ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (223)
  • AERODYNAMICS  (98)
  • Aircraft Design, Testing and Performance  (85)
  • Aircraft Propulsion and Power  (40)
  • Animals
  • Chemistry
  • Fisheries
  • Humans
  • Inorganic Chemistry
  • 1955-1959  (223)
Collection
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-03-16
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-11
    Keywords: AERODYNAMICS
    Type: RM-2419-NASA , RM-2419-NASA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-11
    Description: Three highly polished 15- included- angle cone- cylinders with hemispherical tips of several diameters ( 2, 3, and 4 in.) have been flown in order to obtain boundary- layer transition data at very low wall to local stream temperature ratios, and heat- transfer data. All surfaces had a 2-microinch average roughness height. Laminar flow existed over the entire hemispherical nose of the 2- and 3-inch-tip- diameter models throughout the complete flight history. Extreme cooling to wall to local stream temperature ratios at the sonic point as low as 0.20 did not cause transition on the nose for diameters as large as 3 inches. However, extreme cooling did cause early transition on the 4-inch model where it appears probable that transition occurred forward of the 45 station at a wall to local stream temperature ratio of about 0.26. Variations in tip diameter influenced transition downstream of the nose under conditions of extreme cooling. The 2-inch- tip model was laminar at all cone- cylinder stations at temperature ratios as low as 0.32 whereas the 3- and 4-inch-tip models were turbulent at the same local flow conditions but at higher wall to local temperature ratios. Transition on the cone and cylinder of the 3- and 4-inch- tip bodies appeared to be sensitive to local Mach number, and occurred at higher local temperature ratios when values of local Mach number were higher. Increasing the nose diameter from 2 to 3 inches significantly changed the local flow conditions for which laminar flow existed on the cone- cylinder afterbody. However, a further increase in tip size t o a 4-inch diameter had no discernable effect on the local flow conditions at transition. The transition results of the 3- and 4-inch-nose-diameter smooth bodies are similar to those observed on a 7/8-inch-nose-diameter body with roughened surfaces. Turbulent boundary layers resulted in both cases at very low wall to local stream temperature ratios. Both laminar and turbulent heat-transfer data were in good agreement with theoretical Stanton numbers when heat-transfer reduction due to tip blunting was considered.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-3-4-59E , GRC-E-DAA-TN65086
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-11
    Description: A flight investigation was made of the lift and drag of a sweptwing fighter airplane in the basic configuration and in a slats-locked-closed configuration over a Mach number range from about 0.63 to about 1.44. At a nominal lift coefficient of 0.1 negligible drag-coefficient difference existed between the two configurations over a comparable Mach number and altitude range. For the basic configuration at zero lift the supersonic drag level was about three times as great as the subsonic drag level, which was about 0.01, whereas the drag-due-to-lift factor increased about 137 percent over the test Mach number range. At comparable Mach numbers the high-altitude data produced a larger lift-curve slope and showed a more pronounced variation of lift-curve slope in the transonic region than did the low-altitude data. For the high-altitude data the lift-curve slope at a Mach number of 1.44 was approximately 62 percent of the value at a Mach number of 0.9.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-10-1-58H , AFRC-E-DAA-TN47945
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-05-23
    Description: Wind tunnel data of X-15 and B-52 aircraft models carry loads and mutual interference
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-05-23
    Description: Wind tunnel tests - effect of wind induced loads on dynamically scaled model of large missile in launching position
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-109
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-05-23
    Description: High subsonic speed of static longitudinal aerodynamic characteristics of delta wing configuration for angle of attack from 0 deg to 90 deg
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-168
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-05-23
    Description: Stability and control of variable sweep wing configuration with outboard wing panels swept back 75 degrees at Mach 2.01
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-05-23
    Description: Zero angle of attack performance of isentropic spike inlet designed for maximum external compression at hypersonic speed
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-05-29
    Description: Transonic wind tunnel study of aerodynamic characteristics of blunt reentry vehicles at varying angles of attack
    Keywords: AERODYNAMICS
    Type: NASA-MEMO-1-21-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-05-30
    Description: Hypersonic flutter tests on rectangular flat-plate models and double-wedge airfoils in helium flow
    Keywords: AERODYNAMICS
    Type: NASA-MEMO-4-8-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-05-23
    Description: Wind tunnel studies at supersonic and transonic speeds to determine aerodynamic characteristics of variable sweep wing aircraft - configuration
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-206
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-05-23
    Description: Mach number and air temperature effect on hypersonic flow over blunt bodies
    Keywords: AERODYNAMICS
    Type: NASA-MEMO-10-9-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-05-23
    Description: Overall stage and stator blade element performance with straight stator and tilted stator in transonic axial flow compressor stage
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-99
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-05-23
    Description: Pressure measurements in flight over conically cambered delta wing of F-102A aircraft at transonic speeds
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-05-10
    Keywords: AERODYNAMICS
    Type: NASA-CR-50493 , RM-2417-NASA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-05-10
    Keywords: AERODYNAMICS
    Type: JPL-170
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-05-29
    Description: Low speed measurements of oscillatory lateral stability derivatives of 60 degree delta wing bomber model
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-05-30
    Description: Pitch and control stiffness effects on flutter characteristics of all-moveable wing and vertical and horizontal tails on fighter aircraft at supersonic speeds
    Keywords: AERODYNAMICS
    Type: NASA-MEMO-10-16-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-05-30
    Description: Aerodynamic effects of airfoil thickness on transonic flutter characteristics of swept and unswept wings
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-79
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-05-23
    Description: Effect of forebody strakes on aerodynamic characteristics in sideslip and pitch of hypersonic aircraft configurations
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-116
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-05-23
    Description: Determination of loads due to wing twist at transonic and low supersonic speeds
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-126
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-05-23
    Description: Investigation of amplitude and phase shift of static pressure variations in supersonic diffuser for separate oscillation of spike and bypass
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-05-23
    Description: Fighter aircraft external stores ejection at transonic and supersonic speeds
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-05-23
    Description: Aerodynamic characteristics of variable sweep aircraft configurations - low altitude supersonic vehicle
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-142
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TN-D-89
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-27
    Description: Constant chord, trailing edge, control deflection effects on aerodynamic loading characteristics of 60 degree delta wing-body combination at transonic speeds
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-122
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-27
    Description: Wind tunnel determination of supersonic flow properties in vicinity swept, delta, and trapezoidal wing-body combinations
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-64
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-27
    Description: Full-scale wind tunnel determination of effect of corrugated canister surface on static aerodynamic characteristics of reentry capsule
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-220
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-27
    Description: Pressure distribution on hypersonic glide configuration having 79.5 deg sweepback and 45 deg dihedral at Mach number of 4.95
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-223
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Turbojet engine reliability has long been an intense interest to the military users of this type of aircraft propulsion. With the recent inauguration of commercial jet transport this subject has assumed a new dimension of importance. In January l96 the Lewis Research Center of the NASA (then the MACA) published the results of an extensive study on the factors that affect the opera- center dot tional reliability of turbojet engines (ref. 1). At that time the report was classified Confidential. In July l98 this report was declassified. It is thus appropriate at this time to present some of the highlights of the studies described in the NASA report. In no way is it intended to outline the complete contents of the report; rather it is hoped to direct attention to it among those who are center dot directly concerned with this problem. Since the publication of our study over three years ago, the NASA has completed a number of additional investigations that bear significantly on this center dot subject. A second object of this paper, therefore, is to summarize the results of these recent studies and to interpret their significance in relation to turbojet operational reliability.
