ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-20
    Description: The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported by airlines under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion by the engine. The ice crystals can result in degraded engine performance, loss of thrust control, compressor surge or stall, and flameout of the combustor. The Aviation Safety Program at NASA has taken on the technical challenge of a turbofan engine icing caused by ice crystals which can exist in high altitude convective clouds. The NASA engine icing project consists of an integrated approach with four concurrent and ongoing research elements, each of which feeds critical information to the next element. The project objective is to gain understanding of high altitude ice crystals by developing knowledge bases and test facilities for testing full engines and engine components. The first element is to utilize a highly instrumented aircraft to characterize the high altitude convective cloud environment. The second element is the enhancement of the Propulsion Systems Laboratory altitude test facility for gas turbine engines to include the addition of an ice crystal cloud. The third element is basic research of the fundamental physics associated with ice crystal ice accretion. The fourth and final element is the development of computational tools with the goal of simulating the effects of ice crystal ingestion on compressor and gas turbine engine performance. The NASA goal is to provide knowledge to the engine and aircraft manufacturing communities to help mitigate, or eliminate turbofan engine interruptions, engine damage, and failures due to ice crystal ingestion.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN20926 , Department of Aerospace Engineering and Engineering Mechanics Graduate Seminar; 4 May 2015; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-07
    Description: A fundamental exploratory experiment is conducted assessing the performance of a one-sided ejector with the eventual goal of noise reduction for jet engines. The hardware is comprised of an 8:1 rectangular nozzle together with an ejector box whose lower surface is flush with the lower lip of the nozzle. Secondary flow is allowed through a gap between the upper lip of the nozzle and a flap that constitutes the upper surface of the ejector. Wall static pressures and Pitot probe surveys are conducted to evaluate the performance of the ejector with variation of geometric parameters. It is found that addition of vortex generating tabs at the upper lip of the nozzle significantly increases secondary flow entrainment. The entrainment is further enhanced by a divergence of the ejector upper surface. Limited noise measurements are done. The baseline ejector (without tabs) often encounters flow resonance with accompanying tones. The tabs have the additional benefit of eliminating those tones in all cases. However, for the tabbed case, addition of the ejector produces insignificant further noise reduction. This is due to the fact that the flow remains unmixed on the lower half of the ejector. The focus of ongoing and future efforts is to achieve sufficient mixing of the flow so that the exhaust velocities are uniformly low, while keeping the ejector hardware short and lightweight.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2019-220064 , GRC-E-DAA-TN65186 , E-19654
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-07
    Description: This presentation is on Electric and Hybrid Electric Propulsion: NASA's Approach, expectations, design and project requirements, and the motivation behind it.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN59208 , BEYOND LITHIUM ION XI; 24-26 Jul. 2018; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E51I05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TN-2227
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Tests of two propellers having two blades and differing only in the inboard pitch distribution were made in the Langley 8-foot highspeed tunnel to determine the effect of inboard pitch distribution on propeller performance. propeller was designed for operation in the reduced velocity region ahead of an NACA cowling; the inboard pitch distribution of the modified propeller was increased for operation at or near free-stream velocities, such as would be obtained in a pusher installation. conditions covering climb, cruise, and high-speed operation. Wake surveys were taken behind the propellers in order to determine the distribution of thrust along the blades and to aid in the analysis of the results. Test results showed that the modified propeller was about 2.5 percent less efficient for a typical climb condition at all altitudes, 2 percent more efficient for one cruise condition, and 5 percent more efficient for high-speed operation. speed condition, the modified propeller showed a 6-percent loss in efficiency due to compressibility; whereas the original propeller showed an 11-percent efficiency loss due to compressiblity. The lower compressibility loss for the modified propeller resulted from the fact that the inboard sections of this propeller could operate at increased thrust loading after compressibility losses had occurred at the outboard sections.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TN-2268
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-974 , NACA-ACR-L6D02 , NACA-AR-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: Sound pressure levels, frequency spectrum, and jet velocity profiles are presented for an engine-afterburner combination at various values of afterburner fuel - air ratio. At the high fuel-air ratios, severe low-frequency resonance was encountered which represented more than half the total energy in the sound spectrum. At similar thrust conditions, lower sound pressure levels were obtained from a current fighter air craft with a different afterburner configuration. The lower sound pressure levels are attributed to resonance-free afterburner operation and thereby indicate the importance of acoustic considerations in afterburner design.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E54G07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-15
    Description: The present paper examines potential propulsive and aerodynamic benefits of integrating a Boundary-Layer Ingestion (BLI) propulsion system into the Common Research Model (CRM) geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment is used to generate engine conditions for Computational Fluid Dynamics (CFD) analyses. Improvements to the BLI geometry are made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method, and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown, and improvements between subsequent BLI designs are presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet, with Reynolds number of 40 million based on mean aerodynamic chord and an angle of attack of 2 for all geometries. Results indicate an 8% reduction in engine power requirements at cruise for the BLI configuration compared to the baseline geometry. Small geometric alterations of the aft portion of the fuselage using CDISC has been shown to marginally increase the benefit from boundary-layer ingestion further, resulting in an 8.7% reduction in power requirements for cruise, as well as a drag reduction of approximately twelve counts over the baseline geometry.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-25357 , Journal of Aircraft (ISSN 0021-8669) (e-ISSN 1533-3868); 55; 3; 1141-1153
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-03
    Description: Outline - Introduction: X-57 CFD task overview; Motivation. Part I, Computational simulations without propulsion: Establishing CFD (Computational Fluid Dynamics) Best Practices - Grid generation - Mesh refinement study - Numerical methods - Wind tunnel validation study; Power-Off Aerodynamic Database Results. Part II, Computational simulations with propulsion: Cruise Power-On Database; High-Lift Power-On Database. Summary.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN69863 , NASA Advanced Supercomputing Advanced Modeling & Simulation (AMS) Seminar Series; Jun 13, 2019; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-20
    Description: A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: A simulator to artificially generate turbofan broadband signatures using the ANCF (Advanced Noise Control Fan) test article is presented. [Development of a Broadband Acoustic Emulator to Mature Propulsion Noise Reduction (CFANS-BB: Configurable Fan Artificial Noise Source- Broadband)]
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN67362 , Acoustics Technical Working Group (ATWG) Spring 2019 Meeting; Apr 10, 2019 - Apr 12, 2019; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN19726 , SciTech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2015-218448 , AIAA Paper 2014-3924 , E-19012 , GRC-E-DAA-TN17165 , Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33874 , International Journal of Heat and Mass Transfer (e-ISSN 0017-9310); 102; 435-444
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN31751 , AIAA/CEAS Aeroacoustics Conference; May 30, 2016 - Jun 01, 2016; Lyon; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: A computational fluid dynamic (CFD) model of a rotating detonation engine (RDE) is used to examine the impact of an exhaust throat (i.e. a constriction) on performance. The model simulates an RDE which is premixed, adiabatic, inviscid, and which contains an inlet valve that prevents backflow from the high pressure region directly behind the rotating detonation. Performance is assessed in terms of ideal net specific impulse which is computed on the assumption of lossless expansion of the working fluid to the ambient pressure through a notional diverging nozzle section downstream of the throat. Such a semi-idealized analysis, while not real-world, allows the effect of the throat to be examined in isolation from, rather than coupled to (as it actually is) various loss mechanisms. For the single Mach 1.4 flight condition considered, it is found that the addition of a throat can yield a 9.4 percent increase in specific impulse. However, it is also found that when the exit throat restriction gets too small, an unstable type of operation ensues which eventually leads to the detonation failing. This behavior is found to be somewhat mitigated by the addition of an RDE inlet restriction across which there is an aerodynamic loss. Remarkably, this loss is overcome by the benefits of the further exhaust restrictions allowed. The end result is a configuration with a 10.3 percent improvement in ideal net specific thrust.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN28815 , AIAA Aerospace Sciences Meeting (SciTech 2016); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-218919 , AIAA Paper 2015-3890 , E-19104-1 , GRC-E-DAA-TN26012 , AIAA Propulsion and Energy Forum 2015; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2015-0356 , NF1676L-21651 , AIAA SciTech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-20579 , AIAA SciTech 2015; Jan 05, 2015 - Jan 08, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: This presentation will be used to develop a level of partnership that is not within the current NASA program for N+3 engine operations.
