and area than the original) seemed to be the most feasible expedient for materially increasing the longitudinal stability in the landing configuration. The neutral-point shifts produced by the various external stores were unstable, the largest shift being about 2.5 percent mean aerodynamic chord. No appreciable aerodynamic trim changes were caused by the external stores. From the standpoint of range, maximum s peed, and rate of climb, the advantages of mounting the fuel tanks at the wing tips rather than inboard beneath the wings were clearly demonstrated by the tests. The effective dihedral parameter was the only static lateral-stability derivative appreciably affected by the external stores. At high lift coefficients, the tip-mounted tanks caused a large increase in the effective dihedral parameter (about 40 increase at a lift coefficient of 1.0). This increase was held undesirable, because the tendency toward oscillatory instability that it would cause would be heightened by the increased moments of inertia resulting from the weight of the tanks when carrying fuel. The fuselage dive brakes, when deflected, caused a change in trim tending to nose the airplane up; the neutral point also moved rearward upon deflecting the dive brakes. The amount of elevator required to overcome the change in trim was well within the available range of deflection. It was estimated that a drive-brake deflection of 900 would.decrease the terminal Mach number in a vertical dive by about 0.1. The estimated critical Mach number of the V-front canopy was about 0.04 greater than that of the original canopy. Pressure-distribution tests disclosed severe pressure peaks inside the nose of the jet entrance duct. These peaks, which would lead to separation and consequently poor pressure recovery at, the engine, could be reduced by, using a smaller nose,radius and: a modified internal lip shape
    Keywords: Aircraft Stability and Control
    Type: NACA-MR No. L6F25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-18
    Description: As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.
    Keywords: Aircraft Stability and Control
    Type: Human Performance in Extreme Environments; Oct 15, 2006 - Oct 16, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-26
    Description: Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-17
    Description: Low Mach number longitudinal-stability and control characteristics as predicted by use of wind tunnel data from a powered 3/16-scale model are compared with flight test measurements of a Navy BTD-1 airplane. The accuracy of the wind tunnel data and the discrepancies involved in attempting to correlate with flight data are discussed and analyzed. The comparison showed that wind tunnel predictions were, in general, in good agreement with flight test data. The predicted values were for the most part sufficiently accurate to show the satisfactory and unsatisfactory characteristics in the preliminary design stage and to indicate possible methods of improvement. The discrepancies which did occur were attributed principally to physical dissimilarities between model and airplane and the instability to determine accurately the flight power conditions. The effect of Mach number was considered negligible since the maximum flight test value was about 0.5. In order to simulate more closely the flight conditions and hence obtain more accurate data for predictions, it appears desirable to perform large-scale tests of unorthodox control surfaces such as the sealed vaned elevators with which the airplane was equipped.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A6L30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-16
    Description: Piloted simulations were performed on the NASA-Ames Vertical Motion Simulator (VMS) to explore handling qualities issues for large cargo helicopters, particularly focusing on external slung load operations. The purpose of this work was based upon the need to include handling qualities criteria for cargo helicopters in an upgrade to the U.S. Army's rotorcraft handling qualities specification, Aeronautical Design Standard-33 (ADS-33E-PRF). From the VMS results, handling qualities criteria were developed fro cargo helicopters carrying external slung loads in the degraded visual environment (DVE). If satisfied, these criteria provide assurance that the handling quality rating (HQR) will be 4 or better for operations in the DVE, and with a load mass ratio of 0.33 or less. For lighter loads, flying qualities were found to be less dependent on the load geometry and therefore the significance of the criteria is less. For heavier loads, meeting the criteria ensures the best possible handling qualities, albeit Level 2 for load mass ratios greater than 0.33.
    Keywords: Aircraft Stability and Control
    Type: NASA/CR-2006-213488 , U.S. Army RDECOM No. AFDD/TR-06-003 , A-060008
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-16
    Description: This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.
    Keywords: Aircraft Stability and Control
    Type: NASA/TP-2006-213460 , A-0600010 , AFDD/TR-04-005
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.
    Keywords: Aircraft Stability and Control
    Type: LAR-16456-1 , NASA Tech Briefs, November 2005; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-11
    Description: An investigation of a 1/7-scale powered model of the Kaiser Fleetwing all-wing airplane was made in the Langley full-scale tunnel to provide data for an estimation of the flying qualities of the airplane. The analysis of the stability and control characteristics of the airplane has been made as closely as possible in accordance with the requirements of the Bureau of Aeronautics, Navy Department's specifications, and a summary of the more significant conclusions is presented as follows. With the normal center of gravity located at 20 percent of the mean aerodynamic chord, the airplane will have adequate static longitudinal stability, elevator fixed, for all flight conditions except for low-power operation at low speeds where the stability will be about neutral. There will not be sufficient down-elevator deflection available for trim above speeds of about 130 miles per hour. It is probable that the reduction in the up-elevator deflections required for trim will be accompanied by reduced elevator hinge moments for low-power operation at low flight speeds. The static directional stability for this airplane will be low for all rudder-fixed or rudder-free flight conditions. The maximum rudder deflection of 30 deg will trim only about 15 deg yaw for most flight conditions and only 10 deg yaw for the condition with low power at low speeds. Also, at low powers and low speeds, it is estimated that the rudders will not trim the total adverse yaw resulting from an abrupt aileron roll using maximum aileron deflection. The airplane will meet the requirements for stability and control for asymmetric power operation with one outboard engine inoperative. The airplane would have no tendency for directional divergence but would probably be spirally unstable, with rudders fixed. The static lateral stability of the airplane will probably be about neutral for the high-speed flight conditions and will be only slightly increased for the low-power operation in low-speed flight. The airplane will not roll against the ailerons in a side-slip maneuver. Although the airplane would probably meet the minimum requirements of pb/2V of 0.07 at all speeds, there will be a loss in rolling ability of the airplane at high aileron deflections and at low flight speeds. It is estimated that the wing stall will be a gradual movement forward from the trailing edge and will be accompanied by no sudden pitching or rolling accelerations. Some stall warning may be indicated by reduction in the elevator and aileron force gradients and by the shaking of the controls caused by unsteady flow over the surfaces near the stall.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-11