    Keywords: Aircraft Design, Testing and Performance
    Type: SAE National Aeronautic Meeting; Mar 31, 1959 - Apr 03, 1959; New York, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-17
    Description: An investigation of the low-subsonic stability and control characteristics of a model of a flat-bottom hypersonic boost-glide configuration having 78 deg sweep of the leading edge has been made in the Langley full-scale tunnel. The model was flown over an angle-of-attack range from 10 to 35 deg. Static and dynamic force tests were made in the Langley free-flight tunnel. The investigation showed that the longitudinal stability and control characteristics were generally satisfactory with neutral or positive static longitudinal stability. The addition of artificial pitch damping resulted in satisfactory longitudinal characteristics being obtained with large amounts of static instability. The most rearward center-of-gravity position for which sustained flights could be made either with or without pitch damper corresponded to the calculated maneuver point. The lateral stability and control characteristics were satisfactory up to about 15 deg angle of attack. The damping of the Dutch roll oscillation decreased with increasing angle of attack; the oscillation was about neutrally stable at 20 deg angle of attack and unstable at angles of attack of about 25 deg and above. Artificial damping in roll greatly improved the lateral characteristics and resulted in flights being made up to 35 deg angle of attack.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-201 , L-452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-17
    Description: Acceleration, airspeed, and altitude data obtained with an NACA VGH recorder from a four-engine commercial transport airplane operating over a northwestern United States-Alaska route were evaluated to determine the magnitude and frequency of occurrence of gust and maneuver accelerations., operating airspeeds, and gust velocities. The results obtained were then compared with the results previously reported in NACA Technical Note 3475 for two similar airplanes operating over transcontinental routes in the United States. No large variations in the gust experience for the three operations were noted. The results indicate that the gust-load experience of the present operation closely approximated that of the central transcontinental route in the United States with which it is compared and showed differences of about 4 to 1 when compared with that of the southern transcontinental route in the United States. In general, accelerations due to gusts occurred much more frequently than those due to operational maneuvers. At a measured normal-acceleration increment of 0.5g, accelerations due to gusts occurred roughly 35 times more frequently than those due to operational maneuvers.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-1-17-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-17
    Description: An analysis is made of wing deflection and streamwise twist measurements in rough-air flight of a large flexible swept-wing bomber. Random-process techniques are employed in analyzing the data in order to describe the magnitude and characteristics of the wing deflection and twist responses to rough air. Power spectra and frequency-response functions for the wing deflection and twist responses at several spanwise stations are presented. The frequency-response functions describe direct and absolute response characteristics to turbulence and provide a convenient basis for assessing analytic calculation techniques. The wing deformations in rough air are compared with the expected deformations for quasi-static loadings of the same magnitude, and the amplifications are determined. The results obtained indicate that generally the deflections are amplified by a small amount, while the streamwise twists are amplified by factors of the order of 2.0. The magnitudes of both the deflection velocities and the twist angles are shown to have significant effects on the local angles of attack at the various stations and provide the main source of aerodynamic loading, particularly at frequencies in the vicinity of the first wing-vibration mode.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-12-3-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-17
    Description: Analysis of the vortex model proposed by Kriebel, Seidel, and Schwind shows this representation of rotating stall satisfies, at least approximately, the requirements at the cascade. Cascade-parameter-variation effects on rotating stall were studied in a circular cascade and single-stage compressor. Modification of the single-stage compressor stopped the rotating-stall pattern and permitted observation of the pressure and velocity distribution around the annulus. Closer observation might be possible with proper flow-visualization techniques, such as a water pump.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-3-16-59W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-17
    Description: The effect of stator and rotor aspect ratio on transonic-turbine performance was experimentally investigated. The stator aspect ratios covered were 1.6. 0.8, and 0.4, while the rotor aspect ratios investigated were 1.46 and 0.73. It was found that the observed variation in turbine design-point efficiency was negligible. Thus, within the range of aspect ratio investigated, these results verify for turbines operating in the transonic flow range the finding of a reference report, which showed analytically that, if blade shape and solidity are held constant, the aspect ratio may be varied over a wide range without appreciable change in turbine efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-11-59E , E-177
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-17
    Description: The suitability of cermets for turbine stator blades of a modified turbojet engine was determined at an average turbine-inlet-gas temperature of 2000 F. Such an increase in temperature would yield a premium in thrust from a service engine. Because the cermet blades require no cooling, all the available compressor bleed air could be used to cool a turbine made from conventional ductile alloys. Cermet blades were first run in 100-hour endurance tests at normal gas temperatures in order to evaluate two methods for mounting them. The elevated gas-temperature test was then run using the method of support considered best for high-temperature operation. After 52 hours at 2000 F, one of the group of four cermet blades fractured probably because of end loads resulting from thermal distortion of the spacer band of the nozzle diaphragm. Improved design of a service engine would preclude this cause of premature failure.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-13-59E , E-147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-17
    Description: In an attempt to find an aerodynamic means of counteracting the transonic trim change of a fighter airplane, lower surface spoilers were tested on a 0.055-scale wind-tunnel model. The Mach number range of the tests was 0.8 to 1.2 at Reynolds numbers of approximately 4 million. Although the spoilers produced a moderate decrease in the trim change at low altitudes, they also produced a large increase in drag. Pressure-distribution tests with external fuel tanks showed large pressure changes on the lower surface of the wing due to the tanks.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-12-27-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-17
    Description: An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-9-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-17