    Keywords: Aircraft Propulsion and Power
    Type: DFRC-E-DAA-TN30644 , Aircraft Airworthiness and Sustainment Conference (AA&S 2016); Mar 21, 2016 - Mar 24, 2016; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-218926 , GT2015-43744 , E-19182 , GRC-E-DAA-TN27315 , ASME Turbo Expo 2015; Jun 15, 2015 - Jun 19, 2015; Montreal, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN27429 , International Symposium on Air Breathing Engines (ISABE 2015); Oct 25, 2015 - Oct 30, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN24480 , AIAA Propulsion and Energy Conference 2015; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN24742 , AIAA Propulsion and Energy Forum 2015; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN25398 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN23468 , AIAA Distinguished Lectureship; May 12, 2015; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-219147 , E-19270 , GRC-E-DAA-TN34474
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-12
    Description: The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2015-218744 , E-19077 , GRC-E-DAA-TN22200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-12
    Description: An injector for a multipoint combustor system includes an inner air swirler which defines an interior flow passage and a plurality of swirler inlet ports in an upstream portion thereof. The inlet ports are configured and adapted to impart swirl on flow in the interior flow passage. An outer air cap is mounted outboard of the inner swirler. A fuel passage is defined between the inner air swirler and the outer air cap, and includes a discharge outlet between downstream portions of the inner air swirler and the outer air cap for issuing fuel for combustion. The outer air cap defines an outer air circuit configured for substantially unswirled injection of compressor discharge air outboard of the interior flow passage.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-12
    Description: The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2015-218713 , E-19051 , GRC-E-DAA-TN19588
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2017-219134 , E-19259 , GRC-E-DAA-TN33041
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2015-218886 , E-19147 , GRC-E-DAA-TN10970
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: A feasibility study was performed for an advanced commercial short-haul aircraft to evaluate the potential for increased service for short-haul flights that operate out of regional and community airports. An analysis of potential origin-destination markets and trip distances resulted in a seat capacity selection of 48 passengers and a design range of 600 NM. A down-select of advanced technologies resulted in a hybrid-electric propulsion system being chosen as the primary enabling technology. A conceptual design of the advanced aircraft was developed, and a mission and sizing analysis was performed, comparing variants of the advanced aircraft with different levels of electrification. Fairly aggressive levels of electrification and battery specific energy are needed for the hybridelectric architecture to realize any benefit in terms of total energy cost for the 600 NM design mission. The development and operational costs were estimated for the advanced aircraft and compared to the baseline. This analysis demonstrated the negative effect of the cost to develop the hybrid-electric technology on the eventual operating cost. A market analysis was performed to determine possible passenger demand for the advanced shorthaul aircraft. According to the market analysis, there is potential demand for such an aircraft, but not necessarily in many of the smaller regional and community airports that were the intended beneficiaries of this new aircraft concept.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-29966 , NASA/TM-2018-219833 , L-20927
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: A gas turbine engine includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio between about 1.2 and about 1.7 across the propulsor blades.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: A fan section for an engine has a fan which rotates about an axis, the fan has an inlet for ingesting ambient air, and a non-axisymmetric nozzle for providing the fan with non-uniform back pressure.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-12
    Description: A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2014-218114/REV1/SUPPL , E-18856-1 , GRC-E-DAA-TN31660
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2014-218114/REV1 , E-18856-1 , GRC-E-DAA-TN31660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-219419 , E-19316 , GRC-E-DAA-TN36520
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-219133 , E-19258 , GRC-E-DAA-TN31154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: One embodiment of the present invention is a unique gas turbine engine system. Another embodiment is a unique exhaust nozzle system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine systems and exhaust nozzle systems for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-20
    Description: Reynolds-Averaged Navier-Stokes simulations have been performed on a three-stream inverted velocity profile nozzle with and without various configurations of chevrons attached. The nozzle was mounted on a planform to imitate an engine mounted above a wing, shielding ground observers from engine noise. Several chevron designs intended to aggressively mix the jet and move noise sources upstream for shielding were examined to investigate there effects on noise and thrust. Numerical results for the baseline nozzle and one chevron configuration were compared with far-field noise and particle image velocimetry data obtained in NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory. A configuration in which chevrons alternate penetration into the primary stream and tertiary fan stream was explored using the Modern Design of Experiments approach. Short, high-penetration chevrons demonstrated a significant noise reduction for a relatively small thrust penalty.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2019-220066 , E-19656
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: This presentation discusses the NASA Aeronautics Advanced Air Transport Technology Projects perspective on electric, hybrid-electric, and related distributed propulsion technologies for future generations of large transport aircraft. Recent system studies commissioned by NASA and other organizations have identified these technologies as promising approaches to dramatically reduce aircraft fuel consumption, noise, and emissions. These technologies are part of the Projects overall research portfolio aimed toward developing ultra-efficient commercial aircraft in conjunction with alternative low carbon propulsion and energy systems to enable safe and sustainable future growth in global aviation. It is anticipated that both room temperature and cryogenic electrical technologies will be needed in the future. Room temperature electrical systems are likely to impact aviation in the near term by making their way onto smaller aircraft and by augmenting traditional propulsion systems on larger aircraft, while cryogenic technologies will likely be needed in the far term to deliver the several tens of megawatts of propulsive power needed for large transport aircraft. The presentation outlines the opportunities and challenges for electric propulsion technologies for commercial aviation, and describes some of the related concepts and enabling technologies that are currently being developed.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN44463 , IEEE Energy Conversion Congress and Expo 2017; Oct 01, 2017 - Oct 05, 2017; Cincinnatti, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-20
    Description: Recent progress in additive manufacturing has enabled opportunities to explore novel stator rim geometries which can be implemented to improve cooling strategies in turbomachinery. This paper presents a simplified stationary geometry optimization strategy to produce enhanced stator-rotor cavity sealing and highlights main driving mechanisms.The stator and rotor rims were designed using a design strategy based on inspiration from the meandering of rivers. A minimum thickness of 2 millimeters was maintained throughout the cavity to ensure a practical implementation. The computational domain comprised of the stator outlet, hub disk leakage cavity, and rotor platform was meshed using NUMECA Int. package, Hexpress. The numerical analysis required 3D Unsteady Reynolds Average Navier-Stokes to replicate vorticial structures using Ansys Fluent. The operating conditions were representative of engine-like conditions, exploring a wide range of mass flow ratios from 1 to 3 percent. The optimization yielded designs that provide 30 percent reduction in rear platform temperature while minimizing coolant mass flow. The applicability of the design was compared against 3D sector in both stationary and in rotation.
