ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (38,631)
  • Achnanthes clevei; Achnanthes dispar; Achnanthes exigua; Achnanthes hauckiana; Achnanthes hungarica; Achnanthes lanceolata; Achnanthes lanceolata var. elliptica; Achnanthes microcephala; Actinocyclus ehrenbergi; Amphora holsatica; Amphora normani; Amphora ovalis; Amphora ovalis var. pediculus; Amphora robusta; Anomoeoneis sphaerophora; Biddulphia levis; Biddulphia subaequa; Caloneis amphisbaena; Caloneis bacillum; Caloneis ladogensis; Caloneis obtusa; Caloneis permagna; Caloneis schumanniana; Caloneis schumanniana var. biconstricta; Caloneis silicula; Caloneis zachariasi; Campylodiscus bicostatus; Campylodiscus clypeus; Campylodiscus echeneis; Campylodiscus noricus var. hibernica; Chaetoceros sp.; Cocconeis diminuta; Cocconeis disculus; Cocconeis pediculus; Cocconeis placentula; Coscinodiscus asteromphalus; Coscinodiscus commutatus; Coscinodiscus excentricus; Coscinodiscus lacustris; Coscinodiscus radiatus; Coscinodiscus rothii var. subsalsa; Cyclotella antiqua; Cyclotella comta; Cyclotella kuetzingiana; Cyclotella meneghiniana; Cyclotella striata var. ambigua; Cymatopleura elliptica; Cymatopleura solea; Cymbella affinis; Cymbella aspera; Cymbella cistula; Cymbella cuspidata; Cymbella cymbiformis; Cymbella ehrenbergi; Cymbella lanceolata; Cymbella leptoceros; Cymbella naviculiformis; Cymbella prostrata; Cymbella tumida; Cymbella ventricosa; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatoma elongatum; Diatoma vulgaris; Didymosphenia geminata; Diploneis didyma; Diploneis domblittensis; Diploneis domblittensis var. subconstricta; Diploneis elliptica; Diploneis interrupta; Diploneis marginestriata; Diploneis oculata; Diploneis ovalis; Diploneis puella; Diploneis smithii; Epithemia argus; Epithemia hyndmanni; Epithemia intermedia; Epithemia muelleri; Epithemia sorex; Epithemia sorex var. gracilis; Epithemia turgida; Epithemia zebra; Epithemia zebra var. porcellus; Epithemia zebra var. saxonica; Eucocconeis flexella; Eunotia gracilis; Eunotia pectinalis; Eunotia praerupta; Event label; Fragilaria brevistriata; Fragilaria construens; Fragilaria inflata; Fragilaria intermedia; Fragilaria lapponica; Fragilaria leptostauron; Fragilaria pinnata; Fragilaria virescens; Frustulia rhomboides; Frustulia vulgaris; Geological sample; GEOS; Gomphocymbella ancyli; Gomphonema acuminatum; Gomphonema angustatum; Gomphonema constrictum; Gomphonema intricatum; Gomphonema olivaceum; Gomphonema parvulum; Grammatophora oceanica; Gyrosigma acuminatum; Gyrosigma attenuatum; Hantzschia amphioxys; KH_II-1; KH_II-2; KH_III-12; KH_III-3; KH_III-5; KH_III-8; KH_Memeler-Tief; KH_V-5; KH_VI-3; KH_VII-10; KH_VII-18N; KH_VII-19N; KH_VII-2; KH_X-7a; KH_XIII-13; KH_XIII-19; Mastogloia elliptica; Mastogloia elliptica var. dansei; Mastogloia grevillei; Mastogloia smithi; Mastogloia smithi var. amphicephala; Mastogloia smithi var. lacustris; Melosira ambigua; Melosira arenaria; Melosira binderiana; Melosira distans; Melosira granulata; Melosira italica; Melosira varians; Meridion circulare; Navicula amphibola; Navicula anglica; Navicula bacillum; Navicula binodis; Navicula cari; Navicula costulata; Navicula crucicula; Navicula cryptocephala; Navicula cuspidata; Navicula cuspidata var. ambigua; Navicula dicephala; Navicula exigua; Navicula forcipata; Navicula gastrum; Navicula gracilis; Navicula gracilloides; Navicula humerosa; Navicula hungarica; Navicula hungarica var. capitata; Navicula integra; Navicula jentzschi; Navicula lacustris; Navicula lanceolata; Navicula laterostrata; Navicula latissima; Navicula menisculus; Navicula oblonga; Navicula optima; Navicula peregrina; Navicula