ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (70,964)
  • 2015-2019  (70,661)
  • 1985-1989  (303)
Collection
Years
Year
  • 1
    Publication Date: 2015-08-11
    Description: Source attribution and process analysis for atmospheric mercury in eastern China simulated by CMAQ-Hg Atmospheric Chemistry and Physics, 15, 8767-8779, 2015 Author(s): J. Zhu, T. Wang, J. Bieser, and V. Matthias The contribution from different emission sources and atmospheric processes to gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), particulate bound mercury (PBM) and mercury deposition in eastern China were quantified using the Community Multi-scale Air Quality (CMAQ-Hg) modeling system run with a nested domain. Natural sources (NAT) and six categories of anthropogenic mercury sources (ANTH) including cement production (CEM), domestic life (DOM), industrial boilers (IND), metal production (MET), coal-fired power plants (PP) and traffic (TRA) were considered for source apportionment. NAT were responsible for 36.6 % of annual averaged GEM concentration, which was regarded as the most important source for GEM in spite of obvious seasonal variation. Among ANTH, the influence of MET and PP on GEM were most evident especially in winter. ANTH dominated the variations of GOM and PBM concentrations with contributions of 86.7 and 79.1 %, respectively. Among ANTH, IND were the largest contributor for GOM (57.5 %) and PBM (34.4 %) so that most mercury deposition came from IND. The effect of mercury emitted from out of China was indicated by a 〉 30 % contribution to GEM concentration and wet deposition. The contributions from nine processes – consisting of emissions (EMIS), gas-phase chemical production/loss (CHEM), horizontal advection (HADV), vertical advection (ZADV), horizontal advection (HDIF), vertical diffusion (VDIF), dry deposition (DDEP), cloud processes (CLDS) and aerosol processes (AERO) – were calculated for process analysis with their comparison in urban and non-urban regions of the Yangtze River delta (YRD). EMIS and VDIF affected surface GEM and PBM concentrations most and tended to compensate each other all the time in both urban and non-urban areas. However, DDEP was the most important removal process for GOM with 7.3 and 2.9 ng m −3 reduced in the surface of urban and non-urban areas, respectively, in 1 day. The diurnal profile variation of processes revealed the transportation of GOM from urban area to non-urban areas and the importance of CHEM/AERO in higher altitudes which partly caused diffusion of GOM downwards to non-urban areas. Most of the anthropogenic mercury was transported and diffused away from urban areas by HADV and VDIF and increased mercury concentrations in non-urban areas by HADV. Natural emissions only influenced CHEM and AERO more significantly than anthropogenic. Local emissions in the YRD contributed 8.5 % more to GEM and ~ 30 % more to GOM and PBM in urban areas compared to non-urban areas.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-11
    Description: Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau Atmospheric Chemistry and Physics, 15, 8781-8793, 2015 Author(s): R.-Q. Shen, X. Ding, Q.-F. He, Z.-Y. Cong, Q.-Q. Yu, and X.-M. Wang Secondary organic aerosol (SOA) affects the earth's radiation balance and global climate. High-elevation areas are sensitive to global climate change. However, at present, SOA origins and seasonal variations are understudied in remote high-elevation areas. In this study, particulate samples were collected from July 2012 to July 2013 at the remote Nam Co (NC) site, Central Tibetan Plateau and analyzed for SOA tracers from biogenic (isoprene, monoterpenes and β-caryophyllene) and anthropogenic (aromatics) precursors. Among these compounds, isoprene SOA (SOA I ) tracers represented the majority (26.6 ± 44.2 ng m −3 ), followed by monoterpene SOA (SOA M ) tracers (0.97 ± 0.57 ng m −3 ), aromatic SOA (SOA A ) tracer (2,3-dihydroxy-4-oxopentanoic acid, DHOPA, 0.25 ± 0.18 ng m −3 ) and β-caryophyllene SOA tracer (β-caryophyllenic acid, 0.09 ± 0.10 ng m −3 ). SOA I tracers exhibited high concentrations in the summer and low levels in the winter. The similar temperature dependence of SOA I tracers and isoprene emission suggested that the seasonal variation of SOA I tracers at the NC site was mainly influenced by the isoprene emission. The ratio of high-NO x to low-NO x products of SOA I (2-methylglyceric acid to 2-methyltetrols) was