ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • risk assessment  (3)
  • Springer  (3)
  • American Chemical Society (ACS)
  • Oxford University Press
  • 1955-1959  (3)
  • 1
    ISSN: 1573-5060
    Keywords: gene flow ; transgene ; pollen movement ; genetically modified oilseed rape ; wind pollination ; risk assessment ; feral populations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Intensive research over the past 10 years has produced many genetically-mofified lines of oilseed rape with market potential. Assessment of these lines in statutory trials prior to their release as cultivars is necessary, owing to concern over the likelihood of transgene escape from such crops. Here, we examine the movement of airborne pollen grains from oilseed rape fields and assess their capacity for long-range geneflow. Pollen dispersal from isolated rape fields was monitored over two seasons and related to the distribution of fields and ‘feral’ (domesticated plants growing outside cultivations) populations of the crop in Tayside and North East Fife regions of Scotland. Airborne pollen density declined with distance and at 360 m was 10% of that at the field margin. Pollen counts of 0–22 pollen grains m3 were observed 1.5 km from source fields and apparently were sufficient in number to allow seed set on emasculated bait plants. Oilseed rape pollen has greater capacity for long-range dispersal than had been suggested by small-scale field trials. Mean separation of oilseed rape fields in the survey area was 410 m and the mean distance from ‘feral’ populations to commercial fields was 700 m. Sixty percent of ‘feral’ populations with more than 10 plants occurred downwind and within 2 km of an oilseed rape field. Provided that the flowering biology of genetically-modified oilseed rape does not differ from the conventional crop, these data suggest that transgene movement to non genetically-modified fields or ‘feral’ populations is likely following commercial release.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5060
    Keywords: consumer ; food ; genetic modification ; transgenic plants ; risk assessment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The use of transgenic plants in breeding makes it possible to utilise a wide variety of novel genes from unrelated plants, microbes and animals. Because of the diversity of genes that have now become available for modifying crop plants, it is agreed internationally that there should be a risk assessment before transgenic plants are grown outside the laboratory or glasshouse. Various aspects are considered in a risk assessment including any non-target effects of the transgene, changes in plant persistence and invasiveness, and the possibility of movement of the transgenes to wild populations by cross pollination. It is generally argued that the need for risk assessment and regulation should be determined by an analysis of certain products of transformation, rather than a risk assessment being required for all plants modified by the process of transformation. A possible consequence of considering the product only, however, could be that some of the products of conventional breeding may need to be assessed by the risk assessment procedures developed for transgenic plants. There are discussions with interest groups on the use of transgenic plants in the environment and in food products. It is likely that some form of labelling will be required for certain foods containing ethically-sensitive genes. There is little doubt that transgenic plants will make a significant contribution to agriculture in the coming decades. Developments in the patenting of genes, release regulations, food labelling, consumer reaction etc., will influence the rate of progress and should be considered in the strategic planning of plant breeding programmes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5060
    Keywords: Agrobacterium ; Brassica napus ; CaMV 35S promoter ; mas promoter ; gene expression ; risk assessment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Gene fusions between the β-glucuronidase (GUS) reporter gene and the promoters of the cauliflower mosaic virus 35S RNA transcript (CaMV 35S) and the mannopine synthase (mas) genes were introduced into rapeseed varieties via Agrobacterium-mediated transformation. Fluorometric assay of β-glucuronidase activity indicated different expression patterns for the two promoters. In seedlings, the CaMV 35S promoter had maximum activity in the primary roots, while the mas promoter was most active in the cotyledons. Etiolated seedlings cultured in the dark showed reduced activity of the mas promoter. Before vernalization at the rosette stage, both promoters were more active in older plant parts than in younger ones. At this stage the highest activity was recorded in cotyledons. After the plants had bolted reduced promoter function was detected in the upper parts of the transformed plants. Both promoters were found to be functional in the majority of the studied organs of transgenic rapeseed plants, but the promoter activity varied considerably between the organs at different developmental stages. The ability of pollen to transfer the introduced genes to other varieties and related species (e.g. Brassica napus and Diplotaxus muralis) by cross-pollination was studied in greenhouse experiments, and field trials were carried out to estimate the distance for biologically-relevant gene dispersal. In artificial crossing, the introduced marker gene was transferable into other varieties of Brassica napus. In field trials, at a distance of 1 metre from the source of transgenic plants, the frequency of an outcrossing event was relatively high (10-3). Resistant individuals were found at 16 and 32 metres from the transgenic pollen donors, but the frequency of an outcrossing event dropped to 10-5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...