ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (261)
  • Aircraft Design, Testing and Performance  (153)
  • Aircraft Stability and Control  (108)
  • Inorganic Chemistry
  • Life and Medical Sciences
  • 1955-1959  (158)
  • 1950-1954  (103)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-05-11
    Description: A flight investigation was made of the lift and drag of a sweptwing fighter airplane in the basic configuration and in a slats-locked-closed configuration over a Mach number range from about 0.63 to about 1.44. At a nominal lift coefficient of 0.1 negligible drag-coefficient difference existed between the two configurations over a comparable Mach number and altitude range. For the basic configuration at zero lift the supersonic drag level was about three times as great as the subsonic drag level, which was about 0.01, whereas the drag-due-to-lift factor increased about 137 percent over the test Mach number range. At comparable Mach numbers the high-altitude data produced a larger lift-curve slope and showed a more pronounced variation of lift-curve slope in the transonic region than did the low-altitude data. For the high-altitude data the lift-curve slope at a Mach number of 1.44 was approximately 62 percent of the value at a Mach number of 0.9.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-10-1-58H , AFRC-E-DAA-TN47945
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TN-D-89
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Turbojet engine reliability has long been an intense interest to the military users of this type of aircraft propulsion. With the recent inauguration of commercial jet transport this subject has assumed a new dimension of importance. In January l96 the Lewis Research Center of the NASA (then the MACA) published the results of an extensive study on the factors that affect the opera- center dot tional reliability of turbojet engines (ref. 1). At that time the report was classified Confidential. In July l98 this report was declassified. It is thus appropriate at this time to present some of the highlights of the studies described in the NASA report. In no way is it intended to outline the complete contents of the report; rather it is hoped to direct attention to it among those who are center dot directly concerned with this problem. Since the publication of our study over three years ago, the NASA has completed a number of additional investigations that bear significantly on this center dot subject. A second object of this paper, therefore, is to summarize the results of these recent studies and to interpret their significance in relation to turbojet operational reliability.
    Keywords: Aircraft Design, Testing and Performance
    Type: SAE National Aeronautic Meeting; Mar 31, 1959 - Apr 03, 1959; New York, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: The present paper summarizes and correlates broadly some of the research results applicable to fin-stabilized ammunition. The discussion and correlation are intended to be comprehensive, rather than detailed, in order to show general trends over the Mach number range up to 7.0. Some discussion of wings, bodies, and wing-body interference is presented, and a list of 179 papers containing further information is included. The present paper is intended to serve more as a bibliography and source of reference material than as a direct source of design information.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L55G06A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: Air-flow characteristics behind wings and wing-body combinations are described and are related to the downwash at specific tall locations for unseparated and separated flow conditions. The effects of various parameters and control devices on the air-flow characteristics and tail contribution are analyzed and demonstrated. An attempt has been made to summarize certain data by empirical correlation or theoretical means in a form useful for design. The experimental data herein were obtained mostly at Reynolds numbers greater than 4 x 10(exp 6) and at Mach numbers less than 0.25.
    Keywords: Aircraft Stability and Control
    Type: NASA-TR-R-49
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: An investigation of the low-subsonic stability and control characteristics of a model of a flat-bottom hypersonic boost-glide configuration having 78 deg sweep of the leading edge has been made in the Langley full-scale tunnel. The model was flown over an angle-of-attack range from 10 to 35 deg. Static and dynamic force tests were made in the Langley free-flight tunnel. The investigation showed that the longitudinal stability and control characteristics were generally satisfactory with neutral or positive static longitudinal stability. The addition of artificial pitch damping resulted in satisfactory longitudinal characteristics being obtained with large amounts of static instability. The most rearward center-of-gravity position for which sustained flights could be made either with or without pitch damper corresponded to the calculated maneuver point. The lateral stability and control characteristics were satisfactory up to about 15 deg angle of attack. The damping of the Dutch roll oscillation decreased with increasing angle of attack; the oscillation was about neutrally stable at 20 deg angle of attack and unstable at angles of attack of about 25 deg and above. Artificial damping in roll greatly improved the lateral characteristics and resulted in flights being made up to 35 deg angle of attack.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-201 , L-452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Acceleration, airspeed, and altitude data obtained with an NACA VGH recorder from a four-engine commercial transport airplane operating over a northwestern United States-Alaska route were evaluated to determine the magnitude and frequency of occurrence of gust and maneuver accelerations., operating airspeeds, and gust velocities. The results obtained were then compared with the results previously reported in NACA Technical Note 3475 for two similar airplanes operating over transcontinental routes in the United States. No large variations in the gust experience for the three operations were noted. The results indicate that the gust-load experience of the present operation closely approximated that of the central transcontinental route in the United States with which it is compared and showed differences of about 4 to 1 when compared with that of the southern transcontinental route in the United States. In general, accelerations due to gusts occurred much more frequently than those due to operational maneuvers. At a measured normal-acceleration increment of 0.5g, accelerations due to gusts occurred roughly 35 times more frequently than those due to operational maneuvers.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-1-17-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: Carrier landing-approach studies of a tailless delta-wing fighter airplane disclosed that approach speeds were limited by ability to control altitude and lateral-directional characteristics. More detailed flight studies of the handling-qualities characteristics of the airplane in the carrier-approach configuration documented a number of factors that contributed to the adverse comments on the lateral-directional characteristics. These were: (1) the tendency of the airplane to roll around the highly inclined longitudinal axis, so that significant sideslip angles developed in the roll as a result only of kinematic effects; (2) reduction of the rolling response to the ailerons because of the large dihedral effect in conjunction with the kinematically developed sideslip angles; and (3) the onset of rudder lock at moderate angles of sideslip at the lowest speeds with wing tanks installed. The first two of the factors listed are inseparably identified with this type of configuration which is being considered for many of the newer designs and may, therefore, represent a problem which will be encountered frequently in the future. The results are of added significance in the demonstration of a typical situation in which extraneous factors occupy so much of the pilot's attention that his capability of coping with the problems of precise flight-path control is reduced, and he accordingly demands a greater speed margin above the stall to allow for airspeed fluctuations.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-15-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: An analysis is made of wing deflection and streamwise twist measurements in rough-air flight of a large flexible swept-wing bomber. Random-process techniques are employed in analyzing the data in order to describe the magnitude and characteristics of the wing deflection and twist responses to rough air. Power spectra and frequency-response functions for the wing deflection and twist responses at several spanwise stations are presented. The frequency-response functions describe direct and absolute response characteristics to turbulence and provide a convenient basis for assessing analytic calculation techniques. The wing deformations in rough air are compared with the expected deformations for quasi-static loadings of the same magnitude, and the amplifications are determined. The results obtained indicate that generally the deflections are amplified by a small amount, while the streamwise twists are amplified by factors of the order of 2.0. The magnitudes of both the deflection velocities and the twist angles are shown to have significant effects on the local angles of attack at the various stations and provide the main source of aerodynamic loading, particularly at frequencies in the vicinity of the first wing-vibration mode.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-12-3-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: An investigation has been made to determine the effect of wing fences, fuselage contouring, varying wing sweepback angle from 40 deg. to 45 deg., mounting the horizontal tail on an outboard boom) and wing thickness distribution upon the buffeting response of typical airplane configurations employing sweptback wings of high aspect ratio. The tests were conducted through an angle-of-attack range at Mach numbers varying from 0.60 to 0.92 at a Reynolds number of 2 million. For the combinations with 40 deg. of sweepback, the addition of multiple wing fences usually decreased the buffeting at moderate and high lift coefficients and reduced the erratic variation of buffet intensities with increasing lift coefficient and Mach number. Fuselage contouring also reduced buffeting but was not as effective as the wing fences. At most Mach numbers, buffeting occurred at higher lift coefficients for the combination with the NACA 64A thickness distributions than for the combination with the NACA four-digit thickness distributions. At high subsonic speeds, heavy buffeting was usually indicated at lift coefficients which were lower than the lift coefficients for static-longitudinal instability. The addition of wing fences improved the pitching-moment characteristics but had little effect on the onset of buffeting. For most test conditions and model configurations, the root-mean- square and the maximum values measured for relative buffeting indicated similar effects and trends; however, the maximum buffeting loads were usually two to three times the root-mean-square intensities.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-23-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-17
    Description: Analysis of the vortex model proposed by Kriebel, Seidel, and Schwind shows this representation of rotating stall satisfies, at least approximately, the requirements at the cascade. Cascade-parameter-variation effects on rotating stall were studied in a circular cascade and single-stage compressor. Modification of the single-stage compressor stopped the rotating-stall pattern and permitted observation of the pressure and velocity distribution around the annulus. Closer observation might be possible with proper flow-visualization techniques, such as a water pump.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-3-16-59W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-17
    Description: A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-11-3-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-17
    Description: In an attempt to find an aerodynamic means of counteracting the transonic trim change of a fighter airplane, lower surface spoilers were tested on a 0.055-scale wind-tunnel model. The Mach number range of the tests was 0.8 to 1.2 at Reynolds numbers of approximately 4 million. Although the spoilers produced a moderate decrease in the trim change at low altitudes, they also produced a large increase in drag. Pressure-distribution tests with external fuel tanks showed large pressure changes on the lower surface of the wing due to the tanks.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-12-27-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-17