placentula; Navicula platystoma; Navicula protracta; Navicula pseudotuscula; Navicula pupula; Navicula pusilla; Navicula pygmaea; Navicula radiosa; Navicula reinhardtii; Navicula rhynchocephala; Navicula schoenfeldii; Navicula scutelloides; Navicula tuscula; Navicula viridula; Navicula vulpina; Neidium affine; Neidium affine var. amphirhynchus; Neidium bisulcatum; Neidium dubium; Neidium dubium var. constricta; Neidium iridis; Neidium kozlowi; Neidium productum; Nitzschia amphibia; Nitzschia angustata; Nitzschia capitellata; Nitzschia circumsuta; Nitzschia denticula var. ancyli; Nitzschia gracilis; Nitzschia scalaris; Nitzschia sigma; Nitzschia sigmoidea; Nitzschia sinuata var. tabellaria; Nitzschia tryblionella; Number; Opephora martyi; Pinnularia cardinalis; Pinnularia divergens; Pinnularia episcopalis; Pinnularia esox; Pinnularia gentilis; Pinnularia gibba; Pinnularia interrupta; Pinnularia major; Pinnularia mesolepta; Pinnularia microstauron; Pinnularia microstauron var. ambigua; Pinnularia microstauron var. brebissoni; Pinnularia nobilis; Pinnularia streptoraphe; Pinnularia subcapitata; Pinnularia viridis; Rhabdonema arcuatum; Rhoicosphenia curvata; Rhopalodia gibba; Sample code/label; Stauroneis acuta; Stauroneis anceps; Stauroneis phoenicenteron; Stauroneis smithi; Stephanodiscus astraea; Surirella bifida; Surirella biseriata; Surirella biseriata var. bifrons; Surirella biseriata var. bifrons forma punctata; Surirella biseriata var. rostrata; Surirella caproni; Surirella elegans; Surirella linearis; Surirella linearis var. constricta; Surirella linearis var. helvetica; Surirella ovata; Surirella robusta; Surirella robusta var. splendida; Surirella striatula; Surirella tenera; Surirella tenera var. nervosa; Synedra capitata; Synedra pulchella; Synedra tabulata; Synedra ulna; Synedra vaucheriae; Tabellaria fenestrata; Tabellaria flocculosa; Terpsinoe americana; Thalassiosira baltica; Vavicula cincta; Vistula Lagoon, Baltic Sea
  • Wiley-Blackwell  (38,631)
  • PANGAEA  (1)
  • 1975-1979  (29,408)
  • 1950-1954  (9,224)
Collection
Keywords
  • Chemistry  (38,631)
  • Achnanthes clevei; Achnanthes dispar; Achnanthes exigua; Achnanthes hauckiana; Achnanthes hungarica; Achnanthes lanceolata; Achnanthes lanceolata var. elliptica; Achnanthes microcephala; Actinocyclus ehrenbergi; Amphora holsatica; Amphora normani; Amphora ovalis; Amphora ovalis var. pediculus; Amphora robusta; Anomoeoneis sphaerophora; Biddulphia levis; Biddulphia subaequa; Caloneis amphisbaena; Caloneis bacillum; Caloneis ladogensis; Caloneis obtusa; Caloneis permagna; Caloneis schumanniana; Caloneis schumanniana var. biconstricta; Caloneis silicula; Caloneis zachariasi; Campylodiscus bicostatus; Campylodiscus clypeus; Campylodiscus echeneis; Campylodiscus noricus var. hibernica; Chaetoceros sp.; Cocconeis diminuta; Cocconeis disculus; Cocconeis pediculus; Cocconeis placentula; Coscinodiscus asteromphalus; Coscinodiscus commutatus; Coscinodiscus excentricus; Coscinodiscus lacustris; Coscinodiscus radiatus; Coscinodiscus rothii var. subsalsa; Cyclotella antiqua; Cyclotella comta; Cyclotella kuetzingiana; Cyclotella meneghiniana; Cyclotella striata var. ambigua; Cymatopleura elliptica; Cymatopleura solea; Cymbella affinis; Cymbella aspera; Cymbella cistula; Cymbella cuspidata; Cymbella cymbiformis; Cymbella ehrenbergi; Cymbella lanceolata; Cymbella leptoceros; Cymbella naviculiformis; Cymbella prostrata; Cymbella tumida; Cymbella ventricosa; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatoma elongatum; Diatoma vulgaris; Didymosphenia geminata; Diploneis didyma; Diploneis domblittensis; Diploneis domblittensis var. subconstricta; Diploneis