ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (8)
  • Seismological stations
  • 2020-2024  (6)
  • 1995-1999  (1)
  • 1980-1984  (1)
  • 1975-1979
Collection
  • Data  (8)
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Local seismic network in Northern Chile, Southern Bolivia. (Grant-number: GIPP199604) Waveform data is available from the GEOFON data centre. License: “Creative Commons Attribution-ShareAlike 4.0 International License” (CC BY-SA).
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Central Andes ; magmatic arc ; local seismicity ; temporary local seismic network ; Northern Chile ; Southern Bolivia ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~70G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki.The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data are available from the GEOFON data centre, under network code HE, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Volcanic eruptions are regularly observed on the island of Fogo, Cape Verde, with an average re-occurrence interval of ca. 20 years. However, the structure and extent of the related volcanic plumbing system are not well understood. Previous studies have investigated earthquakes related to magmatic processes connected with the Fogo volcano using conventional network configurations. Seismicity has been reported to occur mainly southwest of the island of Brava while a more recent study reports on activity focussed between Brava and Fogo. Multi-array seismology has the potential to significantly reduce the localization errors of seismic events in particular for those outside a station network and to lower the detection threshold. The subject of this study is the investigation of the local volcano-related seismicity applying multi-array methods which is a unique task amongst the research activities at German universities. The scientific aims are (a) to precisely map local events to constrain the structure of and the dynamic processes within the volcanic plumbing system, (b) to image the magma source region below the Fogo volcano using reflected and backscattered waves, and (c) to localize low-frequency volcanic tremor events. Waveform data are available from the GEOFON data centre, under network code 9J, and are embargoed until February 2022.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-21
    Description: Abstract
    Description: The Bransfield Strait is a seismically active extensional rift located between the Antarctic Peninsula and the South Shetland Islands. The Strait is partly located on continental crust including areas within the transition to seafloor spreading. The amphibious seismic network BRAVOSEIS is an international effort focused on the seismological research of submarine volcanoes and rift dynamics in the Bransfield Strait. This network is the onshore component of the entire network consisting of 15 broadband land stations deployed in the South Shetland Islands and Antarctic Peninsula between January 2018 and February 2020. The offshore components (network code ZX) include 9 broadband ocean bottom seismometers (OBS) across the Central Bransfield Basin and a group of 6 hydrophone moorings spanning the rift area of 200 x 100 km2, with inter-station distance of ~30 km. Additionally, a smaller offshore array consisting of 15 short-period OBSs with an aperture of 20 km and a narrow inter-station distance of ~4 km was deployed around the Orca submarine volcanic edifice south of King George Island. The data will be used to study the geodynamics of the Bransfield Strait and the evolution of the incipient rifting zone in the domain where extension has been suggested. Seismological methods will include earthquake location, source mechanism, surface wave analysis with ambient noise and earthquake data, receiver function and shear wave splitting. The results may shed light on the crustal structure and tectonic regime in the region and image the location and extent of magma accumulations related to submarine volcanic structures. Finally, the results should provide clues to assess the internal processes that occur in the submarine volcanoes of the area undergoing rifting. Waveform data are available from the GEOFON data centre, under network code 5M, and are embargoed until March 2024.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-21
    Description: Abstract
    Description: The complete network consisted of 11 stations deployed on the island of Fogo, Cape Verde. Eight of the stations formed an arraywith an aperture of 700 m, deployed in the south of the island near the village of Achada Furna. Seven of the array stations were equipped with 3-component 4.5 Hz geophones, one with a Trillium Compact (broad-band) sensor. The remaing three stations were distributed across the island and equipped with Trillium Compact sensors. Data were recorded continuously from October 2015 to December 2016 with a sample rate of 200 Hz. Due to limited data storage, there are four recording gaps (20/12/2015-14/01/2016; 28/03/2016-04/04/2016; 17/06/2016-18/07/2016; 01/10/2016-18/10/2016). The network served as a pilot study for the more comprehensive study, FoMaPS, from 2017 to 2018 (FDSN code 9J), involving station deployments on Fogo and Brava. Waveform data are available from the GEOFON data centre, under network code 5M, and are embargoed until July 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-23
    Description: Abstract
    Description: As part of project FUTUREVOLC, European volcanological supersite in Iceland: a monitoring system and network for the future, two 7-element seismic broadband arrays were installed outside the western margin of Vatnajökull glacier, Iceland. The goal was to study seismic tremor associated with floods originating in the eastern and western Skaftár cauldrons. A third temporary array was installed during the Bárðarbunga 2014-2015 volcanic eruption near the eruption site. The aim of the array installations was to discriminate between different seismic tremor sources, namely volcanic eruptions, lava flows, hydrothermal explosions and subglacial floods (jökulhlaups). The main aim of the two arrays installed on the western margin of Vatnajökull was to study their early-warning potential through the analysis of four subglacial floods observed during the study period. The seismic vibrations associated with these floods have an emergent start, are of long duration and are referred to as tremor or high-frequency noise. Due to the lack of clear discrete onsets they cannot be located using traditional earthquake location methods. Instead clusters of seismometers (called arrays) are employed to both locate the tremor source and determine the wave type in the tremor (surface vs. body waves). The array data recorded during the Bárðarbunga eruption were used to investigate the nature of shallow, pre-eruptive, long-duration seismic tremor activity related to shallow dyke formation. The sources of the tremor were found to locate at the eruption site and under ice cauldrons which formed on the ice surface during the first weeks of the unrest. Waveform data are available from the GEOFON data centre, under network code 5L.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~570G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The temporary seismic array of MySCOLAR in northern Myanmar consists of 30 broadband stations. The overall scientific goals are to understand the transition from continental collision to oceanic subduction, to quantify the partitioning of deformation in the accretionary prism, in the Burma Plate and along the strike-slip Sagaing fault system and to image the subducting Indian Plate beneath Myanmar and southwest China. The seismological analysis methods applied to this dataset will include location of local earthquakes and determining their focal mechanisms, surface wave tomography from ambient noise and earthquake data, body wave tomography from local and teleseismic earthquakes, full waveform inversion for Earth structure, receiver functions, and shear wave splitting. A subset of the stations was transmitting data in real time, and these stations contributed to real-time earthquake analysis by the Department of Meteorology and Hydrology (DMH) in Myanmar and the GEOFON earthquake monitoring service. Waveform data are available from the GEOFON data centre, under network code 6C.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-11
    Description: Abstract
    Description: Irpinia seismic Array is part of the DEnse mulTi-paramEtriC observations and 4D high resoluTion imaging (DETECT) project focused on the acquisition of a unique multiparametric dataset and fosters collaboration among various institutions. The University of Naples Federico II (UniNa) and the German Research Centre for Geosciences (GFZ) are leading this effort carried out in collaboration with various local institutions and supported by the local municipalities. The DETECT project aims at exploiting very dense seismic networks deployed across a segmented fault system (Irpinia and Pergola-Melandro) to foster the development of scientific integrated methodologies for monitoring and imaging the fault behavior during the inter-seismic phase. The Irpinia seismic Array consists of a dense constellation of seismic antennas using more than 200 seismic stations deployed for one year. Each seismic antenna, with maximum aperture of ~2 km, uses one broad-band sensor, one short period sensor with 1 Hz and 8 with 4.5 Hz natural frequency. The antennas are deployed above and near the fault segments that generated during the last centuries many strong earthquakes in the southern Apennines. Waveform data are available from the GEOFON data centre, under network code ZK.
    Keywords: Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Array ; Velocity ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...