    Description: The Levy method which deals with an idealized structure was used to obtain the natural modes and frequencies of a large-scale built-up 45 deg. delta wing. The results from this approach, both with and without the effects of transverse shear, were compared with the results obtained experimentally and also with those calculated by the Stein-Sanders method. From these comparisons it was concluded that the method as proposed by Levy gives excellent results for thin-skin delta wings, provided that corrections are made for the effect of transverse shear.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-2-59L , L-153
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-17
    Description: A cambered and twisted triangular wing of aspect ratio 2 in combination with a cambered body was investigated experimentally to determine the effectiveness of the camber in reducing the drag due to lift at trim at supersonic speeds. Four arrangements were tested comprising all combinations of a symmetrical and a cambered wing with a symmetrical and a cambered body. The camber shape investigated was derived by linearized lifting surface theory for triangular wings with sonic leading edges and satisfied the requirement that the wing be trimmed at the design Mach number and lift coefficient. The experimental results for the cambered wing and cambered body showed that the drag coefficient at trim was always greater, at the same lift coefficient, than that for the untrimmed symmetrical wing and body. The trim lift coefficient was positive and decreased with increasing Mach number. At the design Mach number of 2.24, the trim lift coefficient was somewhat lower and the drag coefficient was higher than values predicted by linearized lifting surface theory for the wing alone. A comparison of the trim lift-drag ratio of the cambered wing and cambered body with values obtained by trimming the symmetrical wing and symmetrical body either with a canard or a trailing-edge flap showed that, at approximately the design Mach number the cambered configuration developed a somewhat higher value than the trailing-edge flap configuration but a lower value than the canard configuration.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-3-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-17
    Description: Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-16-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-17
    Description: The maximum Mach number and altitude capabilities of the Bell X-2 research airplane were achieved during a program conducted by the U.S. Air Force with Bell Aircraft Corp. providing operational support and the National Aeronautics and Space Administration providing instrumentation and advisory engineering assistance. A maximum geometric altitude of 126,200 feet was attained at a static pressure of 9.4 pounds per square foot and a dynamic pressure of 19.1 pounds per square foot. During the last flight of the airplane, a maximum Mach number of 3.20 was reached. The directionally divergent maneuver which terminated the final high Mach number flight was precipitated by the loss in directional stability that resulted from increasing the angle of attack. The yawing moment from the lateral control was sufficient to initiate the divergence and also to cause,, indirectly, rolling moments that were greater than the aileron capabilities of the airplane. The ensuing violent motions-resulting from inertial roll coupling caused the loss of the aircraft.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-17
    Description: An investigation of the use of ballast at the leading edge of a sweptback wing as a flutter fix has been made. The investigation was conducted in the Langley transonic blowdown tunnel with wing models which had an aspect ratio of 4, sweepback of the quarter-chord line of 450, and a taper ratio of 0.2. Four ballast configurations, which included different amounts of ballast distributed at two different span-wise locations, were investigated. Full-span sting-mounted models were employed. Data were obtained over a Mach number range from 0.65 to 1.32. Comparison of the data for the ballasted wings with data for a similar wing without ballast shows that in the often critical Mach number range between 0.85 and 1.05, the dynamic pressure required for flutter is increased by as much as 100 percent due to the addition of about 6 percent of the wing mass as ballast at the leading edge of the outboard sections. Furthermore, there are indications that similar benefits of leading-edge ballast can be obtained at Mach numbers above M = 1.1. Changing the spanwise location of the ballast and increasing the amount of the ballast by a factor of about 2 had very little additional effect on the dynamic pressure required for flutter. The possibility, therefore, exists that the beneficial effects obtained may be accomplished by using less than the minimum of about 6 percent of the wing mass as ballast as investigated in this paper.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-16
    Description: The first flight of the North American X-15 research airplane was made on June 8, 1959. This was accomplished after completion of a series of captive flights with the X-15 attached to the B-52 carrier airplane to demonstrate the aerodynamic and systems compatibility of the X-15//B-52 combination and the X-15 subsystem operation. This flight was planned as a glide flight so that the pilot need not be concerned with the propulsion system. Discussions of the launch, low-speed maneuvering, and landing characteristics are presented, and the results are compared with predictions from preflight studies. The launch characteristics were generally satisfactory, and the X-15 vertical tail adequately cleared the B-52 wing cutout. The actual landing pattern and landing characteristics compared favorably with predictions, and the recommended landing technique of lowering the flaps and landing gear at a low altitude appears to be a satisfactory method of landing the X-15 airplane. There was a quantitative correlation between flight-measured and predicted lift-drag-ratio characteristics in the clean configuration and a qualitative correlation in the landing configuration. A longitudinal-controllability problem, which became severe in the landing configuration, was evident throughout the flight and, apparently, was aggravated by the sensitivity of the side-located control stick. In the low-to-moderate angle-of-attack range covered, the longitudinal and directional stability were indicated to be adequate.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-195
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-16
    Description: Free-oscillation tests were made in the Langley high-speed 7- by 10-foot tunnel to determine the effects of wing thickness and wing sweep on the hinge-moment and flutter characteristics of a trailing-edge flap-type control. The untapered semispan wings had full-span aspect ratios of 5 and NACA 65A-series airfoil sections. Unswept wings having ratios of wing thickness to chord of 0.04, 0.06, 0.08, and 0.10 were investigated. The swept wings were 6 percent thick and had sweep angles of 30 deg and 45 deg. The full-span flap-type controls had a total chord of 50 percent of the wing chord and were hinged at the 0.765-wing-chord line. Tests were made at zero angle of attack over a Mach number range from 0.60 to 1.02, control oscillation amplitudes up to about 12 deg, and a range of control-reduced frequencies. Static hinge-moment data were also obtained. Results indicate that the control aerodynamic damping for the 4-percent-thick wing-control model was unstable in the Mach number range from 0.92 to 1.02 (maximum for these tests). Increasing the ratio of wing thickness to chord to 0.06, 0.08, and then to 0.10 had a stabilizing effect on the aerodynamic damping in this speed range so that the aerodynamic damping was stable for the 10-percent-thick model at all Mach numbers. The 6-percent-thick unswept-wing-control model generally had unstable aerodynamic damping in the Mach number range from 0.96 to 1.02. Increasing the wing sweep resulted in a general decrease in the stable aerodynamic damping at the lower Mach numbers and in the unstable aerodynamic damping at the higher Mach numbers. The one-degree-of-freedom control-surface flutter which occurred in the transonic Mach number range (0.92 to 1.02) for the 4-, 6-, and 8-percent-thick unswept-wing-control models could be eliminated by further increasing the ratio of thickness to chord to 0.10. Flutter could also be eliminated by increasing the wing sweep angle to either 30 deg or 45 deg. The magnitude of variation in spring moment derivative with Mach number at transonic speeds was decreased by either increasing the ratio of wing thickness to chord or increasing the wing sweep angle.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-123
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-16
    Description: A study has been made of the subsonic pressure distributions and loadings for a 45 deg sweptback-wing and body combination at angles of attack up to 36 deg. The wing had an aspect ratio of 5.5, a taper ratio of 0.53, and NACA 64A010 sections normal to the quarter-chord line and was mounted on a slender body of fineness ratio 12.5. Test results are presented for Mach numbers of 0.30 and 0.50 with corresponding Reynolds numbers of 1.5 and 2.0 million, respectively. The stall patterns and spanwise loadings at high angles of attack for the present model are correlated with those for other 45 deg sweptback wing and body combinations having aspect ratios between 4.0 and 8.0. A tentative approach is presented for extrapolating the Weissinger span-loading method to higher angles of attack, and for deriving the spanwise-load distributions for 45 deg sweptback wings at angles of attack above 20 deg. The investigation also included tests of the body in combination with only one panel of the swept wing. The problem of estimating the normal-force coefficient for the single panel at high angles of attack is considered.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-1-18-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-16
    Description: Results of a cyclic load test made by NASA on an EB-47E airplane are given. The test reported on is for one of three B-47 airplanes in a test program set up by the U. S. Air Force to evaluate the effect of wing structural reinforcements on fatigue life. As a result of crack development in the upper fuselage longerons of the other two airplanes in the program, a longeron and fuselage skin modification was incorporated early in the test. Fuselage strain-gage measurements made before and after the longeron modification and wing strain-gage measurements made only after wing reinforcement are summarized. The history of crack development and repair is given in detail. Testing was terminated one sequence short of the planned end of the program with the occurrence of a major crack in the lower right wing skin.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-3-15-59L , AF-AM-171
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-08-16
    Description: An investigation was conducted to obtain the aerodynamic characteristics of a model of a fighter-type airplane embodying partial body indentation. The wing had an aspect ratio of 4, taper ratio of 0.5, 35 deg sweepback of the 0.25-chord line, and a modified NACA 65A006 airfoil section at the root and a modified NACA 65A004 airfoil section at the tip. The fuselage has been indented in the region of the wing in order to obtain a favorable area distribution. The results reported herein consist of the performance and of the static longitudinal and lateral stability and control characteristics of the complete model. The Mach number range extended from 0.60 to 1.13, and the corresponding Reynolds number based on the wing mean aerodynamic chord varied from 1.77 x 10(exp 6) to 2.15 x 10(exp 6). The drag rise for both the cambered leading edge and symmetrical wing sections occurred at a Mach number of 0.95. Certain local modifications to the body which further improved the distribution of cross-sectional area gave additional reductions in drag at a Mach number of 1.00. The basic configuration indicated a mild pitch-up tendency at lift coefficients near 0.70 for the Mach number range from 0.80 to 0.90; however, the pitch-up instability may not be too objectionable on the basis of dynamic-stability considerations. The basic configuration indicated positive directional stability and positive effective dihedral through the angle-of-attack range and Mach number range with the exception of a region of negative effective dihedral at low lifts at Mach numbers of 1.00 and slightly above.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-13-58L , L-476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-16
    Description: Flight tests were made to determine the capability of positioning a gliding airplane for a landing on a 5,000-foot runway with special reference to the gliding flight of a satellite vehicle of fixed configuration upon reentry into the earth's atmosphere. The lift-drag ratio and speed of the airplane in the glides were varied through as large a range as possible. The results showed a marked tendency to undershoot the runway when the lift-drag ratios were below certain values, depending upon the speed in the glide. A straight line dividing the successful approaches from the undershoots could be drawn through a lift-drag ratio of about 3 at 100 knots and through a lift-drag ratio of about 7 at 185 knots. Provision of a drag device would be very beneficial, particularly in reducing the tendency toward undershooting at the higher speeds.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-3-12-59L , L-406