highest in the winter and lowest in the summer, due to the influence of temperature and relative humidity. The seasonal variation of SOA M tracers was impacted by monoterpenes emission and gas-particle partitioning. During the summer to the fall, temperature effect on partitioning was the dominant process influencing SOA M tracers' variation; while the temperature effect on emission was the dominant process influencing SOA M tracers' variation during the winter to the spring. SOA M tracer levels did not elevate with increased temperature in the summer, probably resulting from the counteraction of temperature effects on emission and partitioning. The concentrations of DHOPA were 1–2 orders of magnitude lower than those reported in the urban regions of the world. Due to the transport of air pollutants from the adjacent Bangladesh and northeastern India, DHOPA presented relatively higher levels in the summer. In the winter when air masses mainly came from northwestern India, mass fractions of DHOPA in total tracers increased, although its concentrations declined. The SOA-tracer method was applied to estimate secondary organic carbon (SOC) from these four precursors. The annual average of SOC was 0.22 ± 0.29 μgC m −3 , with the biogenic SOC (sum of isoprene, monoterpenes and β-caryophyllene) accounting for 75 %. In the summer, isoprene was the major precursor with its SOC contributions of 81 %. In the winter when the emission of biogenic precursors largely dropped, the contributions of aromatic SOC increased. Our study implies that anthropogenic pollutants emitted in the Indian subcontinent could be transported to the TP and have an impact on SOC over the remote NC.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-11
    Description: Influence of biomass burning on CCN number and hygroscopicity during summertime in the eastern Mediterranean Atmospheric Chemistry and Physics Discussions, 15, 21539-21582, 2015 Author(s): A. Bougiatioti, S. Bezantakos, I. Stavroulas, N. Kalivitis, P. Kokkalis, G. Biskos, N. Mihalopoulos, A. Papayannis, and A. Nenes This study investigates the CCN activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from cloud condensation nuclei (CCN) measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the hygroscopicity parameter, κ, for all particle sizes. The reason, however, for this decrease was not the same for all size modes; smaller particle sizes appeared to be richer in less hygroscopic, less CCN-active components due to coagulation processes while larger particles become less hygroscopic during the biomass burning events due to condensation of less hygroscopic gaseous compounds. In addition, smaller particles exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of aging and retained high levels of CCN activity. These conclusions are further supported by the observed mixing state determined by the HTDMA measurements. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles and a large fraction of the CCN concentrations sampled. Based on Positive Matrix Factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend with the BBOA component, with enhancements of CCN in biomass burning plumes ranging between 65 and 150 %, for supersaturations ranging between 0.2 and 0.7 %. Using multilinear regression, we determine the hygroscopicity of the prime organic aerosol components (BBOA, OOA-BB and OOA); it is found that the total organic hygroscopicity is very close to the inferred hygroscopicity of the oxygenated organic aerosol components. Finally, the transformation of freshly-emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a two-fold increase of the inferred organic hygroscopicity. Almost 10 % of the total aerosol hygroscopicity is related to the two biomass burning components (BBOA and OOA-BB), which in turn contribute almost 35 % to the fine-particle organic water of the aerosol. This is important as organic water can contribute to the atmospheric chemistry and the direct radiative forcing.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-11