    Description: The Levy method which deals with an idealized structure was used to obtain the natural modes and frequencies of a large-scale built-up 45 deg. delta wing. The results from this approach, both with and without the effects of transverse shear, were compared with the results obtained experimentally and also with those calculated by the Stein-Sanders method. From these comparisons it was concluded that the method as proposed by Levy gives excellent results for thin-skin delta wings, provided that corrections are made for the effect of transverse shear.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-2-59L , L-153
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-17
    Description: A cambered and twisted triangular wing of aspect ratio 2 in combination with a cambered body was investigated experimentally to determine the effectiveness of the camber in reducing the drag due to lift at trim at supersonic speeds. Four arrangements were tested comprising all combinations of a symmetrical and a cambered wing with a symmetrical and a cambered body. The camber shape investigated was derived by linearized lifting surface theory for triangular wings with sonic leading edges and satisfied the requirement that the wing be trimmed at the design Mach number and lift coefficient. The experimental results for the cambered wing and cambered body showed that the drag coefficient at trim was always greater, at the same lift coefficient, than that for the untrimmed symmetrical wing and body. The trim lift coefficient was positive and decreased with increasing Mach number. At the design Mach number of 2.24, the trim lift coefficient was somewhat lower and the drag coefficient was higher than values predicted by linearized lifting surface theory for the wing alone. A comparison of the trim lift-drag ratio of the cambered wing and cambered body with values obtained by trimming the symmetrical wing and symmetrical body either with a canard or a trailing-edge flap showed that, at approximately the design Mach number the cambered configuration developed a somewhat higher value than the trailing-edge flap configuration but a lower value than the canard configuration.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-3-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-17
    Description: The maximum Mach number and altitude capabilities of the Bell X-2 research airplane were achieved during a program conducted by the U.S. Air Force with Bell Aircraft Corp. providing operational support and the National Aeronautics and Space Administration providing instrumentation and advisory engineering assistance. A maximum geometric altitude of 126,200 feet was attained at a static pressure of 9.4 pounds per square foot and a dynamic pressure of 19.1 pounds per square foot. During the last flight of the airplane, a maximum Mach number of 3.20 was reached. The directionally divergent maneuver which terminated the final high Mach number flight was precipitated by the loss in directional stability that resulted from increasing the angle of attack. The yawing moment from the lateral control was sufficient to initiate the divergence and also to cause,, indirectly, rolling moments that were greater than the aileron capabilities of the airplane. The ensuing violent motions-resulting from inertial roll coupling caused the loss of the aircraft.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-16
    Description: The first flight of the North American X-15 research airplane was made on June 8, 1959. This was accomplished after completion of a series of captive flights with the X-15 attached to the B-52 carrier airplane to demonstrate the aerodynamic and systems compatibility of the X-15//B-52 combination and the X-15 subsystem operation. This flight was planned as a glide flight so that the pilot need not be concerned with the propulsion system. Discussions of the launch, low-speed maneuvering, and landing characteristics are presented, and the results are compared with predictions from preflight studies. The launch characteristics were generally satisfactory, and the X-15 vertical tail adequately cleared the B-52 wing cutout. The actual landing pattern and landing characteristics compared favorably with predictions, and the recommended landing technique of lowering the flaps and landing gear at a low altitude appears to be a satisfactory method of landing the X-15 airplane. There was a quantitative correlation between flight-measured and predicted lift-drag-ratio characteristics in the clean configuration and a qualitative correlation in the landing configuration. A longitudinal-controllability problem, which became severe in the landing configuration, was evident throughout the flight and, apparently, was aggravated by the sensitivity of the side-located control stick. In the low-to-moderate angle-of-attack range covered, the longitudinal and directional stability were indicated to be adequate.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-195
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-16
    Description: A study has been made of the subsonic pressure distributions and loadings for a 45 deg sweptback-wing and body combination at angles of attack up to 36 deg. The wing had an aspect ratio of 5.5, a taper ratio of 0.53, and NACA 64A010 sections normal to the quarter-chord line and was mounted on a slender body of fineness ratio 12.5. Test results are presented for Mach numbers of 0.30 and 0.50 with corresponding Reynolds numbers of 1.5 and 2.0 million, respectively. The stall patterns and spanwise loadings at high angles of attack for the present model are correlated with those for other 45 deg sweptback wing and body combinations having aspect ratios between 4.0 and 8.0. A tentative approach is presented for extrapolating the Weissinger span-loading method to higher angles of attack, and for deriving the spanwise-load distributions for 45 deg sweptback wings at angles of attack above 20 deg. The investigation also included tests of the body in combination with only one panel of the swept wing. The problem of estimating the normal-force coefficient for the single panel at high angles of attack is considered.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-1-18-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-16
    Description: Results of a cyclic load test made by NASA on an EB-47E airplane are given. The test reported on is for one of three B-47 airplanes in a test program set up by the U. S. Air Force to evaluate the effect of wing structural reinforcements on fatigue life. As a result of crack development in the upper fuselage longerons of the other two airplanes in the program, a longeron and fuselage skin modification was incorporated early in the test. Fuselage strain-gage measurements made before and after the longeron modification and wing strain-gage measurements made only after wing reinforcement are summarized. The history of crack development and repair is given in detail. Testing was terminated one sequence short of the planned end of the program with the occurrence of a major crack in the lower right wing skin.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-3-15-59L , AF-AM-171
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-16
    Description: Flight tests were made to determine the capability of positioning a gliding airplane for a landing on a 5,000-foot runway with special reference to the gliding flight of a satellite vehicle of fixed configuration upon reentry into the earth's atmosphere. The lift-drag ratio and speed of the airplane in the glides were varied through as large a range as possible. The results showed a marked tendency to undershoot the runway when the lift-drag ratios were below certain values, depending upon the speed in the glide. A straight line dividing the successful approaches from the undershoots could be drawn through a lift-drag ratio of about 3 at 100 knots and through a lift-drag ratio of about 7 at 185 knots. Provision of a drag device would be very beneficial, particularly in reducing the tendency toward undershooting at the higher speeds.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-3-12-59L , L-406