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-16
    Description: Several approximate procedures for calculating the bending-moment response of flexible airplanes to continuous isotropic turbulence are presented and evaluated. The modal methods (the mode-displacement and force-summation methods) and a matrix method (segmented-wing method) are considered. These approximate procedures are applied to a simplified airplane for which an exact solution to the equation of motion can be obtained. The simplified airplane consists of a uniform beam with a concentrated fuselage mass at the center. Airplane motions are limited to vertical rigid-body translation and symmetrical wing bending deflections. Output power spectra of wing bending moments based on the exact transfer-function solutions are used as a basis for the evaluation of the approximate methods. It is shown that the force-summation and the matrix methods give satisfactory accuracy and that the mode-displacement method gives unsatisfactory accuracy.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-18-59L , L-143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-16
    Description: An analytical investigation has been carried out to determine the responses of a flicker-type roll control incorporated in a missile which traverses a range of Mach number of 6.3 at an altitude of 82,000 feet to 5.26 at an altitude of 282,000 feet. The missile has 80 deg delta wings in a cruciform arrangement with aerodynamic controls attached to the fuselage near the wing trailing edge and indexed 450 to the wings. Most of the investigation was carried out on an analog computer. Results showed that roll stabilization that may be adequate for many cases can be obtained over the altitude range considered, providing that the rate factor can be changed with altitude. The response would be improved if the control deflection were made larger at the higher altitudes. lag times less than 0.04 second improve the response appreciably. Asymmetries that produce steady rolling moments can be very detrimental to the response in some cases. The wing damping made a negligible contribution to the response.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-23-59L , L-211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-16
    Description: An investigation was made to determine the characteristics of a nonlinear linkage installed in a power control system incorporated in a ground simulator. The nonlinear linkage provided for increased control-stick motion for relatively small simulator response at control motions near neutral. The quality of the control system was rated on the ease and precision with which various tracking tasks were performed by the pilots who operated the simulator. The results obtained with the nonlinear linkage installed in the control system were compared with those obtained by using the normal linear control system. Several combinations of nonlinearity of the linkage were tested for various dynamic characteristics of the simulator. It was found that the pilots were able to track almost as well with the nonlinear linkage installed as with the normal system. All of the pilots were of the opinion, however, that the nonlinearity was an undesirable feature in the control system because of the apparent lack of simulator response through the neutral range of the linkage where relatively large stick deflections could be made with very little simulator motion. The results showed that increased lag between the target and chair position, higher stick-force levels, and uneven stick forces due to the dynamics of the linkage were general characteristics of all the nonlinear linkage conditions tested. It was also found that for cases of low simulator damping, rapid control motions caused considerably higher overshoots when the nonlinear linkage was installed than were obtained for the normal linear control system. These characteristics were considered to be sufficiently undesirable to out-weigh the advantages to be gained from the use of a nonlinear linkage in the control system of an airplane.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-15-59L , L-174
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-16
    Description: The possibility of obtaining useful estimates of the static longitudinal stability of aircraft flying at high supersonic Mach numbers at angles of attack between 0 and +/-180 deg is explored. Existing theories, empirical formulas, and graphical procedures are employed to estimate the normal-force and pitching-moment characteristics of an example airplane configuration consisting of an ogive-cylinder body, trapezoidal wing, and cruciform trapezoidal tail. Existing wind-tunnel data for this configuration at a Mach number of 6.86 provide an evaluation of the estimates up to an angle of attack of 35 deg. Evaluation at higher angles of attack is afforded by data obtained from wind-tunnel tests made with the same configuration at angles of attack between 30 and 150 deg at five Mach numbers between 2.5 and 3.55. Over the ranges of Mach numbers and angles of attack investigated, predictions of normal force and center-of-pressure locations for the configuration considered agree well with those obtained experimentally, particularly at the higher Mach numbers.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-1-17-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-16
    Description: A wind-tunnel investigation was made at low speed in the Langley stability tunnel in order to determine the effects of fuselage nose length and a canopy on the oscillatory yawing derivatives of a complete swept-wing model configuration. The changes in nose length caused the fuselage fineness ratio to vary from 6.67 to 9.18. Data were obtained at various frequencies and amplitudes for angles of attack from 0 deg. to about 32 deg. Static lateral and longitudinal stability data are also presented.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-1-15-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-08-16
    Description: Results of an investigation of the static longitudinal stability and control characteristics of an aspect-ratio-3.1, unswept wing configuration equipped with an aspect-ratio-4, unswept horizontal tail are presented without analysis for the Mach number range from 0.70 to 2.22. The hinge line of the all-movable horizontal tail was in the extended wing chord plane, 1.66 wing mean aerodynamic chords behind the reference center of moments. The ratio of the area of the exposed horizontal-tail panels to the total area of the wing was 13.3 percent and the ratio of the total areas was 19.9 percent. Data are presented at angles of attack ranging"from -6 deg to +18 deg for the horizontal tail set at angles ranging from +5 deg to -20 deg and for the tail removed.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-6-11-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-08-16
    Description: An experimental investigation has been made to determine the static stability characteristics of three thick wing models with parabolic plan forms at a Mach number of 3.11 for angles of attack from about -6 to 16 deg. The primary variable was aspect ratio, with the plan-form area and the ratio of base height to span kept the same for all three models. All models had stable, linear pitching-moment curves about the quarter chord of the wing mean aerodynamic chord. The model with the lowest aspect ratio attained a maximum untrimmed lift-drag ratio of about 5.0 at an angle of attack of about 8 deg. Increasing the aspect ratio (which was accompanied by an increase in base area because the ratio of the base height to span was kept constant) caused a decrease in maximum lift-drag ratio. All models were directionally stable for the range of angle of attack of the tests. Addition of a vertical tail to the models caused an increase in the directional stability over the angle-of-attack range. In general, the lateral aerodynamic characteristics of the models were not linear functions of angle of attack over any appreciable angle-of-attack range.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-141 , L-597
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-16
    Description: An investigation of the static stability characteristics of several hypersonic boost-glide configurations has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.41 and 2.01 (with Reynolds numbers per foot of 2.90 x 10(exp 6) and 2.41 x 10(exp 6) respectively). This series of configurations consisted of a cone, with and without cruciform fins, a trihedron, two low-aspect-ratio delta wings that differed primarily in cross-sectional shape, and two wing-body configurations. All configurations indicated reasonably linear pitching-, yawing-, and rolling-moment characteristics for angles of attack to at least 12 deg. The maximum lift-drag ratio for the zero-thrust condition (base drag included) was about 3 for the delta-wing configurations and about 4 for the wing-body configurations.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-167
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-14
    Description: Results of tests at Mach numbers of 3.0 and 7.3 for possible wing flutter of a series of models of a boost-glide-vehicle wing are presented herein. All of the models were tested at conditions which exceeded the proposed nominal design requirements for the full-scale vehicle; namely, dynamic pressure of 1,000 pounds per square foot at the test Mach numbers. None of the models experienced flutter; therefore, large margins of safety from wing flutter are indicated. However, the effects of body freedoms on the flutter characteristics and local types of flutter were not investigated.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-37 , HQ-E-DAA-TN54209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-15
    Description: The results of several flutter investigations to determine the effects of plan-form variations on the flutter characteristics of thin cantilevered wings at transonic Mach numbers have been reported previously. In the present investigation the data are extended to include a wing having an aspect ratio of 4, 45 of sweepback, and a taper ratio of 0.2. The data were obtained in the Langley transonic blowdown tunnel over a Mach number range from 0.6 to 1.4. The experimental results indicate an abrupt and rather large increase in both a flutter-speed parameter and a flutter-frequency parameter as the Mach number is increased from 1.05 to 1.10. The foregoing is interpreted as indicating a marked change in the flutter mode. Calculated flutter speeds, based on incompressible-flow aerodynamic coefficients, were too high by 20 percent or more throughout the subsonic Mach number range of the investigation. Calculated flutter frequencies were about 7 percent too high at a Mach number of 0.65 and were about 20 percent too high at a Mach number of 0.9. No significant independent effects of thickness were indicated for the plan form investigated as the thickness was changed from 3 to 4 percent chord.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-136
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-15
    Description: Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel to determine the effect of tail dihedral on lateral control effectiveness of a complete-model configuration having differentially deflected horizontal-tail surfaces. Limited tests were made to determine the lateral characteristics as well as the longitudinal characteristics in sideslip. The wing had an aspect ratio of 3, a taper ratio of 0.14, 28.80 deg sweep of the quarter-chord line with zero sweep at the 80-percent-chord line, and NACA 65A004 airfoil sections. The test Mach number range extended from 0.60 to 0.92. There are only small variations in the roll effectiveness parameter C(sub iota delta) with negative tail dihedral angle. The tail size used on the test model, however, is perhaps inadequate for providing the roll rates specified by current military requirements at subsonic speeds. The lateral aerodynamic characteristics were essentially constant throughout the range of sideslip angle from 12 deg to -12 deg. A general increase in yawing moment was noted with increased negative dihedral throughout the Mach number range.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-1-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-15
    Description: Theoretical analysis of the longitudinal behavior of an automatically controlled supersonic interceptor during the attack phase against a nonmaneuvering target is presented. Control of the interceptor's flight path is obtained by use of a pitch rate command system. Topics lift, and pitching moment, effects of initial tracking errors, discussion of normal acceleration limited, limitations of control surface rate and deflection, and effects of neglecting forward velocity changes of interceptor during attack phase.