elliptica; Diploneis interrupta; Diploneis marginestriata; Diploneis oculata; Diploneis ovalis; Diploneis puella; Diploneis smithii; Epithemia argus; Epithemia hyndmanni; Epithemia intermedia; Epithemia muelleri; Epithemia sorex; Epithemia sorex var. gracilis; Epithemia turgida; Epithemia zebra; Epithemia zebra var. porcellus; Epithemia zebra var. saxonica; Eucocconeis flexella; Eunotia gracilis; Eunotia pectinalis; Eunotia praerupta; Event label; Fragilaria brevistriata; Fragilaria construens; Fragilaria inflata; Fragilaria intermedia; Fragilaria lapponica; Fragilaria leptostauron; Fragilaria pinnata; Fragilaria virescens; Frustulia rhomboides; Frustulia vulgaris; Geological sample; GEOS; Gomphocymbella ancyli; Gomphonema acuminatum; Gomphonema angustatum; Gomphonema constrictum; Gomphonema intricatum; Gomphonema olivaceum; Gomphonema parvulum; Grammatophora oceanica; Gyrosigma acuminatum; Gyrosigma attenuatum; Hantzschia amphioxys; KH_II-1; KH_II-2; KH_III-12; KH_III-3; KH_III-5; KH_III-8; KH_Memeler-Tief; KH_V-5; KH_VI-3; KH_VII-10; KH_VII-18N; KH_VII-19N; KH_VII-2; KH_X-7a; KH_XIII-13; KH_XIII-19; Mastogloia elliptica; Mastogloia elliptica var. dansei; Mastogloia grevillei; Mastogloia smithi; Mastogloia smithi var. amphicephala; Mastogloia smithi var. lacustris; Melosira ambigua; Melosira arenaria; Melosira binderiana; Melosira distans; Melosira granulata; Melosira italica; Melosira varians; Meridion circulare; Navicula amphibola; Navicula anglica; Navicula bacillum; Navicula binodis; Navicula cari; Navicula costulata; Navicula crucicula; Navicula cryptocephala; Navicula cuspidata; Navicula cuspidata var. ambigua; Navicula dicephala; Navicula exigua; Navicula forcipata; Navicula gastrum; Navicula gracilis; Navicula gracilloides; Navicula humerosa; Navicula hungarica; Navicula hungarica var. capitata; Navicula integra; Navicula jentzschi; Navicula lacustris; Navicula lanceolata; Navicula laterostrata; Navicula latissima; Navicula menisculus; Navicula oblonga; Navicula optima; Navicula peregrina; Navicula placentula; Navicula platystoma; Navicula protracta; Navicula pseudotuscula; Navicula pupula; Navicula pusilla; Navicula pygmaea; Navicula radiosa; Navicula reinhardtii; Navicula rhynchocephala; Navicula schoenfeldii; Navicula scutelloides; Navicula tuscula; Navicula viridula; Navicula vulpina; Neidium affine; Neidium affine var. amphirhynchus; Neidium bisulcatum; Neidium dubium; Neidium dubium var. constricta; Neidium iridis; Neidium kozlowi; Neidium productum; Nitzschia amphibia; Nitzschia angustata; Nitzschia capitellata; Nitzschia circumsuta; Nitzschia denticula var. ancyli; Nitzschia gracilis; Nitzschia scalaris; Nitzschia sigma; Nitzschia sigmoidea; Nitzschia sinuata var. tabellaria; Nitzschia tryblionella; Number; Opephora martyi; Pinnularia cardinalis; Pinnularia divergens; Pinnularia episcopalis; Pinnularia esox; Pinnularia gentilis; Pinnularia gibba; Pinnularia interrupta; Pinnularia major; Pinnularia mesolepta; Pinnularia microstauron; Pinnularia microstauron var. ambigua; Pinnularia microstauron var. brebissoni; Pinnularia nobilis; Pinnularia streptoraphe; Pinnularia subcapitata; Pinnularia viridis; Rhabdonema arcuatum; Rhoicosphenia curvata; Rhopalodia gibba; Sample code/label; Stauroneis acuta; Stauroneis anceps; Stauroneis phoenicenteron; Stauroneis smithi; Stephanodiscus astraea; Surirella bifida; Surirella biseriata; Surirella biseriata var. bifrons; Surirella biseriata var. bifrons forma punctata; Surirella biseriata var. rostrata; Surirella caproni; Surirella elegans; Surirella linearis; Surirella linearis var. constricta; Surirella linearis var. helvetica; Surirella ovata; Surirella robusta; Surirella robusta var. splendida; Surirella striatula; Surirella tenera; Surirella tenera var. nervosa; Synedra capitata; Synedra pulchella; Synedra tabulata; Synedra ulna; Synedra vaucheriae; Tabellaria fenestrata; Tabellaria flocculosa; Terpsinoe americana; Thalassiosira baltica; Vavicula cincta; Vistula Lagoon, Baltic Sea