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-16
    Description: Several approximate procedures for calculating the bending-moment response of flexible airplanes to continuous isotropic turbulence are presented and evaluated. The modal methods (the mode-displacement and force-summation methods) and a matrix method (segmented-wing method) are considered. These approximate procedures are applied to a simplified airplane for which an exact solution to the equation of motion can be obtained. The simplified airplane consists of a uniform beam with a concentrated fuselage mass at the center. Airplane motions are limited to vertical rigid-body translation and symmetrical wing bending deflections. Output power spectra of wing bending moments based on the exact transfer-function solutions are used as a basis for the evaluation of the approximate methods. It is shown that the force-summation and the matrix methods give satisfactory accuracy and that the mode-displacement method gives unsatisfactory accuracy.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-18-59L , L-143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-16
    Description: The design and experimental investigation of a 4.5-inch-mean-diameter two-stage turbine are presented herein and used to study the effect of size on the efficiency of turbines in the auxiliary power drive class. The results of the experimental investigation indicated that design specific work was obtained at design speed at a total-to-static efficiency of 0.639. At design pressure ratio, design static-pressure distribution through the turbine was obtained with an equivalent specific work output of 33.2 Btu per pound and an efficiency of 0.656. It was found that, in the design of turbines in the auxiliary power drive class, Reynolds number plays an important part in the selection of the design efficiency. Comparison with theoretical efficiencies based on a loss coefficient and velocity diagrams are presented. Close agreement was obtained between theory and experiment when the loss coefficient was adjusted for changes in Reynolds number to the -1/5 power.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-6-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-15
    Description: The performance of turbine-engine combustors usually is given in terms of operating limits and combustion efficiency. The latter property is determined most often by measuring the increase in enthalpy across the combustor through the use of thermocouples. This investigation was conducted to determine the ability of gas-analytical techniques to provide additional information about combustor performance. Gas samples were taken at the outlet and two upstream stations and their compositions determined. In addition to over-all combustion efficiency, estimates of local fuel-air ratios, local combustion efficiencies, and heat-release rates can be made. Conclusions can be drawn concerning the causes of combustion inefficiency and may permit corrective design changes to be made more intelligently. The purpose of this investigation was not to present data for a given combustor but rather to show the types and value of additional information that can be gained from gas-analytical data.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-1-26-59E , E-245
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-15
    Description: The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-3-16-59L , TED-AD-3147 , L-241
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-15
    Description: Flapwise bending moments were calculated for a teetering rotor blade using a reasonably rapid theoretical method in which airloads obtained from wind-tunnel tests were employed. The calculated moments agreed reasonably well with those measured with strain gages under the same test conditions. The range of the tests included one hovering and two forward-flight conditions. The rotor speed for the test was very near blade resonance, and difficult-to-calculate resonance effects apparently were responsible for the largest differences between the calculated and measured harmonic components of blade bending moments. These differences, moreover, were largely nullified when the harmonic components were combined to give a comparison of the calculated and measured blade total- moment time histories. The degree of agreement shown is therefore considered adequate to warrant the use of the theoretical method in establishing and applying methods of prediction of rotor-blade fatigue loads. At the same time, the validity of the experimental methods of obtaining both airload and blade stress measurement is also indicated to be adequate for use in establishing improved methods for prediction of rotor-blade fatigue loads during the design stage. The blade stiffnesses and natural frequencies were measured and found to be in close agreement with calculated values; however, for a condition of blade resonance the use of the experimental stiffness values resulted in better agreement between calculated and measured blade stresses.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-28-59L , L-140
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-15
    Description: As a continuation of an investigation of the release characteristics of an MB-1 rocket carried internally by the Convair F-106A airplane, six missile-bay baffle configurations and a rocket end plate have been investigated in the 27- by 27-inch preflight jet of the NASA Wallops Station. The MB-1 rocket used had retractable fins and was ejected from a missile bay modified by the addition of six different baffle configurations. For some tests a rocket end plate was added to the model. Dynamically scaled models (0.04956 scale) were tested at a simulated altitude of 22,450 feet and Mach numbers of 0.86, 1.59, and 1.98, and at a simulated altitude of 29,450 feet and a Mach number of 1.98. The results of this investigation indicate that the missile-bay baffle configurations and the rocket end plate may be used to reduce the positive pitch amplitude of the MB-1 rocket after release. The initial negative pitching velocity applied to the MB-1 rocket might then be reduced in order to maintain a near-level-flight attitude after release. As the fuselage angle of attack is increased, the negative pitch amplitude of the rocket is decreased.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-4-29-59L , AF-AM-57 , L-361
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-14
    Description: No abstract available
    Keywords: AERODYNAMICS
    Type: MSF-TN-J-13-59 , BAC-7021-3252-002
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-15
    Description: A series of landings was performed with a straight-wing airplane to evaluate the effect of low lift-drag ratios on approach and landing characteristics. Landings with a peak lift-drag ratio as low as 3 were performed by altering the airplane configuration (extending speed brakes, flaps, and gear and reducing throttle setting). As lift-drag ratio was reduced, it was necessary either to make the landing pattern tighter or to increase initial altitude, or both. At the lowest lift-drag ratio the pilots believed a 270 deg overhead pattern was advisable because of the greater ease afforded in visually positioning the airplane. The values of the pertinent flare parameters increased with the reduction of lift-drag ratio. These parameters included time required for final flare; speed change during final flare; and altitude, glide slope, indicated airspeed, and vertical velocity at initiation of final flare. The pilots believed that the tolerable limit was reached with this airplane in the present configuration, and that if, because of a further reduction in lift-drag ratio, more severe approaches than those experienced in this program were attempted, additional aids would be required to determine the flare-initiation point.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-15