    Keywords: Aircraft Stability and Control
    Type: NASA-TR-R-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-15
    Description: The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-3-16-59L , TED-AD-3147 , L-241
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-15
    Description: Flapwise bending moments were calculated for a teetering rotor blade using a reasonably rapid theoretical method in which airloads obtained from wind-tunnel tests were employed. The calculated moments agreed reasonably well with those measured with strain gages under the same test conditions. The range of the tests included one hovering and two forward-flight conditions. The rotor speed for the test was very near blade resonance, and difficult-to-calculate resonance effects apparently were responsible for the largest differences between the calculated and measured harmonic components of blade bending moments. These differences, moreover, were largely nullified when the harmonic components were combined to give a comparison of the calculated and measured blade total- moment time histories. The degree of agreement shown is therefore considered adequate to warrant the use of the theoretical method in establishing and applying methods of prediction of rotor-blade fatigue loads. At the same time, the validity of the experimental methods of obtaining both airload and blade stress measurement is also indicated to be adequate for use in establishing improved methods for prediction of rotor-blade fatigue loads during the design stage. The blade stiffnesses and natural frequencies were measured and found to be in close agreement with calculated values; however, for a condition of blade resonance the use of the experimental stiffness values resulted in better agreement between calculated and measured blade stresses.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-28-59L , L-140
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-15
    Description: Normal forces, axial forces, pitching moments, and rolling moments on the model and hinge moments on each of the four control surfaces were measured. Control surfaces were deflected from -35 deg to 15 deg in various combinations to produce pitching, yawing, and rolling moments on the model over a range of angles of attack from -5 deg to 25 deg at roll angles from -135 deg to 45 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-6-6-59A , AF-AM-162 , A-213 , AF-AM-162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-15
    Description: As a continuation of an investigation of the release characteristics of an MB-1 rocket carried internally by the Convair F-106A airplane, six missile-bay baffle configurations and a rocket end plate have been investigated in the 27- by 27-inch preflight jet of the NASA Wallops Station. The MB-1 rocket used had retractable fins and was ejected from a missile bay modified by the addition of six different baffle configurations. For some tests a rocket end plate was added to the model. Dynamically scaled models (0.04956 scale) were tested at a simulated altitude of 22,450 feet and Mach numbers of 0.86, 1.59, and 1.98, and at a simulated altitude of 29,450 feet and a Mach number of 1.98. The results of this investigation indicate that the missile-bay baffle configurations and the rocket end plate may be used to reduce the positive pitch amplitude of the MB-1 rocket after release. The initial negative pitching velocity applied to the MB-1 rocket might then be reduced in order to maintain a near-level-flight attitude after release. As the fuselage angle of attack is increased, the negative pitch amplitude of the rocket is decreased.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-4-29-59L , AF-AM-57 , L-361
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-15
    Description: Results of an investigation to determine the static longitudinal stability and control characteristics of an aspect-ratio-2 triangular wing and body configuration equipped with either a canard control, a trailing-edge-flap control, or a cambered forebody are presented without analysis for Mach numbers from 0.70 to 2.22. The canard surface had a triangular plan form and a ratio of exposed area to total wing area of 7.8 percent. The hinge line of the canard was in the extended wing chord plane, 0.83 wing mean aerodynamic chord ahead of the reference center of moments. The trailing-edge controls were constant-chord full-span flaps with exposed area equal to 10.7 percent of the total wing area. The cambered body was a modified Sears-Haack body with camber only ahead of the wing apex. Data are presented for various canard and flap deflections at angles of attack ranging from -6 deg to +18 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-21-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-10
    Description: The results are presented in the form of preliminary design charts which give a comparison between the dynamic-response factors of the semi-rigid case and the airplane longitudinal short-period case and between the dynamic-response factors of the semi-rigid case and the steady-state value of the airplane longitudinal short-period response. These charts can be used to estimate the first-order effects of the addition of a wing-bending degree of freedom on the short-period dynamic-response factor and on the maximum dynamic-response factor when compared with the steady-state response of the system.
    Keywords: Aircraft Stability and Control
    Type: NASA-TR-R-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-15
    Description: A 0.10-scale model of a swept-wing fighter airplane was tested in the Langley high-speed 7- by 10-foot tunnel at Mach numbers from 0.60 to 0.92 to determine the effects of adding underfuselage speed brakes. The results of brief spoiler-aileron lateral control tests also are included. The tests show acceptable trim and drag increments when the speed brakes are installed at the 32-71-inch fuselage station.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-188 , L-381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-15
    Description: Force tests of the static and dynamic lateral stability characteristics of a VTOL airplane having a triangular wing mounted high on the fuselage with a triangular vertical tail on top of the wing and no horizontal tail have been made in the Langley free-flight tunnel. The static lateral stability parameters and the rolling, yawing, and sideslipping dynamic stability derivatives are presented without analysis.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-143 , L-640
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-15
    Description: A series of landings was performed with a straight-wing airplane to evaluate the effect of low lift-drag ratios on approach and landing characteristics. Landings with a peak lift-drag ratio as low as 3 were performed by altering the airplane configuration (extending speed brakes, flaps, and gear and reducing throttle setting). As lift-drag ratio was reduced, it was necessary either to make the landing pattern tighter or to increase initial altitude, or both. At the lowest lift-drag ratio the pilots believed a 270 deg overhead pattern was advisable because of the greater ease afforded in visually positioning the airplane. The values of the pertinent flare parameters increased with the reduction of lift-drag ratio. These parameters included time required for final flare; speed change during final flare; and altitude, glide slope, indicated airspeed, and vertical velocity at initiation of final flare. The pilots believed that the tolerable limit was reached with this airplane in the present configuration, and that if, because of a further reduction in lift-drag ratio, more severe approaches than those experienced in this program were attempted, additional aids would be required to determine the flare-initiation point.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-15
    Description: Values of the normal component of induced velocity throughout the entire field of a uniformly loaded r(rotor at high high speed are presented in the form of charts and tables. Many points were found by an electromagnetic analog, details of which are given. Comparisons of computed and analog values for the induced velocity indicate that the latter are sufficiently accurate for engineering purposes.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TR-R-41
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-15
    Description: Results of hypersonic flutter tests on some simple models are presented. The models had rectangular plan forms of panel aspect ratio 1.0, no sweepback, and bending-to-torsion frequency ratios of about 1/3. Two airfoil sections were included in the tests; double wedges of 5-, 10-, and 15-percent thickness and flat plates with straight, parallel sides and beveled leading and trailing edges. The models were supported by a cantilevered shaft. The double-wedge wings were tested in helium at a Mach number of 7.2. An effect of airfoil thickness on flutter speed was found, thicker wings requiring more stiffness to avoid flutter. A few tests in air at a Mach number of 6.9 showed the same thickness effect and also indicated that tests in helium would predict conservative flutter boundaries in air. The data in air and helium seemed to be correlated by piston-theory calculations. Piston-theory calculations agreed well with experiment for the thinner models but began to deviate as the thickness parameter MT approached and exceeded 1.0. A few tests on flat-plate models with various elastic-axis locations were made. Piston-theory calculations would not satisfactorily predict the flutter of these models, probably because of their blunt leading edges.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-8-59L , L-199
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-15
    Description: This paper briefly summarizes available statistical data on airplane taxi operations, examines the profiles and power spectra of four selected runways and taxiways covering a wide range of surface roughness, considers (on the basis of theoretical and experimental results) the loads resulting from taxiing on such runways over a range of speeds and, by synthesis of the aforementioned results, proposes new criteria for runway and taxiway smoothness which are applicable to new construction and may also be used as a guide for determining when repairs are necessary.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-21-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-15
    Description: An investigation was made at transonic speeds to determine some of the dynamic stability derivatives of a 45 deg. sweptback-wing airplane model. The model was sting mounted and was rigidly forced to perform a single-degree-of-freedom angular oscillation in pitch or yaw of +/- 2 deg. The investigation was made for angles of attack alpha, from -4 deg. to 14 deg. throughout most of the transonic speed range for values of reduced-frequency parameter from 0.015 to 0.040 based on wing mean aerodynamic chord and from 0.04 to 0.14 based on wing span. The results show that reduced frequency had only a small effect on the damping-in-pitch derivative and the oscillatory longitudinal stability derivative for all Mach numbers M and angles of attack with the exception of the values of damping coefficient near M = 1.03 and alpha = 8 deg. to 14 deg. In this region, the damping coefficient changed rapidly with reduced frequency and negative values of damping coefficient were measured at low values of reduced frequency. This abrupt variation of pitch damping with reduced frequency was a characteristic of the complete model or wing-body-vertical-tail combination. The damping-in-pitch derivative varied considerably with alpha and M for the horizontal-tail-on and horizontal-tail-off configurations, and the damping was relatively high at angles of attack corresponding to the onset of pitch-up for both configurations. The damping-in-yaw derivative was generally independent of reduced frequency and M at alpha = -4 deg. to 4 deg. At alpha = 8 deg. to 14 deg., the damping derivative increased with an increase in reduced frequency and alpha for the configurations having the wing, whereas the damping derivative was either independent of or decreased with increase in reduced frequency for the configuration without the wing. The oscillatory directional stability derivative for all configurations generally decreased with an increase in the reduced-frequency parameter, and, in some instances, unstable values were measured for the model configuration with the horizontal tail removed.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-15
    Description: An analytical approach is presented which is applicable to the optimization of homing navigation guidance systems which are forced to operate in the presence of radar noise. The two primary objectives are to establish theoretical minimum miss distance performance and a method of synthesizing the optimum control system. The factors considered are: (1) target evasive maneuver, (2) radar glint noise, (3) missile maneuverability, and (4) the inherent time-varying character of the kinematics. Two aspects of the problem are considered. In the first, consideration is given only to minimization of the miss distance. The solution given cannot be achieved in practice because the required accelerations are too large. In the second, results are extended to the practical case where the limited acceleration capabilities of the missile are considered by placing a realistic restriction on the mean-square acceleration so that system operation is confined to the linear range. Although the exact analytical solution of the latter problem does not appear feasible, approximate solutions utilizing time-varying control systems can be found. One of these solutions - a range multiplication type control system - is studied in detail. It is shown that the minimum obtainable miss distance with a realistic restriction on acceleration is close to the absolute minimum for unlimited missile maneuverability. Furthermore, it is shown that there is an equivalence in performance between the homing and beam-rider type guidance systems. Consideration is given to the effect of changes in target acceleration, noise magnitude, and missile acceleration on the minimum miss distance.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-13-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-15