    Keywords: Aircraft Propulsion and Power
    Type: ASME GT2018-77167 , GRC-E-DAA-TN55691 , ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition (GT2018); Jun 11, 2018 - Jun 15, 2018; Oslo; Norway
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-23
    Description: Aviation aerosol emissions have a disproportionately large climatic impact because they are emitted high in the relatively pristine upper troposphere where they can form linear contrails and influence cirrus clouds. Research aircraft from NASA, DLR, and NRC Canada made airborne measurements of gaseous and aerosol composition and contrail microphysical properties behind the NASA DC-8 aircraft at cruise altitudes. The DC-8 CFM-56-2C engines burned traditional medium-sulfur Jet A fuel as well as a low-sulfur Jet A fuel and a 50:50 biofuel blend. Substantial, two-to-three-fold emissions reductions are found for both particle number and mass emissions across the range of cruise thrust operating conditions. These observations provide direct and compelling evidence for the beneficial impacts of biojet fuel blending under real-world conditions.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-25029 , Nature (ISSN 0028-0836) (e-ISSN 1476-4687); 543; 411-415
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-20
    Description: This paper describes the design of a turboshaft engine for a tiltwing air taxi application. In this case, the tiltwing air taxi is intended to fly a 400 nm mission with up to fifteen passengers. Engine requirements for the concept engine are taken from aircraft system studies where thrust is produced by four propellers driven by electric motors and powered by a single gas turbine engine. The purpose of this paper is to perform a cycle design optimization that minimizes fuel consumption and weight while respecting current technology limitations to meet mission requirements. To achieve results, the engine overall pressure ratio and maximum temperature at the exit of the combustor are set as the design parameters. Several sensitivity studies are also performed to visualize optimization trends. Results of the optimization study show solutions are heavily dependent on engine cooling flow requirements and exact mission requirements. This engine is intended for use in large system optimization research.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2019-220151 , AIAA Paper 2019-1948 , E-19671 , GRC-E-DAA-TN65425 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-20
    Description: Structural configuration analysis of two advanced aircraft concepts with distributed hybrid-electric propulsion is presented. These concepts are characterized by multiple wing-mounted electric propulsors, which are powered by turbo-generators. Based on lessons learned from previous structural analysis of unconventional concepts, high-fidelity finite element models of the aircraft wing with embedded electric propulsors are developed. Although a hybrid-electric propulsion system has noise and emission benefits, it also adds electrical power system weights. Hence, efficient structural integration of the wing and propulsors is investigated for design improvement, structural analysis, and weight reduction. Wing structural weights of the two designs are compared with a baseline conventional transport aircraft wing for benefit assessment. In one design, the wing structural weight reduction partially compensates for the additional weight associated with the distributed electric propulsion system.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-27438 , AIAA SciTech Forum 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-25
    Description: Time accurate simulation of non-equilibrium flows inside shock tube facilities presents several challenges from both physical and mathematical aspects. Furthermore, the large computational cost makes it impractical to support a real-time experimental test campaign. In this work, we explore other methods for modeling the shock tube problem with the main focus on the post-shock region and the absolute radiation emanating from it. The proposed alternative approach is several orders of magnitude less computationally expensive while still accurate enough with regards to the quantities of interest. Excellent agreement is found with the established stagnation-line approach. Comparison with time-accurate simulations shows good agreement close to the peak values and disagreement of the temperatures relaxation and radiance profiles toward equilibrium.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN70861 , International Symposium on Shock Waves (ISSW32); Jul 14, 2019 - Jul 19, 2019; Singapore; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-27
    Description: An experimental investigation was conducted to determine the cooling effectiveness of a wide variety of air-cooled turbine-blade configurations. The blades, which were tested in the turbine of a - commercial turbojet engine that was modified for this investigation by replacing two of the original blades with air-cooled blades located diametrically opposite each other, are untwisted, have no aerodynamic taper, and have essentially the same external profile. The cooling-passage configuration is different for each blade, however. The fabrication procedures were varied and often unique. The blades were fabricated using methods most suitable for obtaining a small number of blades for use in the cooling investigations and therefore not all the fabrication procedures would be directly applicable to production processes, although some of the ideas and steps might be useful. Blade shells were obtained by both casting and forming. The cast shells were either welded to the blade base or cast integrally with the base. The formed shells were attached to the base by a brazing and two welding methods. Additional surface area was supplied in the coolant passages by the addition of fins or tubes that were S-brazed. to the shell. A number of blades with special leading- and trailing-edge designs that provided added cooling to these areas were fabricated. The cooling effectiveness and purposes of the various blade configurations are discussed briefly.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E51E23 , REPT-2203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: Magnetic gearing is being investigated at NASA as a replacement to conventional mechanical gearing in aerospace applications. Some potential benefits of magnetic gears over mechanical gearing are torque transmission without mechanical contact, decreased transmission noise, and no required lubrication. However, in order to be a viable alternative for aerospace applications, magnetic gearing must be shown to provide high enough specific torque (torque per unit mass). NASA's second magnetic gearing prototype (PT-2) was able to achieve promising specific torque on par with low torque mechanical gearboxes. This work will briefly review the electromagnetic and structural design of PT-2, provide detailed information on fabrication and assembly, examine build errors, walk through rebuild efforts to improve operation, and conclude with remarks on build difficulties and opportunities for improvement in future prototypes.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN68518 , Annual Vertical Flight Society (VFS 2019) Forum and Technology Display (Forum 75); May 13, 2019 - May 16, 2019; Philadelphia, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: NASA Acoustic Stirling IRAD (Internal Research and Development) Thermal Recovery Energy Efficient System (TREES) Energy Conversion and Management in Aircraft. Presentation on energy conversion on aircraft. Thermal energy recovery changes aircraft thermal management from being a necessary burden on aircraft performance to a desirable asset. It improves the engine performance by recycling waste heat and ultimately rejecting all collected aircraft heat out through the engine nozzle.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN68025 , Interagency Advanced Power Group (IAPG 2019) Mechanical Working Group (MWG) Meeting; May 14, 2019 - May 16, 2019; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Turboshaft engine performance and weight models were developed to support conceptual propulsion and vehicle mission design in support of the National Aeronautics and Space Administration's (NASA) Aeronautics Mission Research Directorate's (ARMD) Revolutionary Vertical Lift Technology (RVLT) Project. These models were developed using open data sources, assuming current and advanced technology levels, and range from 650 to 7,500 shaft output horsepower (485 to 5,600 kilowatts). Documenting the methodology, assumptions, and resulting performance realizes important benefits for NASA and the aviation community. NASA concept vehicle efforts using these propulsion models can more readily shared among the government, industry and university community as common baselines to support current and future work. Assessing the benefits of advanced technologies and new configurations can be facilitated using these models, which helps guide technology investment. As the various modeling conceptual vehicle and mission analysis environments advance, these models can be used directly for broader systems analysis studies, including optimization within the propulsion model itself. To perform this effort, the turboshaft engine is briefly discussed, highlighting the specific components and their expected performance characteristics over the power range and technology levels considered. Engine configurations will also be discussed as they will vary based on power output and assumed technology level. Engine performance, such as airflow, power output and weight will be reported, noting trends that are important for system studies. The effect of advanced propulsion technologies on RVLT-concept vehicles are also reported. Finally, potential future propulsion modeling work will be proposed.
