ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press
  • 2020-2022  (2,931)
  • 1975-1979  (8,554)
Collection
Years
Year
  • 1
    Publication Date: 2020-08-24
    Description: The effect of freshwater sources on wintertime sea-ice CO2 processes was studied from the glacier front to the outer Tempelfjorden, Svalbard, in sea ice, glacier ice, brine and snow. March–April 2012 was mild, and the fjord was mainly covered with drift ice, in contrast to the observed thicker fast ice in the colder April 2013. This resulted in different physical and chemical properties of the sea ice and under-ice water. Data from stable oxygen isotopic ratios and salinity showed that the sea ice at the glacier front in April 2012 contained on average 54% of frozen-in glacial meltwater. This was five times higher than in April 2013, where the ice was frozen seawater. In April 2012, the largest excess of sea-ice total alkalinity (AT), carbonate ion ([CO32−]) and bicarbonate ion concentrations ([HCO3−]) relative to salinity was mainly related to dissolved dolomite and calcite incorporated during freezing of mineral-enriched glacial water. In April 2013, the excess of these variables was mainly due to ikaite dissolution as a result of sea-ice processes. Dolomite dissolution increased sea-ice AT twice as much as ikaite and calcite dissolution, implying different buffering capacity and potential for ocean CO2 uptake in a changing climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-24
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Life in extreme environments - Insights in biological capability, Ecological Reviews, Cambridge, Cambridge University Press, 16 p., pp. 218-233, ISBN: 978-1-108-72420-3
    Publication Date: 2020-10-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Environmental Conservation, Cambridge University Press, pp. 1-6, ISSN: 0376-8929
    Publication Date: 2021-01-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Journal of Glaciology, Cambridge University Press, 67(261), pp. 84-90
    Publication Date: 2021-01-25
    Description: The validity of any glaciological paleo proxy used to interpret climate records is based on the level of understanding of their transfer from the atmosphere into the ice sheet and their recording in the snowpack. Large spatial noise in snow properties is observed, as the wind constantly redistributes the deposited snow at the surface routed by the local topography. To increase the signal-tonoise ratio and getting a representative estimate of snow properties with respect to the high spatial variability, a large number of snow profiles is needed. However, the classical way of obtaining profiles via snow-pits is time and energy-consuming, and thus unfavourable for large surface sampling programs. In response, we present a dual-tube technique to sample the upper metre of the snowpack at a variable depth resolution with high efficiency. The developed device is robust and avoids contact with the samples by exhibiting two tubes attached alongside each other in order to (1) contain the snow core sample and (2) to access the bottom of the sample, respectively. We demonstrate the performance of the technique through two case studies in East Antarctica where we analysed the variability of water isotopes at a 100 m and 5 km spatial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Radiocarbon, Cambridge University Press, 62(4), pp. 865-871, ISSN: 0033-8222
    Publication Date: 2020-09-24
    Description: Beyond ~13.9 cal kBP, the IntCal20 radiocarbon (14C) calibration curve is based upon combining data across a range of different archives including corals and planktic foraminifera. In order to reliably incorporate such marine data into an atmospheric curve, we need to resolve these records into their constituent atmospheric signal and marine reservoir age. We present results of marine reservoir age simulations enabling this resolution, applying the LSG ocean general circulation model forced with various climatic background conditions and with atmospheric radiocarbon changes according to the Hulu Cave speleothem record. Simulating the spatiotemporal evolution of reservoir ages between 54,000 and 10,700 cal BP, we find reservoir ages between 500 and 1400 yr in the low- and mid-latitudes, but also more than 3000 yr in the polar seas. Our results are broadly in agreement with available marine radiocarbon reconstructions, with the caveat that continental margins, marginal seas, or tropical lagoons are not properly resolved in our coarse-resolution model.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-09-24
    Description: The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Polar Record, Cambridge University Press, 57(e12), pp. 1-6, ISSN: 0032-2474
    Publication Date: 2021-04-15
    Description: The distribution, density and percentage contribution of pack ice seals during ship-board censuses in the marginal sea ice zone beyond the Lazarev Sea in spring 2019 are presented. Adult/juvenile crabeater seals (n = 19), leopard seals (n = 3) and Ross seals (n = 10) were sighted during 582.2 nm of censuses along the ship’s track line in the area bounded by 00°00’–22°E and 56°–60°S. Antarctic fur seals (n = 21) were only encountered on the outer fringes of the pack ice, and Weddell seals were absent due to their primary use of fast ice and inner pack ice habitats close to the coast. Crabeater seal sightings included juveniles (n = 2) and another four groups of 2–3 unclassified crabeater seals, singletons (n = 5), single mothers with pups (n = 3) and a family group (n = 1 triad). Only one leopard seal attended a pup, while no Ross seal pups were located. The survey was likely of insufficient effort, in both extent (north of 60°S) and duration (18 days), to locate seals in considerable numbers this early (late October/early November) in their austral spring breeding season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-05-27
    Description: Volcanism and metamorphism are the principal geologic processes that drive carbon transfer from the interior of Earth to the surface reservoir.1–4 Input of carbon to the surface reservoir through volcanic degassing is balanced by removal through silicate weathering and the subduction of carbon-bearing marine deposits over million-year timescales. The magnitude of the volcanic carbon flux is thus of fundamental importance for stabilization of atmospheric CO2 and for long-term climate. It is likely that the “deep” carbon reservoir far exceeds the size of the surface reservoir in terms of mass;5,6 more than 99%of Earth’s carbon may reside in the core, mantle, and crust. The relatively high flux of volcanic carbon to the surface reservoir, combined with the reservoir’s small size, results in a short residence time for carbon in the ocean–atmosphere–biosphere system (~200 ka).7 The implication is that changes in the flux of volcanic carbon can affect the climate and ultimately the habitability of the planet on geologic timescales. In order to understand this delicate balance, we must first quantify the current volcanic flux of carbon to the atmosphere and understand the factors that control this flux.
    Description: Published
    Description: 188-236
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Buentgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Koehler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., & Talamo, S. The Intcal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon, 62(4), (2020): 725-757, doi:10.1017/RDC.2020.41.
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Description: We would like to thank the National Natural Science Foundation of China grants NSFC 41888101 and NSFC 41731174, the 111 program of China (D19002), U.S. NSF Grant 1702816, and the Malcolm H. Wiener Foundation for support for research that contributed to the IntCal20 curve. The work on the Swiss and German YD trees was funded by the German Science foundation and the Swiss National Foundation (grant number: 200021L_157187). The operation in Aix-en-Provence is funded by the EQUIPEX ASTER-CEREGE, the Collège de France and the ANR project CARBOTRYDH (to EB). The work on the correlation of tree ring 14C with ice core 10Be was partially supported by the Swedish Research Council and the Knut and Alice Wallenberg foundation. M. Butzin was supported by the German Federal Ministry of Education and Research (BMBF) as Research for Sustainable Development (FONA; http://www.fona.de) through the PalMod project (grant number: 01LP1505B). S. Talamo and M. Friedrich are funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement No. 803147-RESOLUTION, awarded to ST). CA. Turney would like to acknowledge support of the Australian Research Council (FL100100195 and DP170104665). P. Reimer and W. Austin acknowledge the support of the UKRI Natural Environment Research Council (Grant NE/M004619/1). T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9. Other datasets and the IntCal20 database were created without external support through internal funding by the respective laboratories. We also would like to thank various institutions that provided funding or facilities for meetings.
    Keywords: calibration curve ; radiocarbon ; IntCal20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...