    Description: An investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/30-scale model of the Grumman WF-2 airplane. The effects of control settings and movements upon the erect-spin and recovery characteristics for the flight gross-weight loading with normal center-of-gravity and rearward center-of-gravity positions were determined. For the inverted-spin tests, the flight gross-weight loading with normal center-of-gravity position was used. Brief tests were also made with the radome removed to determine the effect of the radome on the spin and recovery characteristics of the airplane. The results of the tests of the model indicate that erect spins of the airplane in the flight gross-weight loading with the normal (26.3-percent mean aerodynamic chord) center-of-gravity position and with the most rearward (30-percent mean aerodynamic chord) center-of-gravity position possible will be satisfactorily terminated by full rudder reversal to against the spin accompanied by movement of the elevator to at least two-thirds down. With the radome removed, the spin will be steeper and considerably more oscillatory than with the radome on. Recoveries by the preceding technique will be satisfactory. Inverted spins of the airplane will be satisfactorily terminated by full rudder reversal followed by neutralization of the longitudinal and lateral controls.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-24-59L , L-326 , NASA-AD-3134
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-15
    Description: A wind-tunnel investigation was made of the low-speed characteristics of a canard configuration having triangular wing and canard surfaces with an aspect ratio of 2. The exposed area of the canard was 6.9 percent of the total wing area. The canard hinge line was located at 0.35 of its mean aerodynamic chord and was 0.5 wing mean aerodynamic chord lengths forward of the wing apex. The ground effects, which made the lift more positive and the -Pitching moment more negative at a given angle of attack, were unaffected by the canard. The stability of the model at a constant canard hinge-moment coefficient decreased to 0 near a lift coefficient of 1.0. In addition, the maximum lift coefficient at which the canard could provide balance was decreased by ground effects to less than 1.0 if the moment center was as far forward as 0.21 of the wing mean aerodynamic chord. The relative magnitude of interference effects between the canard and the wing and body is presented.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-4-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-15
    Description: A preliminary theoretical investigation has been made of the short-period longitudinal and steady-rolling (inertia coupling) stability of a hypersonic glider configuration for center-of-gravity locations rear-ward of the airplane neutral point. Such center-of-gravity positions for subsonic flight would improve performance by reducing supersonic and hypersonic static margins and trim drag. Results are presented of stability calculations and a simulator study for a velocity of 700 ft/sec and an altitude of 401,000 feet. With no augmentation, the airplane was rapidly divergent and was considered unsatisfactory in the simulator study. When a pitch damper was employed as a stability augmenter, the short-period mode became overdamped, and the airplane was easily controlled on the simulator. A steady-rolling analysis showed that the airplane can be made free of rolling divergence for all roll rates with an appropriate damper gain.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-5-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-15
    Description: Flight tests have been conducted with a single-rotor helicopter, one blade of which was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses, to determine the effects of transition, landing approaches, and partial-power vertical descents on the rotor-blade bending and torsional moments. In addition, ground tests were conducted to determine the effects of static droop-stop pounding on the rotor-blade moments. The results indicate that partial-power vertical descents and landing approaches produce rotor-blade moments that are higher than the moments encountered in any other flight condition investigated to date with this equipment. Decelerating through the transition region in level flight was found to result in higher vibratory moments than accelerating through this region. Deliberately induced static droop-stop pounding produced flapwise bending moments at the 14-percent-radius station which were as high as the moments experienced in landing approaches and partial-power vertical descents.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-5-7-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-15
    Description: Based on linearized equations of motion utilizing only the three moment equations and assuming only flat-spin conditions, it appears that contemporary designs (with the moment of inertia about the wing axis I(sub Y) considerably greater than the moment of inertia about the fuselage axis I(sub X) having positive values of C(sub l, sub p) (rolling-moment coefficient due to rolling) or positive values of C(sub l, sub beta) (rolling-moment coefficient due to sideslip) will probably not have a stable spin in the flat-spin region near an angle of attack of 90 deg. If the damping in pitch in flat-spin attitudes is zero, stable flat-spin conditions may not be possible on an airplane having the mass primarily distributed along the wings. The effect of moving ailerons with the spin or the effect of applying a positive pitching moment producing recovery for contemporary fighter designs will be greatest for large negative values of C(sub n, sub beta) (yawing-moment coefficient due to sideslip). In addition, for a certain critical value of positive C(sub n, sub beta), the rolling moment applied by moving ailerons with the spin or the application of a positive pitching moment will have no effect on reducing the spin rate.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-25-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-15
    Description: A wind-tunnel investigation was made to determine the longitudinal- and lateral-stability derivatives of a flat-top wing-body configuration at Mach numbers from 0.22 to 0.90 and Reynolds numbers of 3.5 and 17 million. The wing had a leading-edge sweepback of 78.9 deg and a cathedral of 45 deg on the outer panels. The tests included the determination of the effectiveness of elevon and rudder controls and also an investigation of ground effects. The model was tested at angles of attack up to 28 deg and angles of sideslip up to 18 deg. The dynamic response of this configuration has been determined from the wind-tunnel data for a simulated airplane having a wing loading of 17.7 pounds per square foot. The longitudinal data show a forward shift in aerodynamic center of 10 percent of the mean aerodynamic chord as the lift coefficient is increased above 0.1. Although flown in the lift range of decreasing stability, the simulated airplane did not encounter pitch-up in maneuvers initiated from steady level flight with zero static margin unless a load factor of 2.2 was exceeded. This maneuver margin was provided by a large value of pitching moment due to pitching velocity. The number of cycles to damp the Dutch roll mode to half amplitude, the time constants of the roll subsidence and spiral divergence modes, and control effectiveness in roll are computed. The lateral stability is shown to be positive but is marginal in meeting the military specifications for today's aircraft. An analog computer study has been made in five degrees of freedom (constant velocity) which illustrates that the handling characteristics are satisfactory. Several programed rolling maneuvers and coordinated turns also illustrate the handling qualities of the airplane.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-5-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-15
    Description: Two rocket-propelled missiles have been test flown by the Langley Pilotless Aircraft Research Division in order to study the stability characteristics of a body with six rectangular fins of very low aspect ratio. The fins, which had exposed aspect ratios of approximately o.o4 and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18, respectively. Each body had a nose with a fineness ratio of 3.5 and a cylindrical afterbody. The body and the fin chord of the model having a fineness ratio of 12 were extended the length of 6 body diameters to produce the model with a fineness ratio of 18. The missiles were disturbed in flight by pulse rockets in order to obtain the stability data. The tests were performed over a Mach number range of 1.4 to 3.2 and a Reynolds number range of 2 x 10(exp 6) to 21 x l0(exp 6). The results of these tests indicate that these configurations with the long rectangular fins of very low aspect ratio showed little induced roll" with the missile of highest fineness ratio and longest fin chord exhibiting the least amount. Extending the body and fin chord of the shorter missile six body diameters and thereby increasing the fin area approximately 115 percent increased the lift-curve slope based on body cross-sectional area approximately 40 to 55 percent, increased the dynamic stability by a substantial amount, and increased the drag from 14 to 33 percent throughout the comparable Mach number range. The center-of-pressure location of both missiles remained constant over the Mach number range.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-2-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-15
    Description: Results are presented of a wind-tunnel investigation to evaluate the static and dynamic stability derivatives of a model with a low-aspect-ratio unswept wing and a high horizontal tail. In addition to results for the complete model, results were also obtained of the body alone, body and wing, and body and tail. Data were obtained in the Mach number range from 0.65 to 2.2, at a Reynolds number of 2 million based on the wing mean aerodynamic chord. The angle-of-attack range for most of the data was -11.5 deg to 18 deg. A limited amount of data was obtained with fixed transition. A correspondence between the damping in pitch and the static stability, previously noted in other investigations, was also observed in the present results. The effect observed was that a decrease (or increase) in the static stability was accompanied by an increase (or decrease) in the damping in pitch. A similar correspondence was observed between the damping in yaw and the static-directional stability. Results from similar tests of the same model configuration in two other facilities over different speed ranges are presented for comparison. It was found that most of the results from the three investigations correlated reasonably well. Estimates of the rotary derivatives were made using available procedures. Comparison with the experimental results indicates the need for development of more precise estimation procedures.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-6-5-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-15
    Description: An investigation has been conducted in the Langley free-flight tunnel at low-subsonic speeds to provide some basic information on the stability and control characteristics in the high angle-of-attack range of an airplane configuration typical of current design trends. The investigation consisted of static- and dynamic-force tests over an angle-of- attack range from -10 to 90 deg. The dynamic-force tests, which consisted of both linear- and rotary-oscillation tests, were conducted at values of the reduced-frequency parameter k of 0.10, 0.15, and 0.20. The configuration was directionally unstable for all angles of attack above about 15 deg but maintained positive effective dihedral, control effectiveness, and damping in roll and yaw over most of the angle-of-attack range tested. The effects of frequency on the oscillatory stability derivatives were found to be generally small, but in a few cases the effects were relatively large.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-20-59L , L-365
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-15
    Description: An investigation of a small-scale reaction control devices in still air with both subsonic and supersonic internal flows has shown that lateral forces approaching 70 percent of the resultant force of the undeflected jet can be obtained. These results were obtained with a tilted extension at a deflection of 40 deg. The tests of tilted extensions indicated an optimum length-to-diameter ratio of approximately 0.75 to 1.00, dependent upon the deflection angle. For the two geometric types of spoiler tabs tested, blockage-area ratio appears to be the only variable affecting the lateral force developed. Usable values of lateral force were developed by the full-eyelid type of device with reasonably small losses in the thrust and weight flow. Somewhat larger values of lateral force were developed by injecting a secondary flow normal to the primary jet, but for conditions of these tests the losses in thrust and weight flow were large. Relatively good agreement with other investigations was obtained for several of the devices. The agreement of the present results with those of an investigation made with larger-scale equipment indicates that Reynolds number may not be critical for these tests. In as much as the effects of external flow could influence the performance and other factors affecting the choice of a reaction control for a specific use, it would appear desirable to make further tests of the devices described in this report in the presence of external flow.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-11-59L , L-160
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-15
    Description: A flight investigation of an automatic throttle control in landing approaches has been made. It was found that airspeed could be maintained satisfactorily by the automatic throttle control. Turbulent air caused undesirably large variations of engine power which were uncomfortable and disconcerting; nevertheless, the pilot felt that he could make approaches 5 knots slower with equal assurance when the automatic control was in operation.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-19-59L , L-432
