ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell
  • American Physical Society (APS)
  • 2020-2024  (10)
Collection
Language
Years
Year
  • 1
    Publication Date: 2024-04-07
    Description: PI3K biology; lymphoma; cancer
    Keywords: PI3K biology; lymphoma; cancer ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-03
    Description: oncogenic drivers; signaling; pathways; hematologic malignancies; cancer
    Keywords: oncogenic drivers; signaling; pathways; hematologic malignancies; cancer ; thema EDItEUR::M Medicine and Nursing
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-21
    Description: Precipitation extremes with devastating socioeconomic consequences within the South American Monsoon System (SAMS) are expected to become more frequent in the near future. The complexity in SAMS behavior, however, poses severe challenges for reliable future projections. Thus, robust paleomonsoon records are needed to constrain the high spatiotemporal variability in the response of SAMS rainfall to different climatic drivers. This study uses Ti/Ca ratios from X‐ray fluorescence scanning of a sediment core retrieved off eastern Brazilian to trace precipitation changes over the past 322 Kyr. The results indicate that despite the spatiotemporal complexity of the SAMS, insolation forcing is the primary pacemaker of variations in the monsoonal system. Additional modulation by atmospheric p CO 2 suggests that SAMS intensity over eastern Brazil will be suppressed by rising CO 2 emissions in the future. Lastly, our record reveals an unprecedented strong and persistent wet period during Marine Isotope Stage 6 driven by anomalously strong trade winds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-21
    Description: Cold‐water coral (CWC) reefs and mounds are and have been biodiversity hotspots of the deep sea. As their occurrence depends on specific environmental parameters, gaining hindsight on changing ocean conditions under on‐going climate change is the key to a better understanding of CWC mound development through time. A convenient technique for reconstructing the palaeoenvironment during periods of CWC mound growth is by extracting geochemical proxies from biologically mediated carbonates. Here, the focus is on probably the two most abundant calcareous archives, that are, cold‐water Scleractinia and Foraminifera, with an overview of the geochemical proxies (selection) used in these aragonitic and calcitic skeletons from CWC mounds. A particular emphasis is set on constraining proxies for temperature, salinity, seawater density, seawater carbonate systems parameters (pH, CO 3 2− ), nutrients, oxygen and water mass tracers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Physical Society (APS)
    In:  EPIC3Physical Review Letters, American Physical Society (APS), 130(18), pp. 188401-188401, ISSN: 0031-9007
    Publication Date: 2023-12-05
    Description: It has been postulated that the brain operates in a self-organized critical state that brings multiple benefits, such as optimal sensitivity to input. Thus far, self-organized criticality has typically been depicted as a one-dimensional process, where one parameter is tuned to a critical value. However, the number of adjustable parameters in the brain is vast, and hence critical states can be expected to occupy a high-dimensional manifold inside a high-dimensional parameter space. Here, we show that adaptation rules inspired by homeostatic plasticity drive a neuro-inspired network to drift on a critical manifold, where the system is poised between inactivity and persistent activity. During the drift, global network parameters continue to change while the system remains at criticality.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Physical Society (APS)
    In:  EPIC3Physical Review E, American Physical Society (APS), 105(4), pp. 044310-044310, ISSN: 2470-0045
    Publication Date: 2023-12-05
    Description: Current questions in ecology revolve around instabilities in the dynamics on spatial networks and particularly the effect of node heterogeneity. We extend the master stability function formalism to inhomogeneous biregular networks having two types of spatial nodes. Notably, this class of systems also allows the investigation of certain types of dynamics on higher-order networks. Combined with the generalized modeling approach to study the linear stability of steady states, this is a powerful tool to numerically asses the stability of large ensembles of systems. We analyze the stability of ecological metacommunities with two distinct types of habitats analytically and numerically in order to identify several sets of conditions under which the dynamics can become stabilized by dispersal. Our analytical approach allows general insights into stabilizing and destabilizing effects in metapopulations. Specifically, we identify self-regulation and negative feedback loops between source and sink populations as stabilizing mechanisms and we show that maladaptive dispersal may be stable under certain conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-31
    Description: The response of permafrost to submergence can vary between ice-rich late Pleistocene deposits and the thermokarst basins that thawed out during the Holocene. We hypothesize that inundated Alases offshore thaw faster than submerged Yedoma. To test this hypothesis, we estimated depths to the top of ice-bearing permafrost offshore of the Bykovsky Peninsula in northeast Siberia using electrical resistivity surveys. The surveys traversed submerged lagoon deposits, drained and refrozen Alas deposits, and undisturbed Yedoma from the coastline to 373 m offshore. While the permafrost degradation rates of the submerged Yedoma were in the range of similar sites, the submerged Alas permafrost degradation rates were up to 170% faster. Given the abundance of thermokarst basins and lakes along parts of the Arctic coastline, its effect on subsea permafrost degradation must be similarly prevalent. Remote sensing analyses suggest that 54% of lagoons wider than 500 m originated in thermokarst basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-31
    Description: Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ca. 70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkanes concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted one-year-long incubations (4 °C, dark) and measured anaerobic carbon dioxide (CO2) and methane (CH4) production. The sediments from both cores contained little TOC (0.7±0.4 wt%), but DOC values were relatively high, with highest values in the frozen Yedoma lake sediments (1620 mg L-1). Cumulative GHG production after one year was highest in the Yedoma lake sediments (226±212 μg CO2-C gdw-1, 28±36 μg CH4-C gdw-1) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75±76 μg CO2-C gdw-1, 19±29 μg CH4-C gdw-1). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  EPIC3Permafrost and Periglacial Processes, Wiley-Blackwell, 32(1), pp. 59-75, ISSN: 1045-6740
    Publication Date: 2024-01-31
    Description: Thermal erosion is a major mechanism of permafrost degradation, resulting in characteristic landforms. We inventory thermo-erosional valleys in ice-rich coastal lowlands adjacent to the Siberian Laptev Sea based on remote sensing, Geographic Information System (GIS), and field investigations for a first regional assessment of their spatial distribution and characteristics. Three study areas with similar geological (Yedoma Ice Complex) but diverse geomorphological conditions vary in valley areal extent, incision depth, and branching geometry. The most extensive valley networks are incised deeply (up to 35 m) into the broad inclined lowland around Mamontov Klyk. The flat, low-lying plain forming the Buor Khaya Peninsula is more degraded by thermokarst and characterized by long valleys of lower depth with short tributaries. Small, isolated Yedoma Ice Complex remnants in the Lena River Delta predominantly exhibit shorter but deep valleys. Based on these hydrographical network and topography assessments, we discuss geomorphological and hydrological connections to erosion processes. Relative catchment size along with regional slope interact with other Holocene relief-forming processes such as thermokarst and neotectonics. Our findings suggest that thermo-erosional valleys are prominent, hitherto overlooked permafrost degradation landforms that add to impacts on biogeochemical cycling, sediment transport, and hydrology in the degrading Siberian Yedoma Ice Complex.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...