    Description: The hydrodynamic characteristics of a 1/10-size powered dynamic model of the XP5Y-1 flying boat were determined in Langley tank no. 1. Stable take-offs were possible at all practicable positions of the center of gravity and flap deflections. An increase in gross load from 123.5 to 150.0 pounds (21.5 percent) had only a slight effect on the stable range for take-off. A decrease in forward acceleration from 3.0 to 1.0 feet per second per second had only a very small effect on the stable range for take-off. In general, the landings were free from skipping except at trims below 6 deg where one skip was encountered at an aft position of the center of gravity. The model porpoised during the landing runout at all positions of the center of gravity when landed at trims above 10 deg. Spray in the propellers was light at the design gross load, and was not considered excessive,at a gross load of 136.0 pounds.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9K14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-11
    Description: A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9H31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the effects of decreasing the rudder deflection, of decreasing the rudder span, and of differential rudder movements on the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane. The results indicated that decreasing the rudder span or the rudder deflections, individually or jointly, did not seriously alter the spin or recovery characteristics of the model; and recovery by normal use of controls (full rapid rudder reversal followed l/2 to 1 turn later by movement of the stick forward of neutral) remained satisfactory. Linking the original rudders so that the inboard rudder moves from full with the spin to neutral while the outboard rudder moves from neutral to full against the spin will also result in satisfactory spin and recovery characteristics. Calculations of rudder-pedal forces for recovery showed that the expected forces would probably be within the capabilities of a pilot but that it would be advisable to install some type of boost in the control system to insure easy and rapid movement of the rudders.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9H30a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-11
    Description: The present report of Mr. Dupleich is the summary of a very extensive experimental study of the well-known mechanical phenomenon: the rotation in free fall (* air, for instance) of more or less elongated rectangles cut out of paper or pasteboard. This phenomenon, the conditions for existence of which depend chiefly on the elongated of the small plate and its weight per unit area, is essentially an aerodynamic phenomenon and as such, raises questions of a certain interest to our department.We believe that the modern concepts of the mechanics of fluids do not have the range attributed to them.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1201 , Scientifiques et Techniques du Secretariat d'Etat a l'Aviation; Rept-178
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-11
    Description: A series of flight tests have been made at the Langley Flight Research Division at the request of the Bureau of Aeronautics, Department of the Navy, to determine the flying qualities of the Grumman F8F-1 air- plane. This paper presents the test results necessary to determine the longitudinal stability and control characteristics end the stalling characteristics. These tests were made between February and June of 1947- The range of Mach numbers covered in this investigation was approximately 0.10 to 0.62, and no attempt was made to investigate compressibility effects at higher Mach numbers. The lateral and directional stability and control characteristics of the subject airplane have already been reported (reference 1). Also presented in this paper is a discussion of the normal accelerations induced by yawing velocity and sideslip which were considered ob,jectionable by the pilot for this airplane. A discussion of the undesirable accelerations has been included with a view towards formulating some flying-qualities requirements limiting them.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-11
    Description: A spin investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the North American XP-86 airplane. The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the design gross weight loading. The long-range loading was also investigated and the effects of extending slats and dive flaps were determined. In addition, the investigation included the determination of the size of spin-recovery parachute required for emergency recovery from demonstration spins, the rudder force required to move the rudder for recovery, and the best method for the pilot to escape if it should become necessary to do so during a spin. The results of the investigation indicated that the XP-86 airplane will probably recover satisfactorily from erect and inverted spins for all possible loadings. It was found that fully extending both slats would be beneficial but that extending the dive brakes would cause unsatisfactory recoveries. It was determined that a 10.0-foot-diameter tail parachute with a drag coefficient of 0.7 and with a towline 30.0 feet long attached below the jet exit or a 6.0-foot-diameter wingtip parachute opened on the outer wing tip with a towline 6.0 feet long would insure recoveries from any spins obtainable. The rudder-pedal force necessary to move the rudder for satisfactory recovery was found to be within the physical capabilities of the pilot.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8D22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-11
    Description: This paper presents the results of measurements of longitudinal stability of a 1/50-scale model of the XP-88 airplane by the wing-flow method. Lift, rolling-moment, hinge-moment, and pitching-moment characteristics as well as the downwash at the tail were measured over a Mach number range from approximately 0.5 to 1.05 at Reynolds numbers below 1,000,000. No measurements of drag were obtained. No abrupt changes due to Mach number were noted in any of the parameters measured. The data indicated that the wing was subject to early tip stalling; that the tail effectiveness decreased gradually with increasing Mach number up to M = 0.9, but increased again at higher Mach numbers; that the variation of downwash with angle of attack did not change appreciably with Mach number except between 0.95 and 1.0 where d(epsilon)/d(alpha), decreased from 0.46 to 0.32; that at zero lift with a stabilizer setting of -1.5 deg there was a gradually increasing nosing-up tendency with increasing Mach number; and that the control-fixed stability in maneuvers at constant speed gradually increased with increasing Mach number.