    Description: Values of the normal component of induced velocity throughout the entire field of a uniformly loaded r(rotor at high high speed are presented in the form of charts and tables. Many points were found by an electromagnetic analog, details of which are given. Comparisons of computed and analog values for the induced velocity indicate that the latter are sufficiently accurate for engineering purposes.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TR-R-41
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-15
    Description: This paper briefly summarizes available statistical data on airplane taxi operations, examines the profiles and power spectra of four selected runways and taxiways covering a wide range of surface roughness, considers (on the basis of theoretical and experimental results) the loads resulting from taxiing on such runways over a range of speeds and, by synthesis of the aforementioned results, proposes new criteria for runway and taxiway smoothness which are applicable to new construction and may also be used as a guide for determining when repairs are necessary.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-21-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-15
    Description: An investigation was conducted to determine the flameholding capabilities of aerodynamic jets at afterburner operating conditions. Stability data for a number of aerodynamic flameholders were obtained in a 5- by 5-inch test section at inlet-air reference velocities up to 600 feet per second, an inlet-air temperature of 1250 F, and a combustor-inlet pressure of 15 inches of mercury absolute. Combustion efficiency and stability data of the more promising combinations were then obtained in a 10- by 12-inch test section at the same test conditions. Both air and stoichiometric mixtures of fuel and air were used in the jets; mixture flow rates were approximately 1 percent by weight of the total air-flow rate. Injection pressures were limited to values that might be available from compressor-bleed air. At a reference velocity of 600 feet per second, aerodynamic flame-holders alone were unable to maintain a stable flame at injection pressures up to 70 pounds per square inches large reductions in velocity were required to achieve flame stabilization. When the aerodynamic jets were used in combination with a V-gutter flameholder with approximately a 30 percent blocked area, flame stabilization was attained at a velocity of 600 feet per second; however, the combustion efficiencies of the various combinations were no greater than that obtained with the V-gutter alone.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-9-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-15
    Description: Incompressible-flow calculations were performed to determine the effects of combustor geometric and operating variables on pressure loss and airflow distribution in a tubular combustor with a tapered liner. The calculations include the effects of momentum transfer between annulus and liner gas streams, annulus wall friction, heat release, and discharge coefficients of liner air-entry holes. Generalized curves are presented which show the effects of liner-wall inclination, liner open hole area, and temperature rise across the combustor on pressure loss and airflow distribution for a representative parabolic liner hole distribution. A comparison of the experimental data from 12 tapered liners with the theoretical calculations indicates that reasonable design estimates can be made from the generalized curves. The calculated pressure losses of the tapered liners are compared with those previously reported for tubular liners.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-11-26-58E , E-126
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-15
    Description: A comparison of the performance of a single-stage rotor run at three different blade setting angles is presented. The rotor was of a design typical for a last stage of a multistage compressor. At each setting angle, the rotor blade row was operated from 53 to 100 percent of equivalent maximum speed (850 ft/sec tip speed) at constant inlet pressure. Hot-wire anemometry was used to observe rotating-stall and surge patterns in time unsteady flow. Results indicated that an increase in peak pressure ratio and an increase in maximum equivalent weight flow were obtained at each speed investigated when the blade setting angle was decreased. An increase in peak efficiency was achieved with decrease in blade setting angle for part of the range of speeds investigated. However, the peak efficiencies for the three blade setting angles were approximately the same at the maximum speed investigated. The flow ranges for all three configurations were about the same at minimum speed and decreased at almost the same rate when the rotative speed was increased through part of the range of speeds investigated. At maximum speed, the flow range for the smallest setting angle was considerably less than the flow range for the other two configurations. A decrease in efficiency and flow range for the smallest blade setting angle at maximum speed can be attributed primarily to a Mach number effect. In addition, because of the difference in projected axial chord lengths at the casing wall, some effect on performance could be expected from the change in three-dimensional flow occurring at the tip. Rotating-stall characteristics for the two smaller blade setting angles were essentially the same. Only surge could be detected for the largest blade setting angle in the unstable-flow region of operation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-11-27-58E , E-117
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-15
    Description: Flight tests have been conducted with a single-rotor helicopter, one blade of which was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses, to determine the effects of transition, landing approaches, and partial-power vertical descents on the rotor-blade bending and torsional moments. In addition, ground tests were conducted to determine the effects of static droop-stop pounding on the rotor-blade moments. The results indicate that partial-power vertical descents and landing approaches produce rotor-blade moments that are higher than the moments encountered in any other flight condition investigated to date with this equipment. Decelerating through the transition region in level flight was found to result in higher vibratory moments than accelerating through this region. Deliberately induced static droop-stop pounding produced flapwise bending moments at the 14-percent-radius station which were as high as the moments experienced in landing approaches and partial-power vertical descents.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-5-7-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-15
    Description: Generalized influence coefficients are calculated by the method of NACA TN 3640 for a large-scale, built-up, 450 delta-wing specimen. These are used together with appropriate generalized masses to obtain the natural modes and frequencies in symmetric and antisymmetric free-free vibration. The resulting frequencies are compared with those obtained experimentally and are found to be consistently high. Possible sources of the disparities are discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-1-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-15