    Keywords: Aircraft Propulsion and Power
    Type: VFS-Forum75-Paper-231 , GRC-E-DAA-TN68629 , Annual Vertical Flight Society (VFS 2019) Forum and Technology Display (Forum 75); May 13, 2019 - May 16, 2019; Philadelphia, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: The X-57 Maxwell flight demonstrator aircraft is an experimental aircraft designed to demonstrate radically improved aircraft efficiency with a 3.5 times aero-propulsive efficiency gain at a "high-speed cruise" flight condition for comparable general aviation aircraft. These gains are enabled by integrating the design of a new, optimized wing and a new electric propulsion system. There are 14 propulsors in all: 12 high lift motor that are only active during takeoff and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The innovative electric propulsion system will have as its primary power a Li-ion battery system. Integrating a battery system into this innovative design poses unique challenges that require careful design considerations across the system. The presentation will cover a breakout of X-57 battery specifications, battery design and lessons learned when designing a high voltage battery system to power electrified aircrafts.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN59043 , GRC-E-DAA-TN59208 , AIAA/IEEE Electric Aircraft Technologies Symposium (EATS); Jul 12, 2018 - Jul 13, 2018; Cincinnati, OH; United States|BEYOND LITHIUM ION XI; Jul 24, 2018 - Jul 26, 2018; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: An in-line electromagnetic actuator with normally-open configuration has been developed for the purpose of exploring its application as a fuel modulator for the active control of combustor thermo-acoustic instabilities. The actuator is based on the spring-coil-plunger mechanism with the plunger designed to be suspended by crossed cantilever beam springs. Operational specification was set for a 1000 psi maximum inlet fuel pressure and modulation for a broad frequency bandwidth that encompasses frequencies that are typically associated with combustor thermo-acoustic instabilities. Various test results demonstrated fuel modulation up to 1200 Hz for coil excitation voltage between 2.3 and 4.6 V and current between 16 and 48 mA, respectively. The initial goal of this work was to demonstrate fuel modulation based on the concept of a normally-open fuel modulator with tethered plunger displacement.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN57975 , AIAA Propulsion and Energy Forum; Jul 09, 2018 - Jul 11, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: In the past few years, NASA (National Aeronautics and Space Administration) Aeronautics Research Mission Directorate (ARMD) has introduced and updated a New Blueprint for Transforming Global Aviation . This blueprint consists of six NASA Aeronautics Research Strategic Thrusts " The updated vision is designed to ensure that through NASA's aeronautical research the United States will maintain its leadership in the sky and sustain aviation so that it remains a key economic driver and cultural touchstone for the nation. In mid-2016, technology development roadmaps were developed by ARMD for each of the strategic research thrusts and these roadmaps are continually being updated based on feedback from the broader aeronautics research community. The NASA Aeronautics research vision is implemented through a set of 4 programs " Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP), Integrated Aviation Systems Program (IASP), and Transformative Aeronautics Concepts Program (TACP). The Intelligent Control and Autonomy Branch (ICAB) at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies for aero-propulsion systems that will help meet the goals of the ARMD programs. These efforts are primarily under the various projects under AAVP, AOSP, and TACP. The ICAB current research tasks in support of ARMD program are described in this paper. The paper provides motivation, background, technical approach and recent accomplishments for these tasks, as well as a couple of tasks completed in the previous fiscal year.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN57915 , AIAA Propulsion and Energy Forum; Jul 11, 2018 - Jul 12, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: NASA Glenn Research Center is developing a 1.4 MW high-efficiency electric machine for future electrified aircraft to reduce energy consumption, emissions, and noise. This wound-field, synchronous machine employs a self-cooled, superconducting rotor to achieve excellent specific power and efficiency. This paper discusses the design and fabrication of the no-insulation high temperature superconducting (HTS) rotor coils and compares them to conventionally insulated HTS coils. Two sub-scale test coils with epoxy on only one axial face were fabricated. Critical current testing of the coils at 77 K and self field was conducted to study the influence of thermal cycling on their critical current and n-value. After two or four aggressive thermal cycles between 77 K and about 278 K (5 degree C), the critical current and n-value were nearly unchanged, indicating very little to no degradation.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN57803 , AIAA Propulsion & Energy; Jul 09, 2018 - Jul 11, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Pressure Gain Combustion (PGC) is under investigation as a means to improve the thermal efficiency of gas turbines. PGC is a fundamentally unsteady combustion process which, through some means of confinement, raises the total pressure of the working fluid relative to the initial process state. When implemented in a combustor it yields a total pressure gain across the device instead of the typical loss seen in a conventional combustor. This pressure gain can significantly improve gas turbine performance. The tutorial will provide an introduction to the concept of PGC. It will begin with a process description in fundamental thermodynamic terms, and will quantify potential benefits. The majority of the presentation will describe the various approaches to implementation that are under investigation by the PGC.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN55268 , ASME 2018 Turbo Expo; Jun 11, 2018 - Jun 15, 2018; Lillestrom; Norway
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engines operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43977 , Turbo Expo: Turbomachinery Technical Conference & Exposition; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN46211 , Incorporating Strathclyde Fault Management Technology; Aug 22, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.