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8E28A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics were determined, as were also the effects of extending the wing slats, of center-of-gravity movement, and-of variation in the mass distribution. The investigation also included wing-tip spin-recovery-parachute tests, pilot-escape tests, and rudder-control-force tests. The investigation indicated that the spin and recovery characteristics of the airplane will be satisfactory for all conditions. It was found that a single 4.24-foot (full-scale) parachute when opened alone from the outboard wing tip or two 8.77-foot (full-scale) parachutes when opened simultaneously, one from each wing tip, would effect satisfactory emergency recoveries (the drag coefficients of the parachutes, based on the surface area of the parachute, were 0.83 and 0.70 for the 4.24- and 8.77-foot parachutes, respectively). The towline length in both cases was 25 feet (full scale). Tests results showed that, if the pilot should have to leave the airplane during a spin, he should jump from the outboard side (left side in a right spin) of the cockpit. The rudder-control force necessary for recovery from a spin was found to be rather high but appeared to be within the upper limits of a pilot's capabilities.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-11
    Description: Tests of a 1/20-scale dynamically similar model of the Northrop B-35 airplane were made to study its ditching characteristics. The model was ditched in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds,and conditions of damage were simulated during the investigation. The ditching characteristics were determined by visual observation and from motion-picture records and time-history acceleration records. Both longitudinal and lateral accelerations were measured. Results are given in tabular form and time-history acceleration curves and sequence photographs are presented. Conclusions based on the model investigation are as follows: 1. The best ditching of the B-35 airplane probably can be made by contacting the water in a near normal landing attitude of about 9 deg with the landing flaps full down so as to have a low horizontal speed. 2. The airplane usually will turn or yaw but the motion will not be violent. The maximum lateral acceleration will be about 2g. 3. If the airplane does not turn or yaw immediately after landing, it probably will trim up and then make a smooth run or porpoise slightly. The maximum longitudinal decelerations that will be encountered are about 6g or 7g. 4. Although the decelerations are not indicated to be especially large, the construction of the airplane is such that extensive damage is to be expected, and it probably will be difficult to find ditching stations where crew members can adequately brace themselves and be reasonably sure of avoiding a large inrush of water.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8A29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed; power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane equipped with full-span leading-edge slats has been conducted in the Langley free-flight tunnel. In this investigation it was found that the-full-span leading-edge slat gave about the same maximum lift coefficient as was obtained with the outboard single slotted flap and inboard slat. The stability and control characteristics were greatly improved except near the stall where the characteristics with the full-span slat were considered unsatisfactory because of a loss of directional stability and a slight nosing-up tendency.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL7L17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-11
    Description: The problem of turbulence in aerodynamics is at present being attacked both theoretically and experimentally. In view of the fact however that purely theoretical considerations have not thus far led to satisfactory results the experimental treatment of the problem is of great importance. Among the different measuring procedures the hot wire methods are so far recognized as the most suitable for investigating the turbulence structure. The several disadvantages of these methods however, in particular those arising from the temperature lag of the wire can greatly impair the measurements and may easily render questionable the entire value of the experiment. The name turbulence is applied to that flow condition in which at any point of the stream the magnitude and direction of the velocity fluctuate arbitrarily about a well definable mean value. This fluctuation imparts a certain whirling characteristic to the flow.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1130 , A Muegyetem Aerodinamikai Intezeteben Keszult Munka
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-11
    Description: A flight test was conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallops Island, Va., to determine the longitudinal control and stability characteristics of a 0.5-scale model of the Fairchild Lerk Pilotless aircraft with the horizontal wing flaps deflected 15 degrees. The data were obtained by the use of a telemeter and also by radar tracking. The results show an increase of effectiveness of the longitudinal control in producing normal accelerations up to a Mach number of 0.75 where this effectiveness gradually decreased becoming negative at a Mach number of 0.89. Previous tests with wing flaps undeflected an increase in effectiveness up to Mach number of 0.93 where a sudden loss of control occurred. The model was dynamically stable throughout the speed range. The data confirmed the drag increase at the critical Mach number for large angles of attack is indicated in high-speed wind-tunnel tests.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-11
    Description: The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6H30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane has been conducted in the Langley free-flight tunnel. In the investigation it was found that with flaps neutral satisfactory flight behavior at low speeds was obtainable with an increase in height of the vertical tail and with the inboard slats opened. In the flap-down slat-open condition the longitudinal stability was satisfactory, but it was impossible to obtain satisfactory lateral-flight characteristics even with the increase in height of the vertical tail because of the negative effective dihedral, low directional stability, and large-adverse yawing moments of the ailerons.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7J17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-10
    Description: A 1/7 scale semispan model of the XB-35 airplane was tested in the Langley 10 foot pressure tunnel, primarily for the purpose of investigating the effectiveness of a leading-edge slot for alleviation of stick-fixed longitudinal instability at high angles of attack caused by early tip stalling and a device for relief of stick-free instability caused by elevon up-floating tendencies at high angles of attack. Results indicated that the slot was not adequate to provide the desired improvement in stick-fixed stability. The tab-flipper device provided improvement in stick-free stability abd two of the linkage combinations tested gave satisfactory variations of control force with airspeed for all conditions except that in which the wing-tip "pitch-control" flap was fully deflected. However, the improvement in control force characteristics was accompanied by a detrimental effect on stick-fixed stability because of the pitching moments produced by the elevon tab deflection.