    Description: Some blunt-body shapes considered suitable for entry into the earth's atmosphere were tested by both static and oscillatory methods in the Langley stability tunnel. In addition, free-fall tests of some similar models were made in the Langley 20-foot free-spinning tunnel. The results of the tests show that increasing the flare of the body shape increased the dynamic stability and that for flat-faced shapes increasing the corner radius increased the stability. The test data from the Langley stability tunnel were used to compute the damping factor for the models tested in the langley 20-foot free-spinning tunnel. For these cases in which the damping factor was low, -1/2 or less, the stability was critical and sensitive to disturbance. When the damping factor was about -2, damping was generally obtained.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-22-59L , L-157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-15
    Description: High-altitude turbojet performance is adversely affected by the effects of low air density. This performance loss is evaluated as a Reynolds number effect, which represents the increased significance of high fluid viscous forces in relation to dynamic fluid forces as the Reynolds number is decreased. An analytical and experimental investigation of the effects of low Reynolds number operation on a single-stage, high-work-output turbine with a downstream stator was carried out at Reynolds numbers of 182,500, 39,600, and 23,000, based on average rotor-design flow conditions. At low Reynolds numbers and turbulent flow conditions, increased viscous losses caused decreased effective flow area, and thus decreased weight flow, torque, and over-all efficiency at a given equivalent speed and pressure ratio. Decreasing the Reynolds number from 182,500 to 23,000 at design equivalent speed resulted in a 5.00-point loss in peak over-all turbine efficiency for both theory and experiment. The choking equivalent weight flow decreased 2.30 percent for these conditions. Limiting loading work output was reached at design equivalent speed for all three Reynolds numbers. The value of limiting loading work output at design speed decreased 4.00 percent as Reynolds number was decreased from 182,500 to 23,000. A theoretical performance-prediction method using basic boundary-layer relations gave good agreement with experimental results over most of the performance range at a given Reynolds number if the experimental and analytical design operating conditions were carefully matched at the highest Reynolds number with regard to design performance parameters. High viscous losses in the inlet stator and rotor prevented the attainment of design equivalent work output at the lowest Reynolds number of 23,000.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-X-9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-16
    Description: A preliminary investigation was conducted to determine whether a warhead stage of an antimissile missile could be placed within an arbitrary 2-nautical-mile-radius maneuver cylinder around an intercontinental-ballistic-missile (ICBM) flight path above an altitude of 140,000 feet, a horizontal range of 40 nautical miles, at a flight-path angle of approximately 20 deg, and within 50 seconds after take-off using only aerodynamic forces to turn the antimissile missile. The preliminary investigation indicated that an antimissile missile using aerodynamic forces for turning was capable of intercepting the ICBM for the stated conditions of this study although the turning must be completed below an altitude of approximately 70,000 feet to insure that the antimissile missile will be at the desired flight-path angle. Trim lift coefficients on the order of 2 to 3 and a maximum normal-acceleration force of from 25g to 35g were necessary to place the warhead stage in intercept position. The preliminary investigation indicated that for the two boosters investigated the booster having a burning time of 10 seconds gave greater range up the ICBM flight path than did the booster having a burning time of 15 seconds for the same trim lift coefficient and required the least trim lift coefficient for the same range.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-14-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-16
    Description: As a means of evaluating the roll utilization of a fighter airplane capable of supersonic speeds, an instrumented North American F-100A fighter airplane was flown by U.S. Air Force pilots at Nellis Air Force Base, NV, during 20 hours of service operational flying. Mach numbers up to 1.22 and altitudes up to 50,000 feet were realized in this investigation. Results of the study showed that except for high g barrel rolls performed as evasive maneuvers and rolls performed in acrobatic flying, rolling was utilized primarily as a means of changing heading. Acrobatic and air combat maneuvering produced the largest bank angles (1,200 deg), roll velocities (3.3 radians/sec), rolling accelerations (8 radians/sq sec) and sideslip angles (10.8 deg). Full aileron deflections were utilized on numerous occasions. Although high rolling velocities and accelerations also were experienced during several air-to-air gunnery missions, generally, air-to-air gunnery and air-to-ground gunnery and bombing required only two-thirds of maximum aileron deflection. The air-to-air gunnery and air combat maneuvers initiated from supersonic speeds utilized up to two-thirds aileron deflection and bank angles of less than 18 deg and resulted in rolling velocities and accelerations of 2 radians per second and 4.6 radians/sq sec, respectively. Rolling maneuvers were often initiated from high levels of normal acceleration, but from levels of negative normal acceleration only once.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-12-1-58H
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-16
    Description: A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-4-26-59A , A-135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-16
    Description: Five engine tests were conducted to definitely establish the failure mechanism of leading-edge cracking and to determine which conditions of engine operation cause the failures. Five groups of S-616 and M-252 buckets from master lots were run consecutively in the same J47-25 engine. The tests included a steady-state run at full-power conditions, rapid cycling between idle and rated speed, and three different start-stop tests. The first start-stop test consisted of cycles of start and stop with 5 minutes of idle speed before each stop; the second included cycles of start and stop but with 15 minutes of rated speed before each stop; the third consisted of cycles of gradual starts and normal stops with 5 minutes at idle speed before each stop. The test results demonstrated that the primary cause of leading-edge cracking was thermal fatigue produced by repeated engine starts. The leading edge of the bucket experiences plastic flow in compression during starts and consequently is subjected to a tensile stress when the remainder of the bucket becomes heated and expands. Crack initiation was accelerated when rated-speed operation was added to each normal start-stop cycle. This acceleration of crack formation was attributed to localized creep damage and perhaps to embrittlement resulting from overaging. It was demonstrated that leading-edge cracking can be prevented simply by starting the engine gradually.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-7-59E , E-281
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-16