  • Polymer and Materials Science  (15,307)
  • General Chemistry  (6,501)
  • Organic Chemistry  (5,499)
  • +
Publisher
Years
Year
  • 1
    Publication Date: 2023-07-09
    Keywords: Achnanthes clevei; Achnanthes dispar; Achnanthes exigua; Achnanthes hauckiana; Achnanthes hungarica; Achnanthes lanceolata; Achnanthes lanceolata var. elliptica; Achnanthes microcephala; Actinocyclus ehrenbergi; Amphora holsatica; Amphora normani; Amphora ovalis; Amphora ovalis var. pediculus; Amphora robusta; Anomoeoneis sphaerophora; Biddulphia levis; Biddulphia subaequa; Caloneis amphisbaena; Caloneis bacillum; Caloneis ladogensis; Caloneis obtusa; Caloneis permagna; Caloneis schumanniana; Caloneis schumanniana var. biconstricta; Caloneis silicula; Caloneis zachariasi; Campylodiscus bicostatus; Campylodiscus clypeus; Campylodiscus echeneis; Campylodiscus noricus var. hibernica; Chaetoceros sp.; Cocconeis diminuta; Cocconeis disculus; Cocconeis pediculus; Cocconeis placentula; Coscinodiscus asteromphalus; Coscinodiscus commutatus; Coscinodiscus excentricus; Coscinodiscus lacustris; Coscinodiscus radiatus; Coscinodiscus rothii var. subsalsa; Cyclotella antiqua; Cyclotella comta; Cyclotella kuetzingiana; Cyclotella meneghiniana; Cyclotella striata var. ambigua; Cymatopleura elliptica; Cymatopleura solea; Cymbella affinis; Cymbella aspera; Cymbella cistula; Cymbella cuspidata; Cymbella cymbiformis; Cymbella ehrenbergi; Cymbella lanceolata; Cymbella leptoceros; Cymbella naviculiformis; Cymbella prostrata; Cymbella tumida; Cymbella ventricosa; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatoma elongatum; Diatoma vulgaris; Didymosphenia geminata; Diploneis didyma; Diploneis domblittensis; Diploneis domblittensis var. subconstricta; Diploneis elliptica; Diploneis interrupta; Diploneis marginestriata; Diploneis oculata; Diploneis ovalis; Diploneis puella; Diploneis smithii; Epithemia argus; Epithemia hyndmanni; Epithemia intermedia; Epithemia muelleri; Epithemia sorex; Epithemia sorex var. gracilis; Epithemia turgida; Epithemia zebra; Epithemia zebra var. porcellus; Epithemia zebra var. saxonica; Eucocconeis flexella; Eunotia gracilis; Eunotia pectinalis; Eunotia praerupta; Event label; Fragilaria brevistriata; Fragilaria construens; Fragilaria inflata; Fragilaria intermedia; Fragilaria lapponica; Fragilaria leptostauron; Fragilaria pinnata; Fragilaria virescens; Frustulia rhomboides; Frustulia vulgaris; Geological sample; GEOS; Gomphocymbella ancyli; Gomphonema acuminatum; Gomphonema angustatum; Gomphonema constrictum; Gomphonema intricatum; Gomphonema olivaceum; Gomphonema parvulum; Grammatophora oceanica; Gyrosigma acuminatum; Gyrosigma attenuatum; Hantzschia amphioxys; KH_II-1; KH_II-2; KH_III-12; KH_III-3; KH_III-5; KH_III-8; KH_Memeler-Tief; KH_V-5; KH_VI-3; KH_VII-10; KH_VII-18N; KH_VII-19N; KH_VII-2; KH_X-7a; KH_XIII-13; KH_XIII-19; Mastogloia elliptica; Mastogloia elliptica var. dansei; Mastogloia grevillei; Mastogloia smithi; Mastogloia smithi var. amphicephala; Mastogloia smithi var. lacustris; Melosira ambigua; Melosira arenaria; Melosira binderiana; Melosira distans; Melosira granulata; Melosira italica; Melosira varians; Meridion circulare; Navicula amphibola; Navicula anglica; Navicula bacillum; Navicula binodis; Navicula cari; Navicula costulata; Navicula crucicula; Navicula