    Keywords: Aircraft Propulsion and Power
    Type: Paper No. 22537 , GRC-E-DAA-TN45949 , International Society of Air Breathing Engines (ISABE 2017); Sep 03, 2017 - Sep 08, 2017; Manchester, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: Rotorcraft gearbox efficiencies are reduced at increased surface speeds due to viscous and impingement drag on the gear teeth. This windage power loss can affect overall mission range, payload, and frequency of transmission maintenance. Experimental and analytical studies on shrouding for single gears have shown it to be potentially effective in mitigating windage power loss. Efficiency studies on unshrouded meshed gears have shown the effect of speed, oil viscosity, temperature, load, lubrication scheme, etc. on gear windage power loss. The open literature does not contain experimental test data on shrouded meshed spur gears. Gear windage power loss test results are presented on shrouded meshed spur gears at elevated oil inlet temperatures and constant oil pressure both with and without shrouding. Shroud effectiveness is compared at four oil inlet temperatures. The results are compared to the available literature and follow-up work is outlined.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN45010 , ASME 2017 IDETC/CIE; Aug 06, 2017 - Aug 09, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The efficiency of aircraft gas turbine engines is sensitive to the distance between the tips of its turbine blades and its shroud, which serves as its containment structure. Maintaining tighter clearance between these components has been shown to increase turbine efficiency, increase fuel efficiency, and reduce the turbine inlet temperature, and this correlates to a longer time-on-wing for the engine. Therefore, there is a desire to maintain a tight clearance in the turbine, which requires fast response active clearance control. Fast response active tip clearance control will require an actuator to modify the physical or effective tip clearance in the turbine. This paper evaluates the requirements of a generic active turbine tip clearance actuator for a modern commercial aircraft engine using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software that has previously been integrated with a dynamic tip clearance model. A parametric study was performed in an attempt to evaluate requirements for control actuators in terms of bandwidth, rate limits, saturation limits, and deadband. Constraints on the weight of the actuation system and some considerations as to the force which the actuator must be capable of exerting and maintaining are also investigated. From the results, the relevant range of the evaluated actuator parameters can be extracted. Some additional discussion is provided on the challenges posed by the tip clearance control problem and the implications for future small core aircraft engines.
    Keywords: Aircraft Propulsion and Power
    Type: GT2017-63472 , GRC-E-DAA-TN39865 , ASME 2017 Turbo Expo; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN44286 , International Symposium on Air Breathing Engines (ISABE); Sep 03, 2017 - Sep 08, 2017; Manchester; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Aggressive design goals have been set for future aero-propulsion systems with regards to fuel economy, noise, and emissions. To meet these challenging goals, advanced propulsion concepts are being explored and current operating margins are being re-evaluated to find additional concessions that can be made. One advanced propulsion concept being evaluated is a geared turbofan with a variable area fan nozzle (VAFN), developed by NASA. This engine features a small core, a fan driven by the low pressure turbine through a reduction gearbox, and a shape memory alloy (SMA)-actuated VAFN. The VAFN is designed to allow both a small exit area for efficient operation at cruise, while being able to open wider at high power conditions to reduce backpressure on the fan and ensure a safe level of stall margin is maintained. The VAFN is actuated via a SMA-based system instead of a conventional system to decrease overall weight of the system, however, SMA-based actuators respond relatively slowly, which introduces dynamic issues that are investigated in this work. This paper describes both a control system designed specifically for issues associated with SMAs, and dynamic analysis of the geared turbofan VAFN with the SMA actuators. Also, some future recommendations are provided for this type of propulsion system.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43438 , 2017 AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43623 , AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43712 , 2017 AIAA/SAE/AIAA Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN42595 , AIAA Aviation 2017 Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The 1st Propulsion-Airframe Integration Technical Interchange Meeting (PAITIM) was held in Cleveland, Ohio, at the Ohio Aerospace Institute from May 30 to 31, 2018. The meeting was organized by representatives from the National Aeronautics and Space Administration (NASA) aeronautics research centers (i.e., Ames Research Center, Armstrong Flight Research Center, Glenn Research Center, and Langley Research Center) and the Air Force Research Laboratory and was sponsored by NASAs Advanced Air Vehicle Technology project. The purpose of the PAI-TIM was to exchange information and ideas amongst this community of researchers in a workshop-type setting. At this meeting, results were shared in the form of presentations only (i.e., no papers were required) regarding ongoing research efforts in both the experimental and modeling areas associated with propulsion-airframe integration for advanced subsonic and supersonic vehicles. During the 2-day meeting, a total of 22 presentations were made and were organized into three sessions: (1) Vision and PAI Challenges of Future Air Vehicles, (2) PAI Modeling and Simulation: State-of-the-Art and Challenges/Needs, and (3) PAI Testing: Test Techniques, Results and Challenges/Needs. All but two of the presentations made at the PAI-TIM are included in this publicly available conference proceedings document.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CP-2018-219955 , E-19566 , GRC-E-DAA-TN58510 , Propulsion-Airframe Integration Technical Interchange Meeting (PAI-TIM); May 30, 2018 - May 31, 2018; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: As more and more electric vehicles emerge in our daily operation progressively, a very critical challenge lies in the prediction of remaining flying time/distance (for aircraft). This information is important, particularly in the case of unmanned vehicles, because such vehicles can become self-aware, autonomously compute its own capabilities, and identify how to best plan and successfully complete vehicular missions safely. In case of electric aircrafts, computing remaining flying time is also safety-critical, since an aircraft that runs out of battery charge while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle. Given models of the current and future system behavior, the general approach of model-based prognostics can be employed as a solution to the prior stated prediction problem.For electric aircraft, propulsion is based on power generated from batteries. Thus, it is critical to monitor battery state charge and to estimate the ability of the battery to support mission activities as it is being discharged during flight operation. The ability of the vehicle to complete its given mission very much depends on the charge left in the batteries based on its operational route, maneuvering, weather conditions along with aging health of the batteries. Hence, for the purpose this discussion, consider the scenario of an unmanned electric aircraft that has some planned sequence of waypoints to reach throughout its mission. In such a scenario, for this particular aircraft, and within the region it is flown, at most two minutes are required to safely land the aircraft. Thus, it is desired to predict at which point in time the aircraft must begin to head to the runway and land.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN60957 , More Electric Aircrafts Europe 2018; Oct 23, 2018 - Oct 25, 2018; Hamburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Over the past few decades, there has been significant research into propulsion concepts attempting to employ pressure gain combustion. Pressure gain combustion concepts to date have resulted in dynamic, non-uniform gas flows which are difficult to characterize and compare with more conventional forms of propulsion. This paper proposes a technique to derive for the pressure gain combustion device an equivalent, steady, uniform gas pressure that is available to do work or provide thrust, thereby providing a direct comparison with conventional propulsive devices.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN57340 , AIAA Propulsion & Energy 2018; Jul 07, 2018 - Jul 13, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: There is increased interest in using electric motors to drive propulsors across a range of small air vehicle classes. Applications include both vertical lift and conventional takeoff and landing systems for Small Unmanned Aircraft Systems. Mission profiles call for integrating these systems into urban airspaces exposing populated areas to new noise sources. In addition to the propulsor noise from rotors and propellers, electric motors are expected to contribute to the overall sound levels and possibly human annoyance. This work presents acoustic measurements of electric motors used for small quadcopters to characterize the sound and identify sources with and without a propeller. Free field microphone measurements were used to determine directivity and a phased microphone array was used to identify sound sources. A companion paper (Part II - Source Characteristics and Prediction) compares the far field results with current probe measurements of the signal driving the motor, the structural response of the motor case, and describes prediction methods of electric motor noise.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN57550 , AIAA/CEAS Aeroacoustics Conference; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Electrified Aircraft Propulsion (EAP) power systems are being studied at the NASA Electric Aircraft Testbed (NEAT) facility. The electric motors at NEAT have the capability to dynamically respond to commands that would be unrealistic when integrated with turbomachinery. There is a need to provide more realistic turbine transients for future system performance studies.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN57418 , External Meeting with Boeing; Jun 05, 2018; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The increased interest in electric motors for propulsion systems has driven interest in quantifying the contribution of electric motor noise to the overall sound levels and possible human annoyance of the propulsion system. This work presents acoustic measurements of electric motors used for small quadcopters to quantify the sound produced by a number of outrunning motors with different types of controllers. Results are presented for loaded and unloaded motors as installed and uninstalled configurations. Motor resonance frequencies were measured and computed. Current probe measurements showed that the supply current from the controllers contained significant harmonic content for the conventional and sinewave controllers. Acoustic results showed motor noise is typically radiated at frequencies near the mode 2 vibration frequency at roughly 5000 Hz. Electric motor noise was evident in the spectra produced by many of the motor-controller combinations for motors loaded with propellers with levels often greater than those for the motor alone due to increase in the stator magnetic flux density with increased current. An installed configuration produced increases in acoustic radiation over that of the uninstalled motor in a frequency range near the mode 1 vibration frequency near 1200 Hz. A companion paper (Part I - Acoustic Measurements), focuses on source identification using a phased array and directivity characteristics for a baseline configuration.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN56339 , AIAA Aviation Forum 2018; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: The Leading Edge Asynchronous Propeller Technology (LEAPTech) project tested the Hybrid-Electric Integrated Systems Testbed (HEIST) and was intended for a general aviation sized aircraft with Distributed Electric Propulsion (DEP) to show large improvements with regards to efficiency, emissions, safety and operating costs. The wing was designed for high loading to improve ride quality and show improved takeoff and landing characteristics. The full-scale test article wing had a 31-foot-span, had integrated electric motors, was mounted on a truck 20 ft. above ground and driven in a simulated flight test environment at various velocities up to 70 miles per hour. The simulated flight test varied primarily angle of attack and flap settings. These tests were conducted to obtain data and verify blown wing performance primarily with regards to lift. The experimental test results are presented.