    Description: In order to determine the effect of a low design diffusion factor on the performance of a transonic axial-flow compressor rotor, a high-specific-flow rotor with a 0.35 hub-tip radius ratio was designed, fabricated and tested. This rotor used a design tip diffusion factor of 0.20 with a design corrected specific weight flow of 40 pounds per second per square foot of frontal area, a total-pressure ratio of 1.27, and an adiabatic efficiency of 0.96. The design, rotor performance, and blade element performance are presented with a discussion on rotor shock losses and a comparison with a similarly designed rotor with a tip diffusion factor of 0.35. At the design corrected tip speed of 1100 feet per second, a peak rotor adiabatic efficiency of 0.88 was attained at a corrected specific weight flow of 39 pounds per second per square foot of frontal area with a mass-averaged total-pressure ratio of 1.27. The blade element tip diffusion factor was 0.281, which is 0.08 higher than the design value of 0.20. Peak efficiencies of 0.95, 0.91, 0.89, and 0.85 were obtained at 70, 80, 90, and 110 percent of design speed, respectively. Comparison of the performance of the rotor reported herein and a similarly designed rotor with increased blade loading indicates that higher blade loading results in a more desirable rotor because of a higher pressure ratio and equivalent efficiency. Computed values of shock losses at the rotor tip section indicate that the losses at peak efficiency are primarily a function of shock losses since the profile losses are only a small percentage of the total loss.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-X-86
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-16
    Description: The first landing of the X-15 airplane was made at 8:43 a.m., June 8, 1959, on the hard surface of Rogers Dry Lake. One purpose of the first-glide flight was to evaluate the effectiveness of the landing-gear system. Some results are presented of the landing-approach characteristics, the impact period, and the runout phase of the landing maneuver. The results indicate that the touchdown was accomplished at a vertical velocity of 2.0 feet per second for the main gear and 13.5 feet per second for the nose gear. These vertical velocities were within the values of sinking speeds established by structural design limitations. However, permanent structural deformation occurred in the main-landing-gear system as a result of the landing, and a reevaluation of the gear is being made by the manufacturer. The landing occurred at a true ground speed of 158 knots for main-gear touchdown at an angle of attack of 8.50. The incremental acceleration at the main gear was 2.7g and 7.39 at the nose gear as a result of the landing. The incremental acceleration at the center of gravity of the airplane was 0.6g for the main-gear impact and 2.4g for the nose-gear impact. The incremental acceleration at the main gear as a result of the nose-gear impact was 4.8g. The extreme rearward location of the main-gear skids appears to offer satisfactory directional stability characteristics during the run- out phase of the landing. No evidence of nosewheel shimmy was indicated during the impact and runout phase of the landing despite the absence of a shimmy damper on the nose gear. The maximum amount of skid wear as a result of the landing was on the order of 0.005 inch. No appreciable amount of tire wear was indicated for the dual, corotating nosewheels.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-207
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-10
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-05-30
    Description: Flow spoiler and aerodynamic balance effects on oscillating hinge moments for swept fin-rudder combination in transonic wind tunnel
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58C28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-05-24
    Description: Movable tail surface for aircraft control without flutter using X-15 scale model at hypersonic speed
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58B27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-05-23
    Description: An investigation of the aerodynamic characteristics of several hypersonic missile configurations with various canard controls for an angle-of-attack range from 0 deg to about 28 deg at sideslip angles of about 0 deg and 4 deg at a Mach number of 2.01 has been made in the Langley 4- by 4-foot supersonic pressure tunnel. The configurations tested we re a body alone which had a ratio of length to diameter of 10, the b ody with a 10 deg flare, the body with cruciform fins of 5 deg or 15 deg apex angle, and a flare-stabilized rocket model with a modified Von Karman nose. Various canard surfaces for pitch control only were te sted on the body with the 10 deg flare and on the body with both sets of fins. The results indicated that the addition of a flared afterbody or cruciform fins produced configurations which were longitudinally and directionally stable. The body with 5 deg fins should be capable of producing higher normal accelerations than the flared body. A l l of the canard surfaces were effective longitudinal controls which produced net positive increments of normal force and pitching moments which progressively decreased with increasing angle of attack.
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58A21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-05-23
    Description: Internal aerodynamics and performance of clustered jet-exit installations at transonic speeds
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58E01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-05-29
    Description: Supersonic pressure distributions for tip and trailing edge controls on 60 deg delta wing
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58C07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-05-29
    Description: Horizontal tail flutter in fighter aircraft at transonic speeds
    Keywords: AERODYNAMICS
    Type: NACA-RM-L57K13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-05-29
    Description: A brief investigation of the longitudinal stability and control effectiveness at supersonic speeds of a model of a low-wing missile with interdigitated tail surfaces was made in the Langley Unitary Plan wind tunnel. The data were obtained at Mach numbers M of 2.29, 2.97, and 3.51 for Reynolds number (based on the mean geometric chord of the wing) of 1.15 x 10(exp 6), 1.14 x 10(exp 6), and 1.11 x 10(exp 6), respectively. Data were obtained for three settings of the longitudinal control surfaces: with deflection of all surfaces, with deflection of the lower surfaces only, and with all surfaces undeflected. Directional stability data were obtained at M=3.51 for angles of attack of approximately 0 deg and 10 deg. These data, with summary data and typical schlieren photographs, are presented with only a brief analysis. The data indicate that the controls are effective throughout the Mach number range and lift-coefficient range (CL = -0.15 to 0.7, approximately) of the tests. There is a severe break in the pitching-moment curve at M=2.29 which might result in a pitch-up condition in flight, and also a large forward movement of the aerodynamic center with increasing Mach number that produces neutral longitudinal stability at M=3.51 for the moment center used in this investigation. The model was directionally unstable at M=3.51; however, the level of directional stability was about the same for 0 deg and 10 deg angles of attack.
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58C19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-05-29
    Description: Effects of boattail area contouring and simulated turbojet exhaust on loading and fuselage-tail component drag of twin-engine fighter-type airplane model
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58C04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-05-23
    Description: The static aeroelastic divergence characteristics of a delta-planform model of the canard control surface of a proposed air-to-ground missile have been studied both analytically and experimentally in the Mach number range from 0.6 to 3.0. The experiments indicated that divergence occurred at a nearly constant value of dynamic pressure at Mach numbers up to 1.2. At higher Mach numbers somewhat higher values of dynamic pressure were required to produce divergence. The analysis and the experiment indicate that the camber stiffness of the control surface and the stiffness of the control actuator are both important in divergence of surfaces of this type.