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-15
    Description: Seven stabilizers were tested at a Mach number of 2 in order to determine the effects of aerodynamic heating and loading on the structural stability of the stabilizer. The models differed in internal structure and postcure temperatures of the laminated Fiberglass skin. Tests were made at various stagnation temperatures between 440 F and 625 F. The postcure temperatures of the Fiberglass skins were found to affect significantly the ability of the model to withstand the imposed test conditions.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-15
    Description: Generalized influence coefficients are calculated by the method of NACA TN 3640 for a large-scale, built-up, 450 delta-wing specimen. These are used together with appropriate generalized masses to obtain the natural modes and frequencies in symmetric and antisymmetric free-free vibration. The resulting frequencies are compared with those obtained experimentally and are found to be consistently high. Possible sources of the disparities are discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-1-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-15
    Description: An investigation of the low-speed static stability and control characteristics of a model of a right triangular pyramid reentry configuration has been made in the Langley free-flight tunnel. The investigation showed that the model had generally satisfactory longitudinal and lateral static stability characteristics. The maximum lift-drag ratio was increased from about 3 to 5 by boattailing the base of the model.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-11-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-15
    Description: An investigation has been made in the Langley free-flight tunnel at low-subsonic speed to determine the static stability, control effectiveness, and damping in roll and yaw of a model with a low-aspect-ratio unswept wing and two different fuselage forebodies at angles of attack from 0 deg to 90 deg. Results were obtained with a fuselage configuration having a long pointed nose and a shorter rounded nose. Although the wing stalled at an angle of attack of about 12 deg, maximum lift did not occur until an angle of attack of about 40 deg or 50 deg was obtained. The static longitudinal stability of the model having a short rounded nose was greater than that of the model having a longer pointed nose over the entire angle-of-attack range. The pointed-nose model had large out-of-trim yawing moments above an angle of attack of about 40 deg. Shortening and rounding the nose of the model delayed these out-of-trim yawing moments to slightly higher angles of attack. Both models were directionally unstable above an angle of attack of about 20 deg, but both had positive effective dihedral over virtually the entire angle-of-attack range. At the higher angles of attack the pointed-nose model had generally better damping in roll than that of the rounded-nose model. Both models had very high damping in yaw at an angle of attack of about 50 deg or 60 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-1-22-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-15
    Description: Results of analytical and flight studies are presented to indicate the effect of yaw damping on the airplane motions and the vertical-tail loads in rough air. The analytical studied indicate a rapid reduction in loads on the vertical tail as the damping is increased up to the point of damping the lateral motions to 1/2 amplitude in one cycle. Little reduction in load is obtained by increasing the lateral damping beyond that point. Flight measurements made in rough air at 5,000 and 35,000 feet on a large swept-wing bomber equipped with a yaw damper show that the yaw damper decreased the loads on the vertical tail by about 50 percent at 35,000 feet. The reduction in load at 5,000 feet was not nearly as great. Measurements of the pilot's ability to damp the lateral motions showed that the pilot could provide a significant amount of damping but that manual control was not as effective as a yaw damper in reducing the loads.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-17-59L , L-433
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-15
    Description: A method has been described for predicting the probable relative severity of pitch-up of a new airplane design prior to initial flight tests. An illustrative example has been presented which demonstrated the use of this procedure for evaluating the pitch-up behavior of a large, relatively flexible airplane. It has also been shown that for airplanes for which a mild pitch-up tendency is predicted, the wing and tail loads likely to be encountered in pitch-up maneuvers would not assume critical values, even for pilots unfamiliar with pitch-up.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-7-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-15
    Description: Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-14-59A , A-138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-15
    Description: Some blunt-body shapes considered suitable for entry into the earth's atmosphere were tested by both static and oscillatory methods in the Langley stability tunnel. In addition, free-fall tests of some similar models were made in the Langley 20-foot free-spinning tunnel. The results of the tests show that increasing the flare of the body shape increased the dynamic stability and that for flat-faced shapes increasing the corner radius increased the stability. The test data from the Langley stability tunnel were used to compute the damping factor for the models tested in the langley 20-foot free-spinning tunnel. For these cases in which the damping factor was low, -1/2 or less, the stability was critical and sensitive to disturbance. When the damping factor was about -2, damping was generally obtained.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-22-59L , L-157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-15
    Description: A theoretical investigation was conducted to determine the effects of body boundary-layer separation resulting from a highly underexpanded jet on the dynamic stability of a typical rocket aircraft during an atmospheric exit trajectory. The particular flight condition studied on a digital computer for five degrees of freedom was at Mach 6.0 and 150,000 feet. In view of the unknown character of the separated flow field, two estimates of the pressures in the separated region were made to calculate the unbalanced forces and moments. These estimates, based on limited fundamental zero-angle-of-attack studies and observations, are believed to cover what may be the actual case. In addition to a fixed control case, two simulated pilot control inputs were studied: rate-limited and instantaneous responses. The resulting-motions with and without boundary-layer separation were compared for various initial conditions. The lower of the assumed misalinement forces and moments led to a situation whereby a slowly damped motion could be satisfactorily controlled with rate-limited control input. The higher assumption led to larger amplitude, divergent motions when the same control rates were used. These motions were damped only when the instantaneous control responses were assumed.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-22-59E , E-161
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-17
    Description: An investigation has been conducted to determine the longitudinal stability and control characteristics of a reentry configuration at a Mach number of 2.01. The configuration consisted of clipped delta wing with hinged wing-tip panels. The results indicate that deflecting the wing-tip panels from a position normal to the wing chord plane to a position coincident with the wing chord plane resulted in a stabilizing change in the pitching-moment characteristics but did not significantly affect the nonlinearity of the pitching-moment variation with angle of attack. The trailing-edge controls were effective in producing pitching moment throughout the angle-of-attack range for control deflections up to at least 600. The control deflection required for trim, however, varied nonlinearly with angle of attack. It would appear that this nonlinearity as well as the maximum deflection required for trim could be greatly decreased by utilizing a leading-edge control in conjunction with a trailing-edge control.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-178
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-16
    Description: An F-86E airplane, in which servo actuation of the ailerons and rudder provides artificial variation of the important lateral and directional aerodynamic stability parameters, has been flown by test pilots of the NASA, U.S. Air Force, and one aircraft manufacturer to determine satisfactory and acceptable levels of lateral oscillatory damping in the landing approach. In addition to normal operational use, particular consideration was given to the emergency condition of failure of stability-augmentation equipment. In this study, the pilots' opinions of the airplane dynamic stability and control characteristics in smooth and simulated rough air have been recorded according to a numerical rating scale. The results are presented in the form of boundaries in terms of cycles to damp to half amplitude, 1/C(sub 1/2), or time to damp to half amplitude, 1/T(1/2) and bank-to-sideslip ratio, and are discussed in relation to existing flying-qualities criteria. Though the present results, which were obtained at 170 knots indicated airspeed and 10,000-feet altitude, indicated that increased damping is required with increased bank-to-sideslip ratio (as found in previous work), consideration of the dampers-failed condition indicated a great reduction in the minimum acceptable damping. At moderate values of bank-to-sideslip ratio, effects of lateral-oscillation period on pilot-opinion variation with damping appeared to be taken into account by use of the parameter 1/T(sub 1/2).
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-10-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-16
    Description: An investigation has been made utilizing a three-blade, 10-foot- diameter, supersonic-ty-pe propeller to determine propeller flutter characteristics. The particular flutter characteristics of interest were (1) the effect of stall flutter on a propeller operating in positive and negative thrust, (2) the effect of stall flutter on a propeller operating with the thrust axis inclined, and (3) the variation of vibratory blade shear stresses as the stall flutter boundary is penetrated and exceeded. Thrust and power measurements were made for all test conditions. Wake and inflow surveys were made when appropriate, to define the thrust and torque distributions and the magnitude of the inflow velocity. Stress measurements were made simultaneously to obtain the propeller flutter and bending response. It was found when operating both in the positive and negative thrust regions that, for most cases after the onset of flutter, the magnitude of the flutter stresses at first increased rapidly with section blade angle P, after which further increases in 0 resulted in only a moderate increase or a reduction in stress. Thrust-axis inclination up to the limit of the tests (angle of attack of 15 deg and dynamic pressure of 40 psf) appeared to have no effect on stall flutter. The stall flutter stresses were found to be directly associated with the section thrust characteristics of the blades. The onset of flutter was found to occur simultaneously with the divergence of the section thrust variation with blade angle from linearity for stations outboard of the blade 0.8-radius station. The maximum flutter stresses appeared to be a function of the maximum section thrust obtained at or in the vicinity of the blade 0.8-radius station. In an attempt to correlate two-dimensional airfoil data with three-dimensional data to predict the stall angle of attack (divergence of the section thrust) of the blade sections, it was found that no consistent correlation could be obtained. Also, a knowledge of the inflow conditions appeared to be insufficient to account for differences in airfoil characteristics between the two-dimensional and the three-dimensional cases.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-9-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-16
    Description: A preliminary investigation was conducted to determine whether a warhead stage of an antimissile missile could be placed within an arbitrary 2-nautical-mile-radius maneuver cylinder around an intercontinental-ballistic-missile (ICBM) flight path above an altitude of 140,000 feet, a horizontal range of 40 nautical miles, at a flight-path angle of approximately 20 deg, and within 50 seconds after take-off using only aerodynamic forces to turn the antimissile missile. The preliminary investigation indicated that an antimissile missile using aerodynamic forces for turning was capable of intercepting the ICBM for the stated conditions of this study although the turning must be completed below an altitude of approximately 70,000 feet to insure that the antimissile missile will be at the desired flight-path angle. Trim lift coefficients on the order of 2 to 3 and a maximum normal-acceleration force of from 25g to 35g were necessary to place the warhead stage in intercept position. The preliminary investigation indicated that for the two boosters investigated the booster having a burning time of 10 seconds gave greater range up the ICBM flight path than did the booster having a burning time of 15 seconds for the same trim lift coefficient and required the least trim lift coefficient for the same range.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-2-14-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-16