cryptocephala; Navicula cuspidata; Navicula cuspidata var. ambigua; Navicula dicephala; Navicula exigua; Navicula forcipata; Navicula gastrum; Navicula gracilis; Navicula gracilloides; Navicula humerosa; Navicula hungarica; Navicula hungarica var. capitata; Navicula integra; Navicula jentzschi; Navicula lacustris; Navicula lanceolata; Navicula laterostrata; Navicula latissima; Navicula menisculus; Navicula oblonga; Navicula optima; Navicula peregrina; Navicula placentula; Navicula platystoma; Navicula protracta; Navicula pseudotuscula; Navicula pupula; Navicula pusilla; Navicula pygmaea; Navicula radiosa; Navicula reinhardtii; Navicula rhynchocephala; Navicula schoenfeldii; Navicula scutelloides; Navicula tuscula; Navicula viridula; Navicula vulpina; Neidium affine; Neidium affine var. amphirhynchus; Neidium bisulcatum; Neidium dubium; Neidium dubium var. constricta; Neidium iridis; Neidium kozlowi; Neidium productum; Nitzschia amphibia; Nitzschia angustata; Nitzschia capitellata; Nitzschia circumsuta; Nitzschia denticula var. ancyli; Nitzschia gracilis; Nitzschia scalaris; Nitzschia sigma; Nitzschia sigmoidea; Nitzschia sinuata var. tabellaria; Nitzschia tryblionella; Number; Opephora martyi; Pinnularia cardinalis; Pinnularia divergens; Pinnularia episcopalis; Pinnularia esox; Pinnularia gentilis; Pinnularia gibba; Pinnularia interrupta; Pinnularia major; Pinnularia mesolepta; Pinnularia microstauron; Pinnularia microstauron var. ambigua; Pinnularia microstauron var. brebissoni; Pinnularia nobilis; Pinnularia streptoraphe; Pinnularia subcapitata; Pinnularia viridis; Rhabdonema arcuatum; Rhoicosphenia curvata; Rhopalodia gibba; Sample code/label; Stauroneis acuta; Stauroneis anceps; Stauroneis phoenicenteron; Stauroneis smithi; Stephanodiscus astraea; Surirella bifida; Surirella biseriata; Surirella biseriata var. bifrons; Surirella biseriata var. bifrons forma punctata; Surirella biseriata var. rostrata; Surirella caproni; Surirella elegans; Surirella linearis; Surirella linearis var. constricta; Surirella linearis var. helvetica; Surirella ovata; Surirella robusta; Surirella robusta var. splendida; Surirella striatula; Surirella tenera; Surirella tenera var. nervosa; Synedra capitata; Synedra pulchella; Synedra tabulata; Synedra ulna; Synedra vaucheriae; Tabellaria fenestrata; Tabellaria flocculosa; Terpsinoe americana; Thalassiosira baltica; Vavicula cincta; Vistula Lagoon, Baltic Sea
    Type: Dataset
    Format: text/tab-separated-values, 2555 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 1841-1846 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conformational phase diagram of poly(L-lysine) (4.6 × 10-4 M, residue) in sodium dodecyl sulfate (1.6 × 10-2 M) solution was constructed from circular dichroism results at various temperatures and pH's. Poly(L-lysine)-sodium dodecyl sulfate complexes undergo a β-helix transition upon raising the pH of the solution. The transition pH tends to shift downward at elevated temperatures. No helix-β transition can be detected for poly(L-lysine) in sodium dodecyl sulfate solution (pH 〉 11) even after 1-hr heating at 70°C. This is in marked contrast with uncharged poly(L-lysine) solution without sodium dodecyl sulfate, which is converted into the β-form upon mild heating of the solution above 50°C.