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-05-23
    Description: Transonic performance of three turbojet nozzle- afterbody configurations
    Keywords: AERODYNAMICS
    Type: NASA-MEMO-10-24-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-05-23
    Description: Free flight drag measurements on delta wing with wing-fuselage-store
    Keywords: AERODYNAMICS
    Type: NASA-MEMO-10-9-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-05-23
    Description: Stage-stacking technique for predicting over-all performance in multistage axial flow turbojet compressor using interstage-air bleed
    Keywords: AERODYNAMICS
    Type: NASA-MEMO-10-4-58E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-05-23
    Description: Low cowl drag, external compression inlet with subsonic dump diffuser for high Mach number application
    Keywords: AERODYNAMICS
    Type: NACA-RM-E58A09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-05-23
    Description: Experimental investigation of high subsonic turbine with forty blade rotor with zero suction-surface diffusion
    Keywords: AERODYNAMICS
    Type: NACA-RM-E57J22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-05-23
    Description: Static longitudinal stability and control characteristics of wingless missile configuration at supersonic and hypersonic speeds
    Keywords: AERODYNAMICS
    Type: NACA-RM-A58C20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: Comparison of transition locations for an open-nose cone, a conventional sharp cone, and a hollow cylinder showed that transition locations on the open-nose cone and the hollow cylinder were identical but differed greatly from those on the sharp cone. This is believed to be caused by the essentially two-dimensional character of leading edge of the open-nose cone. Bluntness effects on the open-nose cone observed on the hollow cylinder. Transition 2.2 times the sharp-cone transition distance by blunting the tip.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-4214
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: Average spanwise blade temperatures and cooling-air pressure losses through a small (1.4-in, span, 0.7-in, chord) air-cooled turbine blade were calculated and are compared with experimental nonrotating cascade data. Two methods of calculating the blade spanwise metal temperature distributions are presented. The method which considered the effect of the length-to-diameter ratio of the coolant passage on the blade-to-coolant heat-transfer coefficient and assumed constant coolant properties based on the coolant bulk temperature gave the best agreement with experimental data. The agreement obtained was within 3 percent at the midspan and tip regions of the blade. At the root region of the blade, the agreement was within 3 percent for coolant flows within the turbulent flow regime and within 10 percent for coolant flows in the laminar regime. The calculated and measured cooling-air pressure losses through the blade agreed within 5 percent. Calculated spanwise blade temperatures for assumed turboprop engine operating conditions of 2000 F turbine-inlet gas temperature and flight conditions of 300 knots at a 30,000-foot altitude agreed well with those obtained by the extrapolation of correlated experimental data of a static cascade investigation of these blades.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E58E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-05-30
    Description: Transonic flutter characteristics of sweptback fighter airplane wing models
    Keywords: AERODYNAMICS
    Type: NACA-RM-L58A15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-05-30
    Description: Transonic flutter derivatives for unswept wing control surface configurations determined by pressure cell measurements
    Keywords: AERODYNAMICS
    Type: NACA-RM-A58B04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-05-24
    Description: Forces and moments of store-pylon combination mounting on swept wing-fuselage configuration in supersonic pressure tunnel
    Keywords: AERODYNAMICS
    Type: NACA-RM-L57K18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-05-23
    Description: Performance of internal contraction, axisymmetric inlet with isentropic compression surfaces on cowl and centerbody at Mach 2.0 to 2.7
    Keywords: AERODYNAMICS
    Type: NACA-RM-E58E16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-05-23
    Description: Investigation of the control parameters of an external-internal compression inlet indicates that the cowl-lip shock provides a signal to position the spike and to start the inlet over a Mach number range from 2.1 to 3.0. Use of a single fixed probe position to control the spike over the range of conditions resulted in a 3.7-count loss in total-pressure recovery at Mach 3.0 and 0 deg angle of attack. Three separate shock-sensing-probe positions were required to set the spike for peak recovery from Mach 2.1 to 3.0 and angles of attack from 0 deg to 6 deg. When the inlet was unstarted, an erroneous signal was obtained from the normal-shock control through most of the starting cycle that prevented the inlet from starting. Therefore, it was necessary to over-ride the normal-shock control signal and not allow the control to position the terminal shock until the spike was positioned.
    Keywords: AERODYNAMICS
    Type: NACA-RM-E58G08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: An all-internal conical compression inlet with annular bleed at the throat was investigated at Mach 5.0 and zero angle of attack. The minimum contraction ratio of the supersonic diffuser, coincident with a mass-flow ratio of 1.0, was determined to be 0.084 as compared with the isentropic contraction ratio of 0.04 at Mach 5.0. The over-all inlet performance was very sensitive to the amount of annular bleed at the throat because of the extensive boundary layer. For example, the critical recovery varied from 41 percent with 6-percent bleed to 59 percent with 25-percent bleed. Decreasing the spacing between the supersonic and subsonic diffusers increased the critical mass-flow ratio but reduced the range of subcritical mass-flow regulation. A constant-area section was required ahead of the subsonic diffuser in order to obtain reasonable performance. An inlet-engine net-thrust analysis indicated that the optimum performance occurred with from 20- to 25-percent bleed, depending on how the bypassed air was handled.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E58E14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Keywords: AERODYNAMICS
    Type: NACA-TN-4298
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: Ward's slender-body-theory formula for zero-lift drag contains three integrals plus a base-drag term. Two of these integral terms depend only upon the cross-sectional area distribution of the body. The third integral term depends only upon the body shape and axial slopes at the base of the body. This term is neglected in the transonic area rule because in many cases it is zero; however, there are also many cases in which it is not zero. This paper examines the term for the possibility of drag reduction for a particular case. The model considered consists of a body of revolution in combination with any wing that has an unswept trailing edge and a constant trailing-edge angle along its span. It is found that (neglecting any change in base drag) a drag reduction is obtainable which, for the case considered, is an additional 12 percent of that obtained with the area-rule modification. The probable effect of viscosity on this theoretical result is discussed.
    Keywords: AERODYNAMICS
    Type: NACA-TN-4277
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-27
    Description: Pressure tunnel investigation of supersonic store interference in vicinity of 22 deg swept wing fuselage configuration at mach numbers 1.61 and 2.01
    Keywords: AERODYNAMICS
    Type: NACA-RM-L57L18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-27
    Description: Two short turbojet combustors designed for use with vaporized hydrocarbon fuels were tested in a one-quarter annular duct. The experimental combustors consisted of many small "swirl-can" combustor elements manifolded together. This design approach allowed the secondary mixing zone to be considerably reduced over that of conventional combustors. The over-all combustion lengths, for the two configurations were 13.5 and 11.0 inches, approximately one-half the length of the shortest conventional combustors. These short combustors did not provide combustion efficiencies as high as those for conventional combustors at low pressures. However, over the range of combustor-inlet total-pressures expected in aircraft capable of flight at Mach numbers of 2.5 and above, these short combustors gave very high efficiencies. A combustion efficiency of 97 percent was obtained at a combustor-inlet total-pressure of 25.0 inches of mercury absolute, reference velocity of 120 feet per second, and inlet-air total temperature of 1160 deg R. By proportioning the fuel flow between the manifold rows of can combustor elements, control of the combustor-outlet radial total-temperature profile was demonstrated. Combustor totalpressure loss varied from 0.75 percent of the inlet total pressure at isothermal conditions and a reference velocity of 75 feet per second to 5.5 percent at a total-temperature ratio of 1.8 and a reference velocity of 180 feet per second.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57J03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...