    Description: As a means of evaluating the roll utilization of a fighter airplane capable of supersonic speeds, an instrumented North American F-100A fighter airplane was flown by U.S. Air Force pilots at Nellis Air Force Base, NV, during 20 hours of service operational flying. Mach numbers up to 1.22 and altitudes up to 50,000 feet were realized in this investigation. Results of the study showed that except for high g barrel rolls performed as evasive maneuvers and rolls performed in acrobatic flying, rolling was utilized primarily as a means of changing heading. Acrobatic and air combat maneuvering produced the largest bank angles (1,200 deg), roll velocities (3.3 radians/sec), rolling accelerations (8 radians/sq sec) and sideslip angles (10.8 deg). Full aileron deflections were utilized on numerous occasions. Although high rolling velocities and accelerations also were experienced during several air-to-air gunnery missions, generally, air-to-air gunnery and air-to-ground gunnery and bombing required only two-thirds of maximum aileron deflection. The air-to-air gunnery and air combat maneuvers initiated from supersonic speeds utilized up to two-thirds aileron deflection and bank angles of less than 18 deg and resulted in rolling velocities and accelerations of 2 radians per second and 4.6 radians/sq sec, respectively. Rolling maneuvers were often initiated from high levels of normal acceleration, but from levels of negative normal acceleration only once.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-12-1-58H
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-16
    Description: Subsonic span loads and the resulting stability derivatives have been calculated using the discrete-horseshoe-vortex method for a systematic series of horizontal tails in combination with a vertical tail of aspect ratio 1.0 in order to provide information on the effect of varying the chord of the horizontal tail for isolated tail assemblies performing sideslip and steady-roll motions. In addition, the effects of horizontal-tail dihedral angle for the sideslip case were obtained. Each tail surface considered had a taper ratio of 0.5 and an unswept quarter-chord line. The investigation covered variations in horizontal-tail chord, horizontal-tail span, and vertical location of the horizontal tail. The span loads and the resulting total stability derivatives as well as the vertical- and horizontal-tail contributions to these tail-assembly derivatives are presented in the figures for the purpose of showing the influence of the geometric variables. The results of this investigation showed trends that were in agreement with the results of previous investigations for variations in horizontal-tail span and vertical location of the horizontal tail. Variations in horizontal-tail chord expressed herein in terms of the root-chord ratio, that is, the ratio of horizontal-tail root chord to vertical-tail root chord, were found to have a pronounced influence on most of the span loads and the resulting stability derivatives. For most of the cases considered, the rate of change of the span load coefficients and the stability derivatives with the root-chord ratio was found to be a maximum for small values of root-chord ratio and to decrease as root-chord ratio increased.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-1-59L , L-216
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-16
    Description: A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-4-26-59A , A-135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-16
    Description: An examination of oscillatory stability for a straight-winged airplane with large concentrated wing-tip masses was made using wing-bending and airplane-pitching degrees of freedom and considering only quasi-steady aerodynamic forces. It was found that instability caused by coupling of airplane pitching and wing bending occurred for large ratios of effective wing-tip mass to total airplane mass and for coupled wing-bending frequencies near or below the uncoupled pitching frequency. Boundaries for this instability are given in terms of two quantities: (1) the ratio of effective tip mass to airplane mass, which can be estimated, and (2) the ratio of the coupled bending frequency to the uncoupled pitch frequency, which can be measured in flight. These boundaries are presented for various values of several airplane parameters.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-29-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-16
    Description: The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-20-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-16
    Description: An investigation to determine the low-speed rolling, yawing, and sideslipping derivatives of a 1/7-scale model which was used to represent the original configuration and a modified configuration of the North American X-15 airplane has been conducted in the Langley free-flight tunnel. The original model was modified to approximately represent the final airplane configuration by reducing the size of the fuselage side fairings and changing the vertical-tail arrangement. The effects of various tail arrangements were determined for both configurations and the effect of small forebody strakes was determined for the modified configuration only.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-16
    Description: A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-199
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-16
    Description: The first landing of the X-15 airplane was made at 8:43 a.m., June 8, 1959, on the hard surface of Rogers Dry Lake. One purpose of the first-glide flight was to evaluate the effectiveness of the landing-gear system. Some results are presented of the landing-approach characteristics, the impact period, and the runout phase of the landing maneuver. The results indicate that the touchdown was accomplished at a vertical velocity of 2.0 feet per second for the main gear and 13.5 feet per second for the nose gear. These vertical velocities were within the values of sinking speeds established by structural design limitations. However, permanent structural deformation occurred in the main-landing-gear system as a result of the landing, and a reevaluation of the gear is being made by the manufacturer. The landing occurred at a true ground speed of 158 knots for main-gear touchdown at an angle of attack of 8.50. The incremental acceleration at the main gear was 2.7g and 7.39 at the nose gear as a result of the landing. The incremental acceleration at the center of gravity of the airplane was 0.6g for the main-gear impact and 2.4g for the nose-gear impact. The incremental acceleration at the main gear as a result of the nose-gear impact was 4.8g. The extreme rearward location of the main-gear skids appears to offer satisfactory directional stability characteristics during the run- out phase of the landing. No evidence of nosewheel shimmy was indicated during the impact and runout phase of the landing despite the absence of a shimmy damper on the nose gear. The maximum amount of skid wear as a result of the landing was on the order of 0.005 inch. No appreciable amount of tire wear was indicated for the dual, corotating nosewheels.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-207
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-16
    Description: A transonic flutter investigation has been made of models of the T-tail of the Blackburn NA-39 airplane. The models were dynamically and elastically scaled from measured airplane data in accordance with criteria which include a flutter safety margin. The investigation was made in the Langley transonic blowdown tunnel and covered a Mach number range from 0.73 to 1.09 at simulated altitudes extending to below sea level. The results of the investigation indicated that, if differences between the measured model and scaled airplane properties are disregarded, the airplane with the normal value of stabilizer pitching stiffness should have a stiffness margin of safety of at least 32 percent at all Mach numbers and altitudes within the flight boundary. However, the airplane with the emergency value of stabilizer pitching stiffness would not have the required margin of safety from symmetrical flutter at Mach numbers greater than about 0.85 at low altitudes. First-order corrections for some differences between the measured model and scaled airplane properties indicated that the airplane with the normal value of stabilizer pitching stiffness would still have an adequate margin of safety from flutter and that the flutter safety margin for the airplane with the emergency value of stabilizer pitching stiffness would be changed from inadequate to adequate. However, the validity of the corrections is questionable.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-SX-242 , L-648
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-15
    Description: An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01 to determine the effects of forebody deflection on the stability and control characteristics of a canard airplane configuration. The configuration had a high trapezoidal aspect-ratio-3 wing, a trapezoidal canard surface, and a single swept vertical tail. Forebody deflection angles of 0 deg, 2 deg and deg were investigated. The results indicated that nose-up deflections of the forebody provided positive increments of pitching moment with little increase in drag and hence would be useful in reducing the pitch-control requirements and the attendant losses in lift-drag ratio due to trimming. Deflection of the forebody, however, aggravated the decrease in directional stability with increasing angle of attack by causing a loss in tail contribution and by increasing the instability of the wing-body combination.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-4-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-15
    Description: A study of some of the important aerodynamic factors affecting the directional stability of supersonic airplanes is presented. The mutual interference fields between the body, the lifting surfaces, and the stabilizing surfaces are analyzed in detail. Evaluation of these interference fields on an approximate theoretical basis leads to a method for predicting directional stability of supersonic airplanes. Body shape, wing position and plan form, vertical tail position and plan form, and ventral fins are taken into account. Estimates of the effects of these factors are in fair agreement with experiment.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-1-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-15
    Description: An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-11-4-58L , L-120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: Comparison of transition locations for an open-nose cone, a conventional sharp cone, and a hollow cylinder showed that transition locations on the open-nose cone and the hollow cylinder were identical but differed greatly from those on the sharp cone. This is believed to be caused by the essentially two-dimensional character of leading edge of the open-nose cone. Bluntness effects on the open-nose cone observed on the hollow cylinder. Transition 2.2 times the sharp-cone transition distance by blunting the tip.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-4214
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: An all-internal conical compression inlet with annular bleed at the throat was investigated at Mach 5.0 and zero angle of attack. The minimum contraction ratio of the supersonic diffuser, coincident with a mass-flow ratio of 1.0, was determined to be 0.084 as compared with the isentropic contraction ratio of 0.04 at Mach 5.0. The over-all inlet performance was very sensitive to the amount of annular bleed at the throat because of the extensive boundary layer. For example, the critical recovery varied from 41 percent with 6-percent bleed to 59 percent with 25-percent bleed. Decreasing the spacing between the supersonic and subsonic diffusers increased the critical mass-flow ratio but reduced the range of subcritical mass-flow regulation. A constant-area section was required ahead of the subsonic diffuser in order to obtain reasonable performance. An inlet-engine net-thrust analysis indicated that the optimum performance occurred with from 20- to 25-percent bleed, depending on how the bypassed air was handled.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E58E14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-11
    Description: A supplementary investigation has been conducted in the langley 20-foot free-spinning tunnel on a l/24-scale model of the Grumman F11F-1 airplane to determine the spin and recovery characteristics with alternate nose configurations, the production version and the elongated APS-67 version, with and without empty and full wing tanks. When spins were obtained with either alternate nose configuration, they were oscillatory and recovery characteristics were considered unsatisfactory on the basis of the fact that very slow recoveries were indicated to be possible. The simultaneous extension of canards near the nose of the model with rudder reversal was effective in rapidly terminating the spin. The addition of empty wing tanks had little effect on the developed spin and recovery characteristics. The model did not spin erect with full wing tanks. For optimum recovery from inverted spins, the rudder should be reversed to 22O against the spin and simultaneously the flaperons should be moved with the developed spin; the stick should be held at or moved to full forward longitudinally. The minimum size parachute required to insure satisfactory recoveries in an emergency was found to be 12 feet in diameter (laid out flat) with a drag coefficient of 0.64 (based on the laid-out-flat diameter) and a towline length of 32 feet.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL58C20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-11