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 1885-1903 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A normal coordinate analysis of V-amylose has been performed for an isolated 61 helical chain. Negligible splitting from interactions of vibrations of successive residues is expected between A and E vibrational species due to the large size of the monomer unit. As a result, calculation of only the totally symmetric A modes represents an adequate approximation to the vibrational spectrum of helical polysaccharides. Using this method together with a valence force field we have obtained good agreement between the observed and calculated frequencies. In addition, the computed potential energy distribution and Cartesian displacement coordinates match previous experimental assignments, based on deuterium exchange. The analysis also supports the proposed mechanism for conversion of V-amylose to the more extended B-form. This conversion results in an observed frequency shift for the Raman line at 946 cm-1 which is predicted by the calculations.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 2025-2033 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The circular dichroism of Ac-(Ala)x-OMe and H-Lys-(Lys)x-OH with x = 1, 2, 3, and 4 has been measured in aqueous solutions. The oligomers with x = 4 show similar circular dichroism spectra in water when the lysyl amino groups are protonated, and they respond in similar fashion to heating and to sodium perchlorate. Both oligomers at 15°C exhibit a positive circular dichroism band at 217-218 nm, which is eliminated by the isothermal addition of 4 M sodium perchlorate or by heating. The positive circular dichroism of the lysine oligomer is also eliminated when the pH is elevated to deprotonate the amino groups. Positive circular dichroism is still observed for Ac-(Ala)4-OMe at elevated pH. Circular dichroism spectra have been estimated for poly(L-alanine) and poly(L-lysine) as statistical coils under the above conditions, based on the trends established with the oligomers. Poly(L-lysine) and poly(L-alanine) are predicted to exhibit similar circular dichroism behavior in aqueous solution so long as the lysyl amino groups are protonated. The circular dichroism of the statistical coil of poly(L-lysine), but not poly(L-alanine), is predicted to change when the pH is elevated sufficiently to deprotonate the lysyl amino groups. These results suggest that the unionized lysyl side chains participate in interactions that are not available to poly(L-alanine). Hydrophobic interactions may occur between the unionized lysyl side chains. Protonation of the lysyl amino groups is proposed to disrupt these interactions, causing poly(L-alanine) and protonated poly(L-lysine) to have similar circular dichroism properties.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Synthesis of nonapeptide hydrazide (sequence 93-101), [Thr107]-decapeptide (sequence 99-108), [Thr107]-tridecapeptide (sequence 96-108), [Thr107]-hexadecapeptide (sequence 93-108), [Thr107]-heptacosapeptide (sequence 82-108), and Nα-benzyloxycarbonyl-[Thr107]-dotetracontapeptide (sequence 67-108) of the proposed primary structure of baker's yeast iso-1-cytochrome c are described. Evidence is presented to indicate that these materials are sequentially homogeneous.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 2115-2135 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Poly-β-benzyl-L-aspartate (poly[Asp(OBzl)]) forms either a lefthanded α-helix, β-sheet, ω-helix, or random coil under appropriate conditions. In this paper the Raman spectra of the above poly[Asp(OBzl)] conformations are compared. The Raman active amide I line shifts from 1663 cm-1 to 1679 cm-1 upon thermal conversion of poly[Asp(OBzl)] from the α-helical to β-sheet conformation while an intense line appearing at 890 cm-1 in the spectrum of the α-helix decreases in intensity. The 890 cm-1 line also displays weak intensity when the polymer is dissolved in chloroform-dichloroacetic