    Keywords: Aircraft Stability and Control
    Type: NACA-MR-L5L27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-12
    Description: The results obtained from gust and draft velocity measurements within thunderstorms for the period July 24, 1946 to August 6, 1946 at Orlando, Florida are presented herein. These data are summarized in tables I and II and are of the type presented in reference 1 for previous flights. In two thunderstorm traverses, indications of ambient-air temperature were obtained from photo-observer records. These data are summarized in table III.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7C28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-12
    Description: The primary purpose of the Quiet Spike(TradeMark) flight research program was to analyze the aerodynamic, structural, and mechanical proof-of-concept of a large multi-stage telescoping nose spike installed on the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) F-15B airplane. This report describes the preflight stability and control analysis performed to assess the effect of the spike on the stability, controllability, and handling qualities of the airplane; and to develop an envelope expansion approach to maintain safety of flight. The overall flight test objective was to collect flight data to validate the spike structural dynamics and loads model up to Mach 1.8. Other objectives included validating the mechanical feasibility of a morphing fuselage at operational conditions and determining the near-field shock wave characterization. The two main issues relevant to the stability and control objectives were the effects of the spike-influenced aerodynamics on the F-15B airplane flight dynamics, and the air data and angle-of-attack sensors. The analysis covered the sensitivity of the stability margins, and the handling qualities due to aerodynamic variation and the maneuvering limitations of the F-15B Quiet Spike configuration. The results of the analysis and the implications for the flight test program are also presented.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2009-214651 , H-2956 , DFRC-654
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-12
    Description: The spin and recovery characteristics of the Northrop XF-89 airplane, as well as the spin-recovery parachute requirements, the control forces that would be encountered in the spin, and the best method for the crew to attempt an emergency escape are presented in this report. The characteristics were mainly estimated rather than determined by model tests because the XF-89 dimensional and mass characteristics were such as to make this airplane similar to several others, models of which have previously been tested. Brief tests were made on an available model of similar design to augment the estimation. The results indicate that the recovery characteristics will be satisfactory for all airplane loadings if recovery is attempted by use of rudder followed by moving the elevator down. The rudder pedal forces will be within the capabilities of the pilot but the elevator stick forces will be beyond the pilot's capabilities unless a trim tab, or a booster is used. A 9.5-foot-diameter flat-type tail parachute or a 5.0-foot-diameter flat-type wing-tip parachute with a drag coefficient of 0.7 will be a satisfactory emergency spin-recovery device for spin demonstrations and if it is necessary for the crew to abandon the spinning airplane, they should leave from the outboard side of the cockpit.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9B28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-12
    Description: The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-12
    Description: The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in the concept design; (f) a near-term, transitional application of the DMA concept as a proving ground for new airborne technologies; and (g) conclusions. The analysis indicates that the operational feasibility of a national DMA network faces significant challenges, especially for interactions between DMAs and between DMA and non-DMA traffic. Provided these issues are resolved, sectors near DMAs could experience significant local capacity benefits.
    Keywords: Aircraft Stability and Control
    Type: NASA/TP-2008-215323 , L-19462
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-12
    Description: The first air launch attempt of an X-43A stack, consisting of the booster, adapter and Hyper-X research vehicle, ended in failure shortly after the successful drop from the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) B-52B airplane and ignition of the booster. The stack was observed to begin rolling and yawing violently upon reaching transonic speeds, and the grossly oscillating fins of the booster separated shortly thereafter. The flight then had to be terminated with the stack out of control. Very careful linear flutter and aeroservoelastic analyses were subsequently performed as reported herein to numerically duplicate the observed instability. These analyses properly identified the instability mechanism and demonstrated the importance of including the flight control laws, rigid-body modes, structural flexible modes and control surface flexible modes. In spite of these efforts, however, the predicted instability speed remained more than 25 percent higher than that observed in flight. It is concluded that transonic shock phenomena, which linear analyses cannot take into account, are also important for accurate prediction of this mishap instability.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2008-214635 , H-2837
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-12
    Description: A piloted, fixed-base simulation was conducted in 2006 to determine optimum rudder pedal force/feel characteristics for transport aircraft. As part of this research, an evaluation of four metrics for assessing rudder pedal characteristics previously presented in the literature was conducted. This evaluation was based upon the numerical handling qualities ratings assigned to a variety of pedal force/feel systems used in the simulation study. It is shown that, with the inclusion of a fifth metric, most of the rudder pedal force/feel system designs that were rated poorly by the evaluation pilots could be identified. It is suggested that these metrics form the basis of a certification requirement for transport aircraft.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-17
    Description: At the request of the Henschel Aircraft Works. A. G. Berlin. three models of the missile "Zitterrochen" were investigated at subsonic velocities.(open jet 215-millimeter diameter) and at supersonic velocities (open jet 110 by 130 millimeters) in order to determine the effect of various wing forms on the air forces and moments. Three-component measurements were taken, and one model was also investigated with deflected control plates.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1159 , DLUM-3122 , Deutsche Luftfahrtforschung, Untersuchungen und Mitteilungen
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-17
    Description: This report contains the flight-test results of the longitudinal-stability and -control phase of a general flying qualities investigation of the Lockheed P-80A airplane (Army No. 44-85099). The tests were conducted at indicated airspeeds up to 530 miles per hour (0.76 Mach number) at low altitude and up to 350 miles per hour (0.82) Mach number) at high altitude. These tests showed that the flying qualities of the airplane were in accordance with the requirements of the Army Air Forces Stability and Control Specification except for excessive elevator control forces in maneuvering flight and the inadequacy of the longitudinal trimming control at low airspeeds.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A7G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-17
    Description: Estimates of the static stick-fixed stability and control characteristics of the Consolidated Vultee model 240 airplane are presented in this report. The estimates are based on tests of a 0.092-scale powered model in the 10-foot wind tunnel of the Guggenheim Aeronautical Laboratory of the California Institute of Technology. Results of the analysis are evaluated in terms of the Army specifications for stability and control characteristics which are more specific and, in general, equal to or more rigid than the Civil Aeronautics Administration requirements. The stick-fixed stability and control characteristics of the Consolidated Vultee model 240 were found to be satisfactory except for the following: 1) Marginal longitudinal stability in the landing approach (flaps 30 deg, 50% minimum continuous power) with aft center of gravity (31% M.A.C.); 2) Marginal rudder control to hold zero sideslip in a climb after take-off with asymmetric power (flaps 30 deg, left engine inoperative, right engine delivering take-off power) with maximum rudder throw limited to +/- 18 deg; 3) Marginal dihedral effect with flaps 40 deg and engines delivering maximum continuous power.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A7F19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-13