    Description: Measurement-based direct radiative effect by brown carbon over Indo-Gangetic Plain Atmospheric Chemistry and Physics Discussions, 15, 21583-21606, 2015 Author(s): A. Arola, G. L. Schuster, M. R. A. Pitkänen, O. Dubovik, H. Kokkola, A. V. Lindfors, T. Mielonen, T. Raatikainen, S. Romakkaniemi, S. N. Tripathi, and H. Lihavainen The importance of light absorbing organic aerosols, often called brown carbon (BrC), has become evident in recent years. However, there are relatively few measurement-based estimates for the direct radiative effect of BrC so far. In those earlier studies, the AErosol RObotic NETwork (AERONET) measured Aerosol Absorption Optical Depth (AAOD) and Absorption Angstrom Exponent (AAE) have been exploited. However, these two pieces of information are clearly not sufficient to separate properly carbonaceous aerosols from dust, while imaginary indices of refraction would contain more and better justified information for this purpose. This is first time that the direct radiative effect (DRE) of BrC is estimated by exploiting the AERONET-retrieved imaginary indices. We estimated it for four sites in Indo-Gangetic Plain (IGP), Karachi, Lahore, Kanpur and Gandhi College. We found a distinct seasonality, which was generally similar among all the sites, but with slightly different strengths. The monthly warming effect up to 0.5 W m -2 takes place during spring season. On the other hand, BrC results in overall cooling effect in the winter season, which can reach levels close to −1W m -2 . We then estimated similarly also DRE of black carbon and total aerosol, in order to assess the relative significance of BrC radiative effect in the radiative effects of other components. Even though BrC impact seems minor in this context, we demonstrated that it is not insignificant and moreover that it is crucial to perform spectrally resolved radiative transfer calculations to obtain good estimates for DRE of BrC.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-11
    Description: Contrail life cycle and properties from 1 year of MSG/SEVIRI rapid-scan images Atmospheric Chemistry and Physics, 15, 8739-8749, 2015 Author(s): M. Vázquez-Navarro, H. Mannstein, and S. Kox The automatic contrail tracking algorithm (ACTA) – developed to automatically follow contrails as they age, drift and spread – enables the study of a large number of contrails and the evolution of contrail properties with time. In this paper we present a year's worth of tracked contrails, from August 2008 to July 2009 in order to derive statistically significant mean values. The tracking is performed using the 5 min rapid-scan mode of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellites. The detection is based on the high spatial resolution of the images provided by the Moderate Resolution Imaging Spectroradiometer on board the Terra satellite (Terra/MODIS), where a contrail detection algorithm (CDA) is applied. The results show the satellite-derived average lifetimes of contrails and contrail-cirrus along with the probability density function (PDF) of other geometric characteristics such as mean coverage, distribution and width. In combination with specifically developed algorithms (RRUMS; Rapid Retrieval of Upwelling irradiance from MSG/SEVIRI and COCS (Cirrus Optical properties derived from CALIOP and SEVIRI), explained below) it is possible to derive the radiative forcing (RF), energy forcing (EF), optical thickness (τ) and altitude of the tracked contrails. Mean values here retrieved are duration, 1 h; length, 130 km; width, 8 km; altitude, 11.7 km; optical thickness, 0.34. Radiative forcing and energy forcing are shown for land/water backgrounds in day/night situations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-11
    Description: Accounting for the effects of sastrugi in the CERES clear-sky Antarctic shortwave angular distribution models Atmospheric Measurement Techniques, 8, 3163-3175, 2015 Author(s): J. Corbett and W. Su The Cloud and the Earth's Radiant Energy System (CERES) instruments on NASA's Terra, Aqua and Soumi NPP satellites are used to provide a long-term measurement of Earth's energy budget. To accomplish this, the radiances measured by the instruments must be inverted to fluxes by the use of a scene-type-dependent angular distribution model (ADM). For permanent snow scenes over Antarctica, shortwave (SW) ADMs are created by compositing radiance measurements over the full viewing zenith and azimuth range. However, the presence of small-scale wind blown roughness features called sastrugi cause the BRDF (bidirectional reflectance distribution function) of the snow to vary significantly based upon the solar azimuth angle and location. This can result in monthly regional biases between −12 and 7.5 Wm −2 in the inverted TOA (top-of-atmosphere) SW flux. The bias is assessed by comparing