    Keywords: Aircraft Propulsion and Power
    Type: AFRC-E-DAA-TN48263 , AIAA Aviation and Aeronautics Forum (Aviation 2018); Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: The present paper addresses the process of preliminary design of a low-pressure fan and outlet guide vane (OGV) of a boundary layer ingestion (BLI) propulsion system. The tail-cone thruster systems of NASA's STARC_ABL (Single-aisle Turboelectric Aircraft with an Aft Boundary-Layer propulsor) adopts an axi-symmetric BLI type inlet as opposed to other embedded engine systems. Thus, the focus of the present work is placed on maximizing the efficiency of the fan and OGV stages under a significant radial distortion. A parameterization with B-spline function for camber line angles, metal chord, thickness distribution and stacking axis of blades is presented. The flowpath lines are also parameterized by B-spline function and aggregated in the design system of blades. The design optimization with evolutionary algorithm is performed with constraints of fan pressure ratio, OGV exit swirl angle and nozzle exit properties. The inlet conditions for the turbo-machinery CFD (Computational Fluid Dynamics) domain and the design goal of the fan stage are driven by a propulsion airframe integration (PAI) model that uses a 3-D unstructured RANS (Reynolds Average Navier Stokes) solver and actuator disk model. The expected power saving of the BLI propulsor is quantified via PAI analysis and the resulting preliminary design of the fan stages is compared with a clean-inlet flow propulsor.
    Keywords: Aircraft Propulsion and Power
    Type: ICCFD10-091 , GRC-E-DAA-TN58523 , International Conference on Computational Fluid Dynamics (ICCFD 10); Jul 09, 2018 - Jul 13, 2018; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: A nonlinear dynamic model with full flight envelope controller is developed for the propulsion system of a partially turboelectric single-aisle aircraft. The propulsion system model consists of two turbofan engines with a large percentage of power extraction, feeding an electric tail fan for boundary layer ingestion. The dynamic model is compared against an existing steady state design model. An electrical system model using a simple power flow approach is integrated into existing modeling tools used for dynamic simulation of the turbomachinery of the vehicle. In addition to the simple power flow model of the electrical system, a more detailed model is used for comparison at a key vehicle transient flight condition. The controller is a gain scheduled proportional-integral type that is examined throughout the flight envelope for performance metrics such as rise time and operability margins. Potential improvements in efficiency for the vehicle are explored by adjusting the power split between the energy used for thrust by the turbofans and that extracted to supply power to the tail fan. Finally, an operability study of the vehicle is conducted using a 900 nautical mile mission profile for a nominal vehicle configuration, a deteriorated propulsion system at the end of its operating life, and an optimized power schedule with improved efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN58010 , AIAA Propulsion and Energy - IEEE Electric Aircraft Technologies Symposium; Jul 09, 2018 - Jul 11, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: Pressure Gain Combustion (PGC) defined: A fundamentally unsteady process whereby gas expansion by heat release is constrained, causing a rise in stagnation pressure and allowing work extraction by expansion to the initial pressure. A particular type of pressure gain combustion (PGC) device is described, which is under investigation at GRC (Glenn Research Center). The Resonant Pulse Combustor (RPC) has been largely overlooked due to its theoretically low performance. However, its practical performance is quite competitive with other PGC systems, and its physical simplicity is unmatched.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN58478 , Active Flow and Combustion Control (AFCC 2018); Sep 19, 2018 - Sep 21, 2018; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Tip clearance within the high pressure turbine of a gas turbine engine is a significant factor in engine performance and efficiency. In the pursuit of higher efficiency, aero-engine designs are migrating toward compact gas turbine (CGT) technology that seeks to increase the bypass ratio of the gas turbine engine without increasing the size of the fan, which is constrained by its underwing location. The reduced size of CGTs invoke concern over increased sensitivity of engine performance due to turbine tip clearance gap that makes an argument for advanced tip clearance mitigation and control techniques to be employed. This paper evaluates the tip clearance trade space for a conceptual geared turbofan engine with a CGT core. This is accomplished through a modeling and simulation approach that includes a sensitivity analysis of engine performance in response to high pressure turbine tip clearance as well as an evaluation of the sensitivity of tip clearance to various design parameters, including material properties and component cooling characteristics. Also included is a parametric study of actuators that provides preliminary requirements for implementation of active turbine tip clearance control actuation systems. The results produced from these studies are meant to be informative, with special emphasis on the demonstration of a systematic approach. The modeling approach appears to capture expected trends. The studies suggest that the tip clearance gap will have a greater impact on the new CGT engines and that a relatively slow, actively controlled actuation system may be sufficient as long as it has control authority to both open and close the tip clearance gap.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN58715 , AIAA Propulsion and Energy Forum; Jul 09, 2018 - Jul 11, 2018; Cincinnati, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Reliability and life-expectancy of gas turbine engine components is very much correlated to the temperature environment in which they operate. This is no different for control system components, especially those with electronic parts. In recent years, the concept of Distributed Engine Control (DEC) has emerged to address the limitations of the current centralized control implementation. This new approach involves relocating control system components from a relatively benign environment to the harsher thermal environment of the engine casing and its surrounding structures and cavities. In this paper, an approach to modeling the gas turbine thermal environment is described. The modeling approach is applied to a 3rd generation geared turbofan design with a focus on the engine locations where control instrumentation and actuation could be installed. The analysis was conducted with an eye toward component reliability and service life as it relates to the thermal environment. The results were found to be reasonable. Furthermore, the model is shown to execute in real-time within a multi-model simulation environment that demonstrates the capability to interact with hardware to drive test equipment.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN58712 , AIAA Propulsion and Energy Forum; Jul 09, 2018 - Jul 11, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The anticipated development of the on-demand-mobility (ODM) market has accelerated the development of electric aircraft. Most proposed electric aircraft have propulsion systems that consist of fans directly driven by electric motors. The lower complexity of these propulsion systems opens the door to more custom propulsion system designs that are tailored to a given aircraft and its mission. This paper represents initial steps in the development of an electric propulsion system design code. A proof of concept version of the code is presented. The proof of concept version of the code is for the design of an axial flux rim driven propulsion system. NASA's all electric aircraft X-57, is used as a case study for this design code. The results of this case study are used to discuss the feasibility and potential benefits of using an axial flux rim driven propulsor on X-57. The final result of the case study shows a potential 4km increase in range over the current design.