    Description: An aircraft comprising a Channel Wing having blown c h - ne1 circulation control wings (CCW) for various functions. The blown channel CCW includes a channel that has a rounded or near-round trailing edge. The channel further has a trailing-edge slot that is adjacent to the rounded trailing edge of the channel. The trailing-edge slot has an inlet connected to a source of pressurized air and is capable of tangentially discharging pressurized air over the rounded trailing edge. The aircraft further has a propeller that is located in the channel and ahead of the rounded trailing edge of the channel. The propeller provides a propeller thrust exhaust stream across the channel wing to propel the aircraft through the air and to provide high lift. The pressurized air being discharged over the rounded trailing edge provides a high lift that is obtained independent of an aircraft angle of attack, thus preventing the asymmetry. separated flow, and stall experienced by the CC wing at the high angle of attack it required for high lift generation. The aircraft can further include blown outboard circulation control wings (CCW) that are synergistically connected to the blown channel CCWs. The blown outboard CCWs provide additional high lift, control thrust/drag interchange, and can provide all three aerodynamic moments when differential blowing is applied front-to-rear or left-to-right. Both the blown channel CCW and the outboard CCW also have leading-edge blowing slots to prevent flow separation or to provide aerodynamic moments for control.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-13
    Description: Method and system for analyzing, separately or in combination, kinetic energy and potential energy and/or their time derivatives, measured or estimated or computed, for an aircraft in approach phase or in takeoff phase, to determine if the aircraft is or will be put in an anomalous configuration in order to join a stable approach path or takeoff path. A 3 reference value of kinetic energy andor potential energy (or time derivatives thereof) is provided, and a comparison index .for the estimated energy and reference energy is computed and compared with a normal range of index values for a corresponding aircraft maneuver. If the computed energy index lies outside the normal index range, this phase of the aircraft is identified as anomalous, non-normal or potentially unstable.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-13
    Description: To determine the trim range in which a seaplane can take off without porpoising, stability tests were made of a Plexiglas model, composed of float, wing, and tailplane, which corresponded to a full-size research airplane. The model and full-size stability limits are in good agreement. After all structural parts pertaining to the air frame were removed gradually, the aerodynamic forces replaced by weight forces, and the moment of inertia and position of the center of gravity changed, no marked change of limits of the stable zone was noticeable. The latter, therefore, is for practical purposes affected only by hydrodynamic phenomena. The stability limits of the DVL family of floats were determined by a systematic investigation independent of any particular sea-plane design, thus a seaplane may be designed to give a run free from porpoising.
    Keywords: Aircraft Stability and Control
    Type: NACA/TM-1254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-13
    Description: Adaptive control should be integrated with a baseline controller and only used when necessary (5 responses). Implementation as an emergency system. Immediately re-stabilize and return to controlled flight. Forced perturbation (excitation) for fine-tuning system a) Check margins; b) Develop requirements for amplitude of excitation. Adaptive system can improve performance by eating into margin constraints imposed on the non-adaptive system. Nonlinear effects due to multi-string voting.
    Keywords: Aircraft Stability and Control
    Type: DFRC-1050 , NASA RFI Workshop on Adaptive Control Validation; Aug 09, 2009; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Wind-tunnel measurements on projectiles are discussed. Tests at the Gottingen Tunnel are described. The tunnel operates on the Prandtl principle, that is, a brief stationary air stream produced in an evacuated tank by induction of atmospheric air.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1122 , Lilienthal-Gesellschaft; 139; 29-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-11
    Description: The compression plane is intended for operation on or close to the surface of the water, and has a hull with a concave bottom which forms the upper surface of a tunnel into which air is forced under pressure to support part of the load. The results of the tests made in Langley tank no. 1 include values of the horizontal forces, trimming moment, and static pressure in the tunnel for a wide range of loads and speeds and two power conditions, and are presented in the form of curves against speed with load as a parameter. The results are scaled up to 10 times the model size for three conditions at which the model is self-propelled at a steady speed. Lift is obtained from the static pressure of air in the tunnel. In general, the ratio of the gross load to the total resistance increases with increase in load and decrease in speed. This ratio varies between l-7 and 5.7 at high speeds and has a maximum value of 7. The total resistance is nearly the same for both power conditions except at low speeds and heavy loads. No abrupt change in forces on the hull or flow around the hull occurs in. the region of zero draft. The centers of pressure are generally far aft. At the most efficient trim (1.2'), considerable bow-up moment would be required for practicable operation. There is no abrupt transition from the air-borne to the water- borne condition.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8G02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-11
    Description: Measurements were made, in dives to transonic speeds, of the static-pressure position error at a distance of one chord ahead of the McDonnell XF-88 airplane. The airplane incorporates a wing which is swept back 35 deg along the 0.22 chord line and utilizes a 65-series airfoil with a 9-percent-thick section perpendicular to the 0.25-chord line. The section in the stream direction is approximately 8-percent thick. Data up to a Mach number of about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Data at Mach numbers above about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Results of the measurements indicate that the static-pressure error, within the accuracy of measurement, is negligible from a Mach number of 0.65 to a Mach number of about 0.97. With a further increase in Mach number, the static-pressure error increases rapidly; at the highest Mach number attained in these tests (about M = 1.038), the error increases to about 8 percent of the impact pressure. Above a Mach number of about 0.975, the recorded Mach number remains substantially constant with increasing true Mach number; the installation is of no value between a Mach number of about 0.975 and at least 1.038, as the true Mach number cannot be obtained from the recorded Mach number in this range. Previously published data have shown that at 0.96 chord ahead of the wing tip of the straight-wing X-l airplanes, a rapid rise of position error started at a Mach number of about 0.8. In the case of the XF-88 airplane, this rise of position error was delayed, presumably by the sweep of the wing, to a Mach number of about 0.97.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9I12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley stability tunnel to determine the low-speed static stability and control characteristics of a model of the Bell MX-776. The results show the model to be longitudinally unstable in the angle-of-attack range around zero angle of attack and to become stable at moderate angles of attack. The results of the present investigation agree reasonably well with results obtained in other facilities at low speed. The present pitching-moment results at low Mach numbers also agree reasonably well with unpublished results of tests of the model at supersonic Mach numbers (up to Mach number 1.86). Unpublished results at moderate and high subsonic speeds, however, indicate considerably greater instability at low angles of attack than is indicated by low-speed results. The results of the present tests also showed that the pitching-moment coefficients for angles of attack up to 12deg remained fairly constant with sideslip angle up to 12deg. The elevators tested produced relatively large pitching moments at zero angle of attack but, as the angle of attack was increased, the elevator effectiveness decreased. The rate of decrease of elevator effectiveness with angle of attack was less for 8deg than for 20deg elevator deflection. Therefore although 8deg deflection caused an appreciable change in longitudinal trim angle and trim lift coefficient a deflection of 20deg caused only a small additional increase in trim angle and trim lift coefficient.
