ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics  (58)
  • 1955-1959  (34)
  • 1940-1944  (24)
  • 1
    Publication Date: 2014-12-04
    Description: An analysis is made for the variable fluid property problem for laminar free convection on an isothermal vertical flat plate. For a number of specific cases, solutions of the boundary layer equations appropriate to the variable property situation were carried out for gases and liquid mercury. Utilizing these findings, a simple and accurate shorthand procedure is presented for calculating free convection heat transfer under variable property conditions. This calculation method is well established in the heat transfer field. It involves the use of results which have been derived for constant property fluids, and of a set of rules (called reference temperatures) for extending these constant property results to variable property situations. For gases, the constant property heat transfer results are generalized to the variable property situation by replacing beta (expansion coefficient) by one over T sub infinity and evaluating the other properties at T sub r equals T sub w minus zero point thirty-eight (T sub w minus T sub infinity). For liquid mercury, the generalization may be accomplished by evaluating all the properties (including beta) at this same T sub r. It is worthwhile noting that for these fluids, the film temperature (with beta equals one over T sub infinity for gases) appears to serve as an adequate reference temperature for most applications. Results are also presented for boundary layer thickness and velocity parameters.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: The year 1954 marked the 50th anniversary of the Prandtl boundary-layer theory from which we may date the beginning of man's understanding of the dynamics of real fluids. A backward look at this aspect of the history of the last 50 years may be instructive. This paper (1) attempts to compress the events of those 50 years into a few thousand words, to tell in this brief space the interesting story of the development of a new concept, its slow acceptance and growth, its spread from group to group within its country of origin, and its diffusion to other countries of the world. The original brief paper of Prandtl (2) was presented at the Third International Mathematical Congress at Heidelberg in 1904 and published in the following year. It was an attempt to explain the d'Alembert paradox, namely, that the neglect of the small friction of air in the theory resulted in the prediction of zero resistance to motion. Prandtl set himself the task of computing the motion of a fluid of small friction, so small that its effect could be neglected everywhere except where large velocity differences were present or a cumulative effect of friction occurred This led to the concept of boundary layer, or transition layer, near the wall of a body immersed in a fluid stream in which the velocity rises from zero to the free-stream value. It is interesting that Prandtl used the term Grenzsehicht (boundary layer) only once and the term Ubergangsschicht (transition layer) seven times in the brief article. Later writers also used Reibungsschicht (friction layer), but most writers today use Grenzschicht (boundary layer).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Science; Volume 121; No. 3142; 375-380
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-02
    Description: The increasing complexity of heat transfer and process situations which involve fluid flow has demanded the frequent use of flow passages of unusual geometrical configuration. The present investigation is concerned with one such novel configuration, namely the longitudinal flow between solid cylindrical rods which are arranged in regular array. A schematic diagram of the situation under study. The rods may be located either in triangular or square array. The flow will be taken to be laminar and fully developed. The aim of this analysis is to determine the pressure drop, shear stress, and velocity-distribution characteristics of the system. The starting point of this study is the basic law of momentum conservation. The resulting differential equation has been solved in an approximate, but almost exact, manner by the use of truncated trigonometric series. Results are obtained over a wide range of porosity values for both the triangular and square arrays. Heat transfer has not been considered. The configuration under investigation has potential application in compact heat exchangers for nuclear reactors and other situations. Further the results should also be of interest in the theory of flow through unconsolidated porous beds (ia, 9a). The only related analytical work known to the authors is that of Emersleben (S), who considered only the square array. His rather involved solution, based on complex zeta functions, appears to be valid only at high porosities. Experiments covering a porosity range of 0.093 to 0.984 have been made by Sullivan (4) using parallel-oriented fibers, most of the tests being for fibers in random array. These previous investigations will be compared with the present theory in a later section.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIChE Journal; Volume 5; No. 3; 325-330
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-4265
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Experimental results of tests made at the Langley Memorial Aeronautical Laboratory are presented to show how heat-transfer coefficients can he increased by a method utilizing the high rate of heat transfer known to exist on any heat-transfer surface in the region adjacent to the edge on which the cooling or heating fluid impinges. The results show that, for the same pressure drop, the average surface heat-transfer.coefficient can be increased 50 to 100 percent when a cooling surface having a length of four inches in the direction of fluid flow is cut to form twenty fins with a length of 0.2 inch in the direction of fluid flow and the fins are sharpened and staggered in the air stream. The percentage of increase in the surface heat-transfer coefficient obtained as a result of shortening the length of the cooling surface varies with the pressure drop of the cooling fluid in passing the surface, the increase being largest when small pressure drop is used and smallest when high pressure drop is used.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-WR-L-239 , NACA-ARR-3K01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Some results of recent experimental investigations at supersonic and transonic speeds are presented to show the present status in the estimation of load distributions on controls and adjacent wing surfaces resulting from the deflection of flap controls and spoiler controls. The results indicate that the development of methods for predicting loads associated with controls has not kept pace with the acquisition of experimental data. At low supersonic speeds sweeping the hinge line induces strong three-dimensional-flow characteristics which cannot be treated by the simplified methods previously developed for controls without sweep. At transonic speeds the estimation of loads associated with controls must usually be dependent upon experimental information inasmuch as the latest attempts to predict chordwise and spanwise loadings have met with only limited success.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L57D26a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Heating requirements for satisfactory cyclic de-icing over a wide range of icing and operating conditions have been determined for a gas-heated, 36deg swept airfoil of 6.9-foot chord with a partial-span leading-edge slat. Comparisons of heating requirements and effectiveness were made between the slatted and unslatted portions of the airfoil. Studies were also made comparing cyclic de-icing with continuous anti-icing, and cycll.cde-icing systems with and without leading-edge ice-free parting strips. De-icing heat requirements were approximately the same with either heated or unheated parting strips because of the aerodynamic effects of the 36deg sweep angle and the spanwise saw-tooth profile of leading-edge glaze-ice deposits. Cyclic de-icing heat-source requirements were found to be one-fourth or less of the heat requirements for complete anti-icing. The primary factors that affected the performance of the cyclic de-icing heating system were ambient air temperature, heat distribution, and thermal lag.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E56B23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: An analysis is made to simplify pressure-drop calculations for nonadiabatic and adiabatic friction flow of air in smooth cylindrical tubes when the density changes due to heat transfer and pressure drop are appreciable. Solutions of the equation of motion are obtained by the use of Reynolds' analogy between heat transfer and skin friction. Charts of the solutions are presented for making pressure-drop calculations. A technique of using the charts to determine the position of a normal shock in a tube is described.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-WR-L-179 , NACA-ARR-L4C16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-05-25
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E58D11 , AD-162732
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-05-30
    Description: Boundary-layer-transition and heat-transfer measurements were obtained from flight tests of blunt and sharp cones having apex angles of 50 deg. The test Mach number range was from 1.7 to 4.7, corresponding to free-stream Reynolds numbers, based on cone base diameter, of 18. 3 x 10(exp 6) and 32.1 x 10(exp 6), respectively. Transition on both models occurred at a local Reynolds number of 1 x 10(exp 6) to 2 X 10(exp 6) based on distance from the stagnation point. Transition Reynolds numbers based on momentum thickness were between 320 and 380 for the blunt cone. The model surface roughness was 25 rms microinches or greater. Turbulent heat transfer to the conical surface of the blunt cone at a Mach number of 4 was 30 percent less than that to the surface of the sharp cone. Available theories predicted heat-transfer coefficients reasonably well for the fully laminar or turbulent flow conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L57D04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...