acid solution and therefore is converted to the random coil. This line probably arises from a skeletal vibration and is expected to be conformationally sensitive. Similar behavior in the intensity of skeletal vibrations is discussed for other polypeptides undergoing conformational transitions.The Raman spectra of two cross-β-sheet copolypeptides, poly(Ala-Gly) and poly(Ser-Gly), are examined. These sequential polypeptides are model compounds for the crystalline regions of Bombyx mori silk fibroin which forms an extensive β-sheet structure. The amide I, III, and skeletal vibrations appeared in the Raman spectra of these polypeptides at the frequencies and intensities associated with β-sheet homopolypeptides. Since the sequential copolypeptides are intermediate in complexity between the homopolypeptides and the proteins, these results indicate that Raman structure-frequency correlations obtained from homopolypeptide studies can now be applied to protein spectra with greater confidence.The perturbation scheme developed by Krimm and Abe for explaining the frequency splitting of the amide I vibrations in β-sheet polyglycine is applied to poly(L-valine), poly-(Ala-Gly), poly(Ser-Gly), and poly[Asp(OBzl)]. The value of the “unperturbed” frequency, V0, for poly[Asp(OBzl)] was significantly greater than the corresponding values for the other polypeptides. A structural origin for this difference may be displacement of adjacent hydrogen-bonded chains relative to the standard β-sheet conformation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975) 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Circular dichroism studies on synthetic peptides related to the C-terminal region of yeast iso-1-cytochrome c were carried out and compared with conformational studies on horse cytochrome c fragments. Evidence is presented for a weaker predisposition for ordered structure in the former peptides when compared with the corresponding region in horse cytochrome c. These findings agree with theoretical predictions and with observations that yeast and other mammalian type cytochromes c differ in several minor respects.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 2107-2114 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A polarimetric electric-field-jump relaxation apparatus is described and used to determine the relaxation spectrum for the helix-coil transition of poly(α,L-glutamic acid) in water at 24°C. A maximum relaxation time of 1.7 μc occurs at the transition midpoint (pH = 5.9) yielding a rate constant for helical growth of 6 × 107 sec-1.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 2181-2195 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Mixtures of a weak polybase (polyethylenimine) and a weak polyacid acrylamide-acrylic acid copolymer in aqueous solutions at several ionic strengths and polymer concentrations are studied potentiometrically. When the concentrations of the polyethylenimine and acrylamide-acrylic acid copolymer charges are not too different, phase separation into two liquid phases (“complex coacervation”) is observed. In the pH region where no phase separation occurs, potentiometric titrations are performed on mixtures of both polymers. From the titrations of polyethylenimine solutions, acrylamide-acrylic acid copolymer solutions, and the mixtures, the free energy of interaction has been evaluated according to the theory of Litan. The dependence of the free energy of interaction on pH, polymer concentrations, and ionic strength is explained quantitatively with a model of cooperative electrostatic physical association.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...