    Keywords: Aircraft Stability and Control
    Type: NACA RM-SL52D23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-11
    Description: Flight tests have been made to determine the longitudinal stability and control and stalling characteristics of a North American P-51H airplane. The results indicate that the airplane has satisfactory longitudinal stability in all the flight conditions tested at normal loadings up to 25,000 feet altitude. At Mach numbers above 0.7, the elevator push force required for longitudinal trim decreased somewhat because of compressibility effects. The elevator stick force per g in accelerated turns at the forward center-of-gravity position of 24 percent mean aerodynamic chord above 250 miles per hour was in excess of the required limits at both 5,000 and 25,OOO feet altitude. The longitudinal-trim-force changes due to flaps and power were small, but the rudder-trim-force change with power change was high. The stalling characteristics in all the conditions tested were satisfactory.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8B24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-11
    Description: The ditching characteristics of the Lockheed XR60-1 airplane were determined by tests of a 1/24-scale dynamic model in calm water at the Langley tank no. 2 monorail. Various landing attitudes, flap settings, speeds, and conditions of damager were investigated. The ditching behavior was evaluated from recordings of decelerations, length of runs, and motions of the model. Scale-strength bottoms and simulated crumpled bottoms were used to reproduce probable damage to the fuselage. It was concluded that the airplane should be ditched at a landing attitude of about 5 deg with flaps full down. At this attitude, the maximum longitudinal deceleration should not exceed 2g and the landing run will be bout three fuselage lengths. Damage to the fuselage will not be excessive and will be greatest near the point of initial contact with the water.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8E17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-11
    Description: The present report deals with the aerodynamic, constructive, and instrumental development of a spoiler control for remote control of flying missiles.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1210 , ZWB Forschungsbericht; Rept-1717
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: The lift coefficient of!a wing of small span at first shows a linear increase for the increasing angle of attack, but to a lesser degree then was to be expected according to the theory of the lifting line; thereafter the lift coefficient increases more rapidly than linearity, as contrasted with the the theory of the lifting line. The induced drag coefficient for a given lift coefficient, on the other hand, is obviously much smaller than it would be according to the theory. A mall change in the theory of the lifting line will cover these deviations.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1151 , Deutsche Luftfahrtforschung, Forschungsbericht; Rept-1665
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-11
    Description: The stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane have been investigated over a Mach number range from 0.40 to 0.91. Results of the basic longitudinal tests of the complete model with undeflected control surfaces are given in the present report with a very limited analysis of the results.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7G08-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-11
    Description: An investigation was made by the NACA wing-flow method to determine the longitudinal stability and control characteristics at transonic speeds of a semispan model of the XF7U-1 tailless airplane. The 25-percent chord line of the wing of the model was swept back 35 deg. The airfoil sections of the wing perpendicular to the 25-percent chord line were 12 percent thick. Measurements were made of the normal force and pitching moment through an angle-of-attack range from about -3 deg to 14 deg for several ailavator deflections at Mach numbers from 0.65 to about 1.08. The results of the tests indicated no adverse effects of compressibility up to a Mach number of at least 0.85 at low normal-force coefficients and small ailavator deflections. Up to a Mach number of 0.85, the neutral point at low normal-force coefficients was at about 25 percent of the mean aerodynamic chord and moved rearward irregularly to 41 or 42 percent with a further increase in Mach number to about 1.05. For deflections up to -8.0 percent, the ailavator was effective in changing the pitching moment except at Mach numbers from 0.93 to about 1.0 where ineffectiveness or reversal was indicated for deflections and normal-force coefficients. With -13.2 deg deflection at normal-force coefficients above about 0.3, reversal of ailavator effectiveness occurred at Mach numbers as low as 0.81. A nose-down trim change, which began at a Mach number of about 0.85, together with the loss in effectiveness of the ailavator, indicated that with increase in the Mach number from about 0.95 to 1.05 an abrupt ailavator movement of 5 deg or 6 deg first up and then down would be required to maintain level flight.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7I08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-11
    Description: Additional tests of a 1/7-size model of the Grumman XJR2F-1 amphibian were made in Langley tank no. 1 to compare the behavior during take-off of the model equipped with split- and slotted-type flaps. The slotted flag had a large effect on locating the forward center-of-gravity limits for stable take-offs. Stable take-offs within the normal operating range of positions of the center of gravity could be made with the split flaps deflected 45deg or with the slotted flaps deflected less than 20deg. At flap deflections required for similar take-off stability, the use of split-flaps resulted lower take-off speeds than the use of slotted flaps. An increase in forward acceleration from 1.1 to 4.8 feet per second per second moved the center-of-gravity limit forward approximately 3-percent mean aerodynamic chord.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7A07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-11
    Description: A 1/4 - scale model of the Naval Aircraft Factory float-wing convoy interceptor was tested in the Langley 7-by 10-foot tunnel to determine the longitudinal and lateral stability characteristics. The model was tested in the presence of a ground board to determine the effect of simulating the ground on the longitudinal characteristics.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L6J15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-11
