ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (3,365)
  • Aerodynamics  (15)
  • Humans
  • Polymer and Materials Science
  • 1935-1939  (3,380)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-06-28
    Description: Recent developments in airfoil-testing methods and fundamental air-flow investigations, as applied to airfoils, are discussed. Preliminary test results, obtained under conditions relatively free from stream turbulence and other disturbances, are presented. Suitable airfoils and airfoil-design principles were developed to take advantage of the unusually extensive laminar boundary layers that may be maintained under the improved testing conditions. The results are of interest mainly in range of below 6,000,000.
    Keywords: Aerodynamics
    Type: NACA-WR-L-345
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Simultaneous air-flow photographs and pressure-distribution measurements have been made of the NACA 4412 airfoil at high speeds in order to determine the physical nature of the compressibility burble. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations on the 5-inch-chord wing by means of a multiple-tube photographic manometer. Pressure-measurement results and typical Schlieren photographs are presented. The general nature of the phenomenon called the "compressibility burble" is shown by these experiments. The source of the increased drag is the compression shock that occurs, the excess drag being due to the conversion of a considerable amount of the air-stream kinetic energy into heat at the compression shock.
    Keywords: Aerodynamics
    Type: NACA-TN-543
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: An investigation was made in the N.A.C.A. 7- by 10- foot wind tunnel to determine the aerodynamic section characteristics of an N. A. C. A. 23012 airfoil with a single main slotted flap equipped successively with auxiliary flaps of the plain, split, and slotted types. A test installation mas used in which an airfoil of 7-foot span was mounted vertically between the upper and the lower sides of the closed test section so that two-dimensional flow was approximated. On the basis of maximum lift coefficient, low drag at moderate and high lift coefficients, and high drag at high lift coefficients, the optimum combination of the arrangements was found to be the double slotted flap . All the auxiliary flaps tested, however, increased the magnitudes of the pitching moments over those of the main slotted flap alone.
    Keywords: Aerodynamics
    Type: NACA-SR-97
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-14
    Description: An investigation was made to determine the spinning characteristics of Clark Y monoplane wings with different plan forms. A rectangular wing and a wing tapered 5:2, both with rounded tips, were tested on the N.A.C.A. spinning balance in the 5-foot vertical wind tunnel. The aerodynamic characteristics of the models and a prediction of the angles of sideslip for steady spins are given. Also included is an estimate of the yawning moment that must be furnished by the parts of the airplane to balance the inertia couples and wing yawing moment for spinning equilibrium. The effects on the spin of changes in plan form and of variations of some of the important parameters are discussed and the results are compared with those for a rectangular wing with square tips. It is concluded that for a conventional monoplane using Clark Y wing the sideslip will be algebraically larger for the wing with the rounded tip than for the wing with the square tip and will be largest for the tapered wing. The effect of plan form on the spin will vary with the type of airplane; and the provision of a yawing-moment coefficient of -0.025 (i.e., opposing the spin) by the tail, fuselage, and interference effects will insure against the attainment of equilibrium on a steady spin for any of the plan forms tested and for any of the parameters used in the analysis.
    Keywords: Aerodynamics
    Type: NACA-TN-612
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-27
    Description: An investigation was conducted in the N.A.C.A. 20-foot wind tunnel to determine the drag, the propulsive and net efficiencies, and the cooling characteristics of severa1 scale-model arrangements of air-cooled radial-engine nacelles and present-day propellers in front of an 18- percent-thick, 5- by 15-foot airfoil. This report deals with an investigation of wing-nacelle arrangements simulating the geometric proportions of airplanes in the 40,000- to 70,000- pound weight classification and having the nacelles located in the vicinity of the optimum location determined from the earlier tests.
    Keywords: Aerodynamics
    Type: NACA-SR-123
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: At the request of the Materiel Division of the Army Air Corps, seven tapered wings having sections based on the N.A,C.A. 230 mean line were tested in the variable-density wind tunnel, The characteristics of the wings are given.