the CERES shortwave fluxes derived from nadir observations with those from all viewing zenith angles, as the sastrugi affect fluxes inverted from the oblique viewing angles more than for the nadir viewing angles. In this paper we further describe the clear-sky Antarctic ADMs from Su et al. (2015). These ADMs account for the sastrugi effect by using measurements from the Multi-Angle Imaging Spectro-Radiometer (MISR) instrument to derive statistical relationships between radiance from different viewing angles. We show here that these ADMs reduce the bias and artifacts in the CERES SW flux caused by sastrugi, both locally and Antarctic-wide. The regional monthly biases from sastrugi are reduced to between −5 and 7 Wm −2 , and the monthly-mean biases over Antarctica are reduced by up to 0.64 Wm −2 , a decrease of 74 %. These improved ADMs are used as part of the Edition 4 CERES SSF (Single Scanner Footprint) data.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-11
    Description: Space-borne observation of methane from atmospheric infrared sounder version 6: validation and implications for data analysis Atmospheric Measurement Techniques Discussions, 8, 8563-8597, 2015 Author(s): X. Xiong, F. Weng, Q. Liu, and E. Olsen Atmospheric Methane (CH 4 ) is generated as a standard product in recent version of the hyperspectral Atmospheric Infrared Sounder (AIRS-V6) aboard NASA's Aqua satellite at the NASA Goddard Earth Sciences Data and Information Services Center (NASA/GES/DISC). Significant improvements in AIRS-V6 was expected but without a thorough validation. This paper first introduced the improvements of CH 4 retrieval in AIRS-V6 and some characterizations, then presented the results of validation using ~ 1000 aircraft profiles from several campaigns spread over a couple of years and in different regions. It was found the mean biases of AIRS CH 4 at layers 343–441 and 441–575 hPa are −0.76 and −0.05 % and the RMS errors are 1.56 and 1.16 %, respectively. Further analysis demonstrates that the errors in the spring and in the high northern latitudes are larger than in other seasons or regions. The error is correlated with Degree of Freedoms (DOFs), particularly in the tropics or in the summer, and cloud amount, suggesting that the "observed" spatiotemporal variation of CH 4 by AIRS is imbedded with some artificial impact from the retrieval sensitivity in addition to its variation in reality, so the variation of information content in the retrievals needs to be taken into account in data analysis of the retrieval products. Some additional filtering (i.e. rejection of profiles with obvious oscillation as well as those deviating greatly from the norm) for quality control is recommended for the users to better utilize AIRS-V6 CH 4 , and their implementation in the future versions of the AIRS retrieval algorithm is under consideration.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-11
    Description: Impact of aerosols on the OMI tropospheric NO 2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model? Atmospheric Measurement Techniques Discussions, 8, 8385-8437, 2015 Author(s): J. Chimot, T. Vlemmix, J. P. Veefkind, J. F. de Haan, and P. F. Levelt The Ozone Monitoring Instrument (OMI) instrument has provided daily global measurements of tropospheric NO 2 for more than a decade. Numerous studies have drawn attention to the complexities related to measurements of tropospheric NO 2 in the presence of aerosols. Fine particles affect the OMI spectral measurements and the length of the average light path followed by the photons. However, they are not explicitly taken into account in the current OMI tropospheric NO 2 retrieval chain. Instead, the operational OMI O 2 -O 2 cloud retrieval algorithm is applied both to cloudy scenes and to cloud free scenes with aerosols present. This paper describes in detail the complex interplay between the spectral effects of aerosols, the OMI O 2 -O 2 cloud retrieval algorithm and the impact on the accuracy of the tropospheric NO 2 retrievals through the computed Air Mass Factor (AMF) over cloud-free scenes. Collocated OMI NO 2 and MODIS Aqua aerosol products are analysed over East China, in industrialized area. In addition, aerosol effects on the tropospheric NO 2 AMF and the retrieval of OMI cloud parameters are simulated. Both the observation-based and the simulation-based approach demonstrate that the retrieved cloud fraction linearly increases with increasing