    Description: Tests have been conducted in the Langley high speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0,08-scale model of the Chance Vought XF7U-1 airplane. The longitudinal-control characteristics of the complete model are presented in the present report with a limited analysis of the results.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7H01-PT-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-11
    Description: A 1/8 scale model of the Grumman XTB3F-1 airplane was tested in the Langley 7- by 10-foot tunnel to determine the stability and control characteristics and to provide data for estimating the airplane handling qualities. The report includes longitudinal and lateral stability and control characteristics of the complete model, the characteristics of the isolated horizontal tail, the effects of various flow conditions through the jet duct, tests with external stores attached to the underside of the wing, ana tests simulating landing and take-off conditions with a ground board. The handling characteristics of the airplane have not been computed but some conclusions were indicated by the data. An improvement in the longitudinal stability was obtained by tilting the thrust line down. It is shown that if the wing flap is spring loaded so that the flap deflection varies with airspeed, the airplanes will be less stable than with the flap retracted or fully deflected. An increase in size of the vertical tail and of the dorsal fin gave more desirable yawing-moment characteristics than the original vertical tail and dorsal fin. Preventing air flow through the jet duct system or simulating jet operation with unheated air produced only small changes in the model characteristics. The external stores on the underside of the wing had only small effects on the model characteristics. After completion of the investigation, the model was returned to the contractor for modifications indicated by the test results.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L7G17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-13
    Description: This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN-219 , NASA Aviation Safety Technical Conference; Oct 21, 2008; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-13
    Description: A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2006-2815 , 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; May 01, 2006 - May 04, 2006; Newport, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Summaries of rotor performance are presented for a 124,000-lb Large Civil Tilt Rotor (LCTR) design, along with isolated-rotor and fully-coupled wing/rotor aeroelastic stability. A major motivation of the present research is the effect of size on rotor dynamics. Simply scaling up existing rotor designs to the vehicle size under study would result in unacceptable rotor weight. The LCTR was the most promising of several large rotorcraft concepts produced by the NASA Heavy Lift Rotorcraft Systems Investigation. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots at 30,000 ft altitude. Design features included a low-mounted wing and hingeless rotors, with a very low cruise tip speed of 350 ft/sec. The LCTR was sized by the'RC code developed by the U. S. Army Aeroflightdynamics Directorate. The rotor was then optimized using the CAMRAD II comprehensive analysis code. The blade and wing structures were designed by Pennsylvania State University to meet the rotor loads calculated by CAMRAD II and wing loads required for certification. Aeroelastic stability was confirmed by further CAMRAD II analysis, based on the optimized rotor and wing designs.
    Keywords: Aircraft Stability and Control
    Type: AHS Vertical Lift Aircraft Design Conference; Jan 18, 2006 - Jan 20, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2005-5933 , AIAA Guidance, Navigation, and Control Conference and Exhibit; Aug 15, 2005 - Aug 18, 2005; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.
    Keywords: Aircraft Stability and Control
    Type: AIAA Atmospheric Flight Mechanics Conference; Aug 15, 2005 - Aug 18, 2005; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.
    Keywords: Aircraft Stability and Control
    Type: RTO-MP-AVT-123 , RTO/AVT-123 Symposium on Flow Induced Unsteady Loads and the Impact on Military Applications; Apr 25, 2005 - Apr 29, 2005; Budapest; Hungary
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A wind tunnel investigation was carried out on a semi-span wing model to assess the feasibility of controlling vortices emanating from outboard flaps and tip-flaps by actively varying the degree of boundary layer separation. Separation was varied by means of perturbations produced from segmented zero-efflux oscillatory blowing slots, while estimates of span loadings and vortex sheet strengths were obtained by integrating wing surface pressures. These estimates were used as input to inviscid rollup relations as a means of predicting changes to the vortex characteristics resulting from the perturbations. Surveys of flow in the wake of the outboard and tip-flaps were made using a seven-hole probe, from which the vortex characteristics were directly deduced. Varying the degree of separation had a marked effect on vortex location, strength, tangential velocity, axial velocity and size for both outboard and tip-flaps. Qualitative changes in vortex characteristics were well predicted by the inviscid rollup relations, while the failure to account for viscosity was presumed to be the main reason for observed discrepancies. Introducing perturbations near the outboard flap-edges or on the tip-flap exerted significant control over vortices while producing negligible lift excursions.
    Keywords: Aircraft Stability and Control
    Type: 45th Israel Annual Conference on Aerospace Sciences; Feb 23, 2005 - Feb 24, 2005; Haifa; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Modem aircraft, UAVs, and robotic spacecraft pose substantial requirements on controllers in the light of ever increasing demands for reusability, affordability, and reliability. The individual systems (which are often nonlinear) must be controlled safely and reliably in environments where it is virtually impossible to analyze-ahead of time- all the important and possible scenarios and environmental factors. For example, system components (e.g., gyros, bearings of reaction wheels, valves) may deteriorate or break during autonomous UAV operation or long-lasting space missions, leading to a sudden, drastic change in vehicle performance. Manual repair or replacement is not an option in such cases. Instead, the system must be able to cope with equipment failure and deterioration. Controllability of the system must be retained as good as possible or re-established as fast as possible with a minimum of deactivation or shutdown of the system being controlled. In such situations the control engineer has to employ adaptive control systems that automatically sense and correct themselves whenever drastic disturbances and/or severe changes in the plant or environment occur.