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN56733 , AIAA Aviation Forum; Jun 23, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: M18-6681 , Rocket Propulsion for the 21st Century (RP21) Steering Committee Meeting; May 15, 2018 - May 16, 2018; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Mechanical shaft power and shaft speed of reciprocating internal combustion engines are closely coupled. Maximum rated shaft power is typically produced at or near peak shaft speed. If a general aviation airplane equipped with a reciprocating engine and a variable-pitch propeller attempts a low-noise takeoff by reducing propeller tip speed, propeller power and thrust are reduced. Such takeoffs are not tolerated due to punishing performance effects, such as increased field lengths and poor climb rates. Certain electric motors, however, are able to deliver maximum shaft power over a wide range of shaft speed. Electric or hybrid-electric propeller-driven airplanes should be able to exploit this behavior. At low shaft speeds, high shaft power levels and high blade pitch angles could be combined to recover much of the thrust that would otherwise be lost. This could enable a low-noise operating mode for propellers normally designed for performance rather than for noise. The subject of this paper is an analytical investigation into low-noise takeoffs and steady overflights of a notional general aviation airplane equipped with a propeller driven by an electric motor.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN56724 , AIAA Aviation Forum; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Baseline noise and aerodynamic data have been acquired for the DGEN Aeropropulsion Research Turbofan (DART) test rig. The DART is a fully-mobile engine test rig featuring a DGEN380 geared turbofan producing approximately 500 lbs. of thrust at sea level and a self-contained control room. Baseline noise data were acquired using 5 microphone arrays, varying distance, configuration, and angle to reflect the measurement locations at several other test facilities. Noise data were acquired at one array location on each test day to establish the repeatability of the measurements. The noise data from the different arrays is analyzed to show the limitations of projecting the results to a common radius when the noise sources are distributed and the measurement location is not in the geometric far-field.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN56602 , AIAA Aviation Forum 2018; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: There is increased interest in using electric motors to drive propulsors across a range of small air vehicle classes. Applications include both vertical lift and conventional takeoff and landing systems for Small Unmanned Aircraft Systems. Mission profiles call for integrating these systems into urban airspaces exposing populated areas to new noise sources. In addition to the propulsor noise from rotors and propellers, electric motors are expected to contribute to the overall sound levels and possibly human annoyance. This work presents acoustic measurements of electric motors used for small quadcopters to characterize the sound and identify sources with and without a propeller. Free field microphone measurements were used to determine directivity and a phased microphone array was used to identify sound sources. A companion paper (Part II Source Characteristics and Prediction) compares the far field results with current probe measurements of the signal driving the motor, the structural response of the motor case, and describes prediction methods of electric motor noise.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN56469 , AIAA Aviation Forum 2018; Jun 25, 2018 - Jun 29, 2018; Atlanta,GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: A dual-stream nozzle configuration was studied numerically with the objective of predicting the appearance of tones and study their sources. It was found that some of the tones traced to a coupling between Strouhal shedding from the struts, which held different pieces of the nozzle together, and various duct acoustic modes. A focus of the work was on exploring the nature of the duct modes. First, elements of the numerical procedure were studied for a 4-strut nozzle, validating the results with existing experimental data. The approach was then applied to a 3-strut geometry and four different excitation methods. The predicted tones and associated duct modes are analyzed in detail.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN56368 , AIAA Aviation 2018; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: An investigation was completed into the power loss associated with a rotating feed-through (RFT) design feature used to transfer lubrication and a hydraulic control signal from the static reference frame to a rotating reference frame in the NASA GRC two-speed transmission tests conducted in the Variable-Speed Drive Test Rig. The RFT feature, not commercially available, was created specifically for this research project and is integral to all two-speed transmission configurations tested, as well as a variant concept design for a geared variable-speed transmission presented at AHS Forum 71 in 2015. The experimental set-up and results from measurements in the isolated rotating-feed-through (RFT) experiments are presented. Results were used in an overall power loss assessment for a scaled conceptual 1,000 horsepower inline concentric two-speed transmission to support a NASA Revolutionary Vertical Lift Technologies (RVLT) Technical Challenge, demonstrating 50% speed change with less than 2% power loss while maintaining current power-to-weight ratios.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN54677 , American Helicopter Society (AHS) Forum; May 14, 2018 - May 17, 2018; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: This paper describes an approach to creating simulations of the electric components for a hybrid electric propulsion system. The proposed modeling technique is based on power/load flow modeling and is designed to provide a modular framework that includes buses, lines, and other electrical components that can be connected together to form the electrical distribution system. The purpose of this paper is to detail an electric distribution system modeling technique and to demonstrate how these models may be integrated with turbomachinery simulations. These general modeling techniques were created to be utilized for system and control design studies. Additionally, steady-state and dynamic performance for a proposed model example is compared with data from a hardware in the loop simulation.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN56356 , AIAA/IEEE Electric Aircraft Technologies Symposium (EATS); Jul 12, 2018 - Jul 13, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: A previous system study identified significant increases in range and number of urban air mobility (UAM) missions by replacing the all battery power system of a notional UAM vehicle with an advanced diesel hybrid using conventional diesel or liquid natural gas (LNG) fuels (at constant vehicle design gross weight). Some benefits were realized using the LNG's cryogenic properties to reduce some electrical component losses and cooling requirements. Significant questions were raised concerning volume and thermal management considerations for all studied systems. The notional, baseline vehicle was a hybrid helicopter / airplane design capable of vertical take-off and landing (VTOL), balancing high cruise efficiency with reasonable hover capability. A subsequent power system assessment using the same notional vehicle and mission was performed that identified increased volume and power requirements for the active cooling required. The cooling airflow could also generate additional drag on the vehicle during operation. For the notional vehicle studied, the additional volume identified by the subsequent study would not affect vehicle mold line and therefore drag. However, the additional drag from cooling airflow and the power to circulate it as needed would impact power system and vehicle mission performance. Vehicle and mission models were updated and rerun. Updated results still indicated significant benefits in range and number of UAM missions, but reduced the benefit by 12-15%. Hold time for the hybrid systems also generally increased a few minutes because of reduced power available for charging from the power for required cooling flows. Vehicle weights, thermal loads, and cooling airflows from the updated analyses were similar to previous results.