Aerosol Optical Thickness (AOT), but the magnitude of this increase depends on the aerosol properties and surface albedo. This increase is induced by the additional scattering effects of aerosols which enhance the scene brightness. The decreasing effective cloud pressure with increasing AOT represents primarily the absorbing effects of aerosols. The study cases show that the actual aerosol correction based on the implemented OMI cloud model results in biases between −20 and −40 % for the DOMINO tropospheric NO 2 product in cases of high aerosol pollution (AOT ≥ 0.6) and elevated particles. On the contrary, when aerosols are relatively close to the surface or mixed with NO 2 , aerosol correction based on the cloud model results in overestimation of the DOMINO tropospheric NO 2 product, between 10 and 20 %. These numbers are in line with comparison studies between ground-based and OMI tropospheric NO 2 measurements under conditions with high aerosol pollution and elevated particles. This highlights the need to implement an improved aerosol correction in the computation of tropospheric NO 2 AMFs.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-11
    Description: Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols Atmospheric Measurement Techniques Discussions, 8, 8439-8481, 2015 Author(s): P. Sellitto and B. Legras Monitoring upper tropospheric-lower stratospheric (UTLS) secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm −1 , due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm −1 . The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties, are analyzed and critically discussed.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-11
    Description: Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results Atmospheric Measurement Techniques Discussions, 8, 8295-8352, 2015 Author(s): K.-U. Eichmann, L. Lelli, C. von Savigny, H. Sembhi, and J. P. Burrows Cloud top heights (CTH) were retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we tested the sensitivity of the colour index method used in the retrieval code SCODA (SCIAMACHY Cloud Detection Algorithm) and the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN showed that the method is capable of generally detecting cloud tops down to about 5 km and very thin cirrus clouds even up to the tropopause. Volcanic particles can also be detected that occasionally reach the lower stratosphere. Low clouds at 2–3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosols interferes with the cloud retrieval. Upper tropospheric ice clouds are detectable for cloud optical depths down to about τ N = 0.005, which is in the subvisual range. The detection sensitivity decreases towards the surface. An optical thickness of roughly 0.1 was the lower detection limit for water cloud top heights at 5 km. This value is much lower than thresholds reported for the passive cloud detection in nadir viewing direction. Comparisons with SCIAMACHY nadir cloud top heights, calculated with the Semi-Analytical CloUd Retrieval Algorithm (SACURA), showed a good agreement in the global cloud field distribution. But only opaque clouds (τ N 〉 5) are detectable with the nadir passive retrieval technique in the UV-visible and infrared wavelength range. So due to the frequent occurrence of thin and sub-visual cirrus clouds in the tropics, large cloud top height deviations were detected between both viewing geometries. Also the land/sea contrast seen in nadir retrievals was not detected in limb mode. Co-located cloud top height measurements of the limb viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT for the period from January 2008 to March 2012 were compared, showing good agreement to within 1 km, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfered with the cloud retrieval and inhibited detection of tropospheric clouds. Examples of the impact of these events are shown for the volcanoes Kasatochi in August 2008, Sarychev Peak in June 2009, and Nabro in June 2010. Long-lasting aerosol layers were detected after these events in the Northern Hemisphere down to the tropics. Particle top heights up to about 22 km were retrieved in 2009, when the enhanced lower stratospheric aerosol layer persisted for about 7 months. Up to about 82 % of the Northern hemispheric lower stratosphere between 30° and 70° was covered by scattering particles in August 2009 and nearly half in October 2008.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...