    Keywords: Aircraft Stability and Control
    Type: AIAA 2005 Guidance, Navigation, and Control Conference; Aug 15, 2005 - Aug 18, 2005; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: As part of NASA's Distributed Air/Ground Traffic Management (DAG-TM) effort, NASA Langley Research Center is developing concepts and algorithms for merging multiple aircraft arrival streams and precisely spacing aircraft over the runway threshold. An airborne tool has been created for this purpose, called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). To evaluate the performance of AMSTAR and complement human-in-the-loop experiments, a simulation environment has been developed that enables fast-time studies of AMSTAR operations. The environment is based on TMX, a multiple aircraft desktop simulation program created by the Netherlands National Aerospace Laboratory (NLR). This paper reviews the AMSTAR concept, discusses the integration of the AMSTAR algorithm into TMX and the enhancements added to TMX to support fast-time AMSTAR studies, and presents initial simulation results.
    Keywords: Aircraft Stability and Control
    Type: 23rd Digital Avionics Systems Conference; Oct 24, 2004 - Oct 28, 2004; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: The compressible Reynolds-averaged Navier-Stokes equations are solved for circulation control airfoil flows. Numerical solutions are computed with both structured and unstructured grid solvers. Several turbulence models are considered, including the Spalart-Allmaras model with and without curvature corrections, the shear stress transport model of Menter, and the k-enstrophy model. Circulation control flows with jet momentum coefficients of 0.03, 0.10, and 0.226 are considered. Comparisons are made between computed and experimental pressure distributions, velocity profiles, Reynolds stress profiles, and streamline patterns. Including curvature effects yields the closest agreement with the measured data.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2005-0089 , 43rd Aerospace Sciences Meeting and Exhibit; Jan 10, 2005 - Jan 13, 2005; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: A free-to-roll study of the low-speed lateral characteristics of the pre-production F/A-l8E was conducted in the NASA Langley 12-Foot Low-Speed Tunnel. In developmental flight tests the F/A-18E unexpectedly experienced uncommanded lateral motions in the power approach configuration. The objective of this study was to determine the feasibility of using the free-to-roll technique for the detection of uncommanded lateral motions for the pre-production F/A-l8E in the power approach configuration. The data revealed that this technique in conjunction with static data revealed insight into the cause of the lateral motions. The free-to-roll technique identified uncommanded lateral motions at the same angle-of-attack range as experienced in flight tests. The cause of the uncommanded lateral motions was unsteady asymmetric wing stall. The paper also shows that free-to-roll data or static force and moment data alone are not enough to accurately capture the potential for an aircraft to experience uncommanded lateral motion.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2005-0239 , 43rd AIAA Aerospace Sciences Meeting and Exhibit; Jan 10, 2005 - Jan 13, 2005; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.
    Keywords: Aircraft Stability and Control
    Type: DFRC-454 , International Joint Conference on Neural Networks (IJCNN 2005); Aug 01, 2005 - Aug 05, 2005; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2008-215453 , AIAA-Paper-2008-6204 , E-16643 , Atmospheric Flight Mechanics Conference and Exhibit; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: This study investigated two concepts: (1) whether speeding a human-in-the-loop simulation (or the subject's "world") scales time stress in such a way as to cause primary task performance to reveal workload differences between experimental conditions and (2) whether using natural hand motions to control the attitude of an aircraft makes controlling the aircraft easier and more intuitive. This was accomplished by having pilots and non-pilots make altitude and heading changes using three different control inceptors at three simulation speeds. Results indicate that simulation speed does affect workload and controllability. The bank and pitch angle error was affected by simulation speed but not by a simulation speed by controller type interaction; this may have been due to the relatively easy flying task. Results also indicate that pilots could control the bank and pitch angle of an aircraft about equally as well with the glove as with the sidestick. Non-pilots approached the pilots ability to control the bank and pitch angle of an aircraft using the positional glove - where the hand angle is directly proportional to the commanded aircraft angle. Therefore, (1) changing the simulation speed lends itself to objectively indexing a subject s workload and may also aid in differentiating among interface concepts based upon performance if the task being studied is sufficiently challenging and (2) using natural body movements to mimic the movement of an airplane for attitude control is feasible.
    Keywords: Aircraft Stability and Control
    Type: HFES 2008: Human Factors and Ergonomics Society 52nd Annual Meeting; Sep 22, 2008 - Sep 26, 2008; New York City, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: This report presents the system description, methods, and sample results of the in-flight stability analysis for the X-48B, Blended Wing Body Low-Speed Vehicle. The X-48B vehicle is a dynamically scaled, remotely piloted vehicle developed to investigate the low-speed control characteristics of a full-scale blended wing body. Initial envelope clearance was conducted by analyzing the stability margin estimation resulting from the rigid aircraft response during flight and comparing it to simulation data. Short duration multisine signals were commanded onboard to simultaneously excite the primary rigid body axes. In-flight stability analysis has proven to be a critical component of the initial envelope expansion.
    Keywords: Aircraft Stability and Control
    Type: DFRC-775 , 46th AIAA Atmospheric Flight Mechanics Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.
    Keywords: Aircraft Stability and Control
    Type: AIAA Guidance, Navigation and Control Conference and Exhibit; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.
    Keywords: Aircraft Stability and Control
    Type: AIAA Atmospheric Flight Mechanics Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A general overview of the Ikhana Uninhabited Air System (UAS) is presented. The contents include: 1) Ikhana UAS; 2) Ikhana UAS / Ground Control Station (GCS); 3) Ikhana UAS / Antennas; 4) Western States Fire Mission 2007 Partners; 5) FAA Certificate of Authorization (COA); 6) Western States Fire Missions (WSFM) 2007; 7) WSFM 1-4 2007; 8) California Wildfire Emergency Response 2007; 9) WSFM 5-8 Emergency Response 2007; 10) WSFM Achievements; and 11) WSFM Challenges.
    Keywords: Aircraft Stability and Control
    Type: EAA AirVenture 2008 (Oshkosh); Jul 28, 2008 - Aug 03, 2008; Oshkosh, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.
    Keywords: Aircraft Stability and Control
    Type: AIAA Guidance, Navigation and Control Conference and Exhibit; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...