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN54637 , AHS International''s Annual Forum and Technology Display; May 14, 2018 - May 17, 2018; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: For several years, NASA Glenn Research Center and the U.S. Army Research Laboratory have been investigating hybrid (composite/steel) gear technology for use in vertical lift drive systems. The hybrid gear concept replaces the structural portion of a gear between the shaft and the gear rim with a lightweight carbon fiber composite, in an effort to reduce the overall weight of a gear and increase the drive system power density. Past research includes both small-scale and large-scale hybrid gear concepts, all of which have a constant composite thickness throughout. The design described in this paper is of a variable thickness, such that the composite is thickest at the inner diameter and this thickness is gradually reduced toward the outer diameter. The resulting "stair stepped" design stems from dropping plies of the braided carbon fiber prepreg composite fabric gradually with increased radius. Additionally, the interlock pattern at the inner metallic adapter was adjusted slightly from previous designs to obtain a better stress distribution on the inner metallic adapter. The manufactured variable thickness web was tested both in static torsion tests and operationally in a relevant gearbox environment. The results of these experiments will be presented and compared to a baseline steel configuration.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN54603 , Annual Forum of the American Helicopter Society; May 14, 2018 - May 17, 2018; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This presentation contains notes for a 30 minute lecture that is part of an AIAA Special Session titled, Pressure Gain Combustion Overview: Principles, Operation, and Applications. The presentation covers an introduction to Pressure Gain Combustion (PGC) and the devices used to implement it. The concept of PGC is discussed on a thermodynamic basis, the performance benefits are demonstrated, and methods of implementation are described. These include devices such as Resonant Pulse Combustors, Internal Combustion Wave Rotors, Pulse Detonation Engines, and Rotating Detonation Engines.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN58397 , Propulsion and Energy 2018; Jul 09, 2018 - Jul 11, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: This paper summarizes research on the lean direct injection (LDI) combustor concept for aero-gas turbine combustors. The focus of this paper is one particular family of lean direct injection designs, swirl-venturi lean direct injection (SV-LDI). SV-LDI is characterized by the airpath: an air swirler followed by a converging-diverging venturi. For most SV-LDI configurations, a fuel injector is inserted through the center of the air swirler, with the fuel injector tip at or near the venturi throat. Several design variables were studied. These included fuel injector tip location, air swirler blade thickness, air swirler blade angle, and fuel-air mixer size. Moving the fuel injector tip slightly upstream or downstream of the venturi throat has at most a small impact on NOx emissions. Changing the blade thickness also does not affect NOx emissions. Changing the swirler blade angle has a significant effect on NOx emissions. Decreasing swirler blade angle, and thus decreasing swirl number, decreases the NOx emissions at lower flame temperatures (below about 1800 K). However, the slope of the NOx vs. flame temperature curve is higher for lower swirl numbers. Finally, decreasing the fuel-air mixer size initially decreases NOx emissions. However, there may be an optimum fuel-air mixer size below which NOx emissions do not continue to decrease.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN55621 , Spring Technical Meeting of the Central States Section of the Combustion Institute; May 20, 2018 - May 22, 2018; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: As part of a parametric study in which we vary swirler angle and orientation and look at their effect on fluid mixing and combustion, we examine one configuration of a 7-point lean direct injector by looking at the non-combusting 2-D velocity field using PIV (Particle Image Velocimetry), and combusting system for chemical species using chemiluminescent imaging and flame spectroscopy. The circular 7-point array consists of axial swirlers, with the center 60 degree counterclockwise swirler surrounded by six 52 degree clockwise swirlers. The velocity results for this configuration show that the outer swirlers serve to isolate the center flow field near the injector exit. A recirculation zone forms downstream of the center swirler, but not behind the outer swirlers. The combusting results also show an isolated zone directly downstream of the center injector. The flame spectra show variation in speciation of combustion species such as OH* and CH*, and as a function of position within the combustor.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN55619 , Spring Technical Meeting of the Central States Section of the Combustion Institute; May 20, 2018 - May 22, 2018; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Two different configurations of a 7-point lean direct injector array were investigated. Chemiluminescence images of C2* or CH* were collected during combustion tests for insight on flame structure for the two configurations. Several inlet conditions were tested by varying the equivalence ratio or reference velocity. For the center right-hand 60 degree and outer right-hand 52 degree outers, the chemiluminescence emanating from the central pilot appeared well isolated from the outers. At the same time, a hollow region below the pilot showed little fluctuation of chemiluminescence where a central recirculation zone was present during the non-reacting tests. The central left-hand 60 degree and outer right-hand 52 degree configuration displayed a narrower structure from the pilot compared to the flatter pilot observed in the other configuration. Additionally, the right-handed outer swirlers may be responsible for the asymmetry observed with the chemiluminescence images. Both configurations showed less variation in chemiluminescence intensity as the reference velocity was increased. This was likely due to better atomization and vaporization associated with higher fuel and air flow rates.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN60881 , GRC-E-DAA-TN55617 , Spring Technical Meeting of the Central States Section of the Combustion Institute; May 20, 2018 - May 22, 2018; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Objective: To innovate sandphobic coating and surface modification for high temperature turbine blades to resist sand glaze build-up and related Calcia-Magnesia-Alumina-Silicate (CMAS) attack on Thermal/Environmental Barrier Coatings (T/EBCs).
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN52258 , Annual Conference and Expo on Advanced Ceramics and Composites; Jan 22, 2018 - Jan 25, 2018; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Gradual progression of electric and hybrid electric aircraft from small planes to large planes will require technology advances in multiple areas, which include energy storage, electrical machines, power transmission, power electronics, control systems, materials, thermal management, and multi-scale modeling tools. Advances in both fundamental research and applied interdisciplinary research will be required to realize the goals for future electric and hybrid electric aircraft. The presentation will provide an overview of long-range research and technology needs for the next thirty years and how evolution of several early stage technologies will influence the development of electrified aircraft in the future.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN49131 , Electric & Hybrid Aerospace Technology Symposium; Nov 16, 2017 - Nov 17, 2017; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: In order to meet aggressive aircraft performance goals set by NASA's Aeronautics Research Mission Directorate, the Glenn Research Center (GRC) is leading research and development of electrified aircraft propulsion systems with electricity being generated from a gas turbine engine or combination of gas turbine engine and an alternate energy source. The presentation will provide an overview of technical challenges and barriers affecting the development and implementation of turboelectric and hybrid electric systems. Advances will be required in multiple areas, which include energy storage, electrical machines, power transmission, power electronics, control systems, materials, thermal management, and multi-scale modeling tools. The presentation will summarize current GRC activities in these areas. Challenges associated with integration and demonstration of multiple technologies at the system level will be presented.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN48472 , ENERGYTECH 2017; Oct 31, 2017 - Nov 02, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...