    Description: Incipient spin characteristics have been investigated on a l/35-scale dynamic model of the Convair F-10% airplane. The model was launched by a catapult apparatus into free flight with various control settings, and the motions obtained were photographed. The model was ballasted for the combat loading. All tests were made with the speed brakes and landing gear retracted, and engine effects were not simulated. The results of the investigation indicated that the model would enter motions apparently simulating entry phases of spins when the elevators were deflected full up. Deflecting the rudder had little effect on the direction of the motion obtained, but when ailerons were deflected the model always rotated in a direction opposite to the aileron setting (that is, the model entered a right spin with the stick to the left). The ailerons were very influential in initiating spin entry, and the pilot should avoid, as far as possible, the use of ailerons in low-speed flight.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL58B13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley 8-foot transonic tunnels on the aerodynamic characteristics of a 0.15-scale model of the North American Aviation 255-inch fin-stabilized external store over a maximum Mach number range of 0.60 to 1.2 and on the effects of mounting lugs, of fin orientation, of fin aspect ratio, and of fixed-transition. The Reynolds number (based on a body length of 37.50 inches) varied from 9.8 x 10(exp 6) to 13.1 x 10(exp 6). The results indicate that the static margin of the finned store at low lift coefficients was only 9 percent of body length at subsonic Mach numbers and was reduced to zero at a Mach number of 1.0, Increasing the fin aspect ratio from 1.82 to 2.41 increased the subsonic static margin to 18 percent and provided a minimum margin of 9 percent near a Mach number of l.O. Store mounting lugs or fin orientation had only small effects on the aerodynamic characteristics of the basic store.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL56A30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley Unitary Plan wind tunnel at Mach numbers of 1.60, 1.80, and 2.00 to determine the aerodynamic characteristics of a 0.03-scale model of the Avro CF-105 airplane. The investigation included the determination of the static longitudinal and lateral stability, the control and the hinge-moment characteristics of the elevator, rudder, and aileron, as well as the vertical-tail-load characteristics. Although the data are presented without analysis, a limited inspection of the longitudinal control results indicates a loss in maximum lift-drag ratio due to trimming of about 1.8 because of the large static margin. A reduction in static margin would be expected to improve the trim lift-drag ratio but would also reduce the directional stability. With the existing static margin, the configuration is directionally unstable at angles of attack above about 6 deg or 8 deg.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL58G28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: Operation of the original engine configuration disclosed a severe compressor stall problem at high altitude, which was largely attributed to a radial flow distortion entering the high-pressure compressor. Engine modifications for eliminating or alleviating the stall problem were investigated. These included use of variable high-pressure compressor inlet guide vanes, increased turbine-stator areas, and minor alterations in both the low- and high-pressure compressor rotors.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SE58E26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-16
    Description: A combined analytical and experimental determination is made of the coupled natural frequencies and mode shapes in the longitudinal plane of symmetry for a dynamic model of a single-rotor helicopter. The analytical phase is worked out on the basis of a seven-degree-of-freedom system combining elastic deflections of the rotor blades, rotor shaft, pylon, and fuselage. The calculated coupled frequencies are first compared with calculated uncoupled frequencies to show the general effects of coupling and then with measured coupled frequencies to determine the extent to which the coupled frequencies can be calculated. The coupled mode shapes are also calculated and were observed visually with stroboscopic lights during the tests. A comparison of the coupled and uncoupled natural frequencies shows that significant differences exist between these frequencies for some of the modes. Good agreement is obtained between the measured and calculated values for the coupled natural frequencies and mode shapes. The results show that the coupled natural frequencies and mode shapes can be determined by the analytical procedure presented herein with sufficient accuracy if the mass and stiffness distributions of the various components of the helicopter are known.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-11-5-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-14
    Description: A study is made of aerodynamic performance and static stability and control at hypersonic speeds. In a first part of the study, the effect of interference lift is investigated by tests of asymmetric models having conical fuselages and arrow plan-form wings. The fuselage of the asymmetric model is located entirely beneath the wing and has a semicircular cross section. The fuselage of the symmetric model was centrally located and has a circular cross section. Results are obtained for Mach numbers from 3 to 12 in part by application of the hypersonic similarity rule. These results show a maximum effect of interference on lift-drag ratio occurring at Mach number of 5, the Mach number at which the asymmetric model was designed to exploit favorable lift interference. At this Mach number, the asymmetric model is indicated to have a lift-drag ratio 11 percent higher than the symmetric model and 15 percent higher than the asymmetric model when inverted. These differences decrease to a few percent at a Mach number of 12. In the course of this part of the study, the accuracy to the hypersonic similarity rule applied to wing-body combinations is demonstrated with experimental results. These results indicate that the rule may prove useful for determining the aerodynamic characteristics of slender configurations at Mach numbers higher than those for which test equipment is really available. In a second part of the study, the aerodynamic performance and static stability and control characteristics of a hypersonic glider are investigated in somewhat greater detail. Results for Mach numbers from 3 to 18 for performance and 0.6 to 12 for stability and control are obtained by standard text techniques, by application of the hypersonic stability rule, and/or by use of helium as a test medium. Lift-drag ratios of about 5 for Mach numbers up to 18 are shown to be obtainable. The glider studied is shown to have acceptable longitudinal and directional stability characteristics through the range of Mach numbers studied. Some roll instability (negative effective dihedral) is found at Mach numbers near 12.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-A58G17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-14
    Description: An investigation was performed in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a model of a 450 swept-wing fighter airplane, and to determine the loads on attached stores and detached missiles in the presence of the model. Also included was a determination of aileron-spoiler effectiveness, aileron hinge moments, and the effects of wing modifications on model aerodynamic characteristics. Tests were performed at Mach numbers of 1.57, 1.87, 2.16, and 2.53. The Reynolds numbers for the tests, based on the mean aerodynamic chord of the wing, varied from about 0.9 x 10(exp 6) to 5 x 10(exp 6). The results are presented with minimum analysis.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L58C17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-14
    Description: Results have been obtained from an investigation in the Langley Unitary Plan wind tunnel at Mach numbers from 2.5 to 3.5 of a canard-type configuration designed for supersonic cruise flight. Tests extended over an angle-of-attack range from about -4 deg to 11 deg and an angle-of-sideslip range from -4 deg to 6 deg. For the present tests, the results indicate that forebody deflection was an efficient means of providing a sizable positive pitching-moment shift with little or no increase in drag. The test configuration had a trimmed lift-drag ratio of approximately 6.0 at Mach numbers near 3.0 and at a Reynolds number of 2.52 x 10(exp 6). The configuration was both longitudinally and directionally stable. The lift-drag ratios are believed to be somewhat low inasmuch as the models used for the present tests had large-grain-size transition strips fixed to the various surfaces and these strips added wave drag. Also, the model boundary- layer diverter is oversized with respect to a full - scale configuration and therefore contributes additional drag.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L58G16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-15
    Description: An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics in pitch and sideslip of a generalized canard airplane model. Two wings of equal area but differing in plan form were investigated. The model was equipped with a trapezoidal canard surface with an area 12 percent of the wing area, a low-aspect-ratio vertical tail, and twin ventral fins. The interference effects of the canard wake on the wing result in little or no gain in the total lift at a Mach number of 1.41 but at a Mach number of 2.01 a substantial portion of the canard lift is retained with a resultant increase in total lift. Because these interference effects of the canard wake appear to be concentrated near the leading edge of the wing, the proper location of the wing leading edge with respect to the center of moments may result in a substantial increase in the moment increment provided by a canard surface even though the total lift provided by the canard is small. For these configurations the trapezoidal wing retained the most lift and had the largest favorable moment increment produced by the canards. The canard configurations have the same characteristic decrease in directional-stability with angle of attack as most conventional high-fineness-ratio supersonic configurations. Although the presence of the canard surface caused a small increase in the directional stability at a Mach number of 1.41 for the delta-wing configuration, the presence of the canards resulted in small decreases in the directional-stability level at a Mach number of 2.01 for both wing configurations. A canard deflection of 15 deg provides an increase in the positive effective dihedral approximately as large as that provided by the presence of the vertical tail. This effect of canard deflection might complicate the lateral-control problem in the case of a rolling pull-up maneuver.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-10-1-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-15
    Description: The factors which influence the selection of landing approach speeds are discussed from the pilot's point of view. Concepts were developed and data were obtained during a landing approach flight investigation of a large number of jet airplane configurations which included straight-wing, swept-wing, and delta-wing airplanes as well as several applications of boundary-layer control. Since the fundamental limitation to further reductions in approach speed on most configurations appeared to be associated with the reduction in the pilot's ability to control flight path angle and airspeed, this problem forms the basis of the report. A simplified equation is presented showing the basic parameters which govern the flight path angle and airspeed changes, and pilot control techniques are discussed in relation to this equation. Attention is given to several independent aerodynamic characteristics which do not affect the flight path angle or airspeed directly but which determine to a large extent the effort and attention required of the pilot in controlling these factors during the approach. These include stall characteristics, stability about all axes, and changes in trim due to thrust adjustments. The report considers the relationship between piloting technique and all of the factors previously mentioned. A piloting technique which was found to be highly desirable for control of high-performance airplanes is described and the pilot's attitudes toward low-speed flight which bear heavily on the selection of landing approach speeds under operational conditions are discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-MEMO-10-6-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-31
    Description: The hazards of lightning strokes to aircraft fuel tanks have been investigated in artificial-lightning-generation facilities specifically constructed to duplicate closely the natural lightning discharges to air craft determined through flight research programs and analysis of lightning-damaged aircraft over a period of many years. Explosion studies were made in an environmental explosion chamber using small fuel tanks under various simulated flight conditions. The results showed that there is a primary hazard whenever there is direct puncture of the fuel-tank wall, whereas the ignition of fuel by hot spots on tank walls due to lightning strikes is unlikely. Punctures of fuel-tank walls by artificial-lightning discharges produced explosions of the fuel in the mixture range from excessively lean to rich mixtures. None of the aluminum alloys, 0.081 inch thick or over, were punctured by the laboratory discharges representative of natural-lightning discharges to aircraft; however, reliance on this wall thickness for complete protection would not be justified, because occasional strokes are known to be of greater magnitude and because statistics reveal variations in the damage pattern. Data gathered by the Lightning and Transients Research Institute on lightning strokes to aircraft show that 90 percent of the strokes recorded have occurred in the temperature range of -10 to +10 C, where many of the jet fuels are flammable but where aviation gasoline is overrich. Also, 10 percent of the strokes recorded have been to the wings, which are the principal fuel-storage areas for modern aircraft. Thus, there is a hazard, particularly for jet fuels. Certain protective measures are indicated by the studies to date, such as the use of lightning diverter rods, thickening of the wing skin in areas near the most probable stroke paths, and the use of fuel-tank liners in critical areas.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-4326
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...