    Keywords: Aerodynamics
    Type: NACA-SR-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Tests have been made in the N.A.C.A. 8-foot high-speed wind tunnel of the drag caused by roughness on the surface of an airfoil of N.A.C.A. 23012 section and 5-foot chord. The tests were made at speeds from 80 t o 500 miles per hour at lift coefficients from 0 to 0.30. For conditions corresponding to high-speed flight, the increase in the drag was 30 percent of the profile drag of the smooth airfoil for the roughness produced by spray painting and 63 percent for the roughness produced. by 0.0037-inch carborundum grains. About one-half the drag increase was caused by the roughness on the forward one-fourth of the airfoil. Sandpapering the painted surface with No. 400 sandpaper made it sufficiently smooth that the drag was no greater than when the surface was polished. In the lower part of the range investigated the drag due to roughness increased rapidly with Reynolds Number.
    Keywords: Aerodynamics
    Type: NACA-SR-78
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Tests were made in the N.A.C.A. 20-foot wind tunnel on: (1) a wing, of 6.5-foot span, 5.5-foot chord, and 30 percent maximum thickness, fitted with large end plates and (2) a 16-foot span 2.67-foot chord wing of 15 percent maximum thickness to determine the increase in lift obtainable by removing the boundary layer and the power required for the blower. The results of the tests on the stub wing appeared more favorable than previous small-scale tests and indicated that: (1) the suction method was considerably superior to the pressure method, (2) single slots were more effective than multiple slots (where the same pressure was applied to all slots), the slot efficiency increased rapidly for increasing slot widths up to 2 percent of the wing chord and remained practically constant for all larger widths tested, (3) suction pressure and power requirements were quite low (a computation for a light airplane showed that a lift coefficient of 3.0 could be obtained with a suction as low as 2.3 times the dynamic pressure and a power expenditure less than 3 percent of the rated engine power), and (4) the volume of air required to be drawn off was quite high (approximately 0.5 cubic feet per second per unit wing area for an airplane landing at 40 miles per hour with a lift coefficient of 3,0), indicating that considerable duct area must be provided in order to prevent flow losses inside the wing and insure uniform distribution of suction along the span. The results from the tests of the large-span wing were less favorable than those on the stub wing. The reasons for this were, probably: (1) the uneven distribution of suction along the span, (2) the flow losses inside the wing, (3) the small radius of curvature of the leading edge of the wing section, and (4) the low Reynolds Number of these tests, which was about one half that of the stub wing. The results showed a large increase in the maximum lift coefficient with an increase in Reynolds Number in the range of the tests. The results of drag tests showed that the profile drag of the wing was reduced and the L/D ratio was increased throughout the range of lift coefficients corresponding to take-off and climb but that the minimum drag was increased. The slot arrangement that is best for low drag is not the same, however, as that for maximum lift.
    Keywords: Aerodynamics
    Type: NACA-SR-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back.
    Keywords: Aerodynamics
    Type: NACA-SR-77
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Tests were made in the NACA 8-foot high speed wind tunnel of a metal-covered, riveted, 'service' wing of average workmanship to determine the aerodynamic effects of the manufacturing irregularities incident to shop fabrication. The wing was of 5-foot chord and of NACA 23012 section and was tested in the low-lift range at speeds from 90 to 450 miles per hour corresponding to Reynolds numbers from 4,000,000 to 18,000,000. At a cruising condition the drag of the service wing was 46% higher than the drag of a smooth airfoil, whereas the drag of an accurately constructed airfoil having the same arrangement of 3/32-inch brazier-head rivets and lap joints showed a 29% increase. The difference, or 17% of the smooth-wing drag, is apparently the drag caused by the manufacturing irregularities: sheet waviness, departures from true profile, and imperfect laps. the service wing, for one condition at least, showed a drag increase due to compressibility at a lower air speed than did the more accurate airfoil.
    Keywords: Aerodynamics
    Type: NACA-SR-79
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...