ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fine structure  (90)
  • Springer  (90)
  • Blackwell Publishing Ltd
  • Nature Publishing Group
  • 1975-1979  (33)
  • 1970-1974  (57)
Collection
Publisher
  • Springer  (90)
  • Blackwell Publishing Ltd
  • Nature Publishing Group
Years
Year
  • 1
    ISSN: 1420-9136
    Keywords: Continuous emission ; Fine structure ; Ionosphere ; Line emission
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Summary From the theoretical investigation ofLetfus andApostolov (1974) it follows that under flare conditions the intensive X-ray emission lines in the 1–8 Å range have an insignificant contribution to the ionization state of the lower ionosphere in comparison with the enhanced emission of the continuum. This result is experimentally confirmed by direct comparison of the intensity variations of the emission line 1.87 Å (Fe XXV) during the solar flare of 25 July 1967 measured onboard of the OSO III satellite with simultaneous ground observations of the ionization state variations of the lower ionosphere made by the A3 method.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Pedomicrobium ; Budding bacteria ; Iron deposition ; Manganese deposition ; Polymer ; Fine structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Morphological characteristics of two Pedomicrobium-like budding bacteria are described. A structured surface layer was regularly observed on strain 868. Ruthenium red- and Alcian blue-staining polymers were found on both strains. When either strain was grown in the presence of iron or manganese, the corresponding oxides accumulated on their surfaces. In thin sections iron oxides appeared as fine threads, arrays of particles or dense coatings, depending on the source of iron. Manganese oxides appeared as branching filaments or convoluted ribbons. Both metal oxides stained with ruthenium red. Extraction of the oxides followed by ruthenium red staining revealed that polyanionic polymers previously deposited on the cells were associated with the metals. Treatment of cultures with glutaraldehyde, HgCl2, or heat, inhibited manganese but not iron deposition, suggesting that iron oxides accumulated by passive, non-biological processes. Manganese oxides apparently accumulated under control of a biological manganese-oxidizing factor. Incomplete inhibition of manganese deposition observed in cell suspensions suggested that, if the oxidizing factor was an enzyme, it was unusually stable. Based on these results, possible mechanisms of iron and manganese deposition in association with extracellular polymers are suggested.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 107 (1976), S. 313-320 
    ISSN: 1432-072X
    Keywords: Micrococcus radiophilus ; Micrococcus radioproteolyticus ; Bacterial cell walls ; Fine structure ; Electron microscopy ; Taxonomy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The radiation resistant bacteria Micrococcus radiophilus and M. radioproteolyticus were studied by thin sectioning and freeze-etching techniques and the two species were found to be similar in the fine structure. The only significant difference was in the appearance of the surfaces of the cell walls in freeze-etched preparations. Since the two species, together with M. radiodurans, possess a unique cell wall structure and a cell wall peptidoglycan, which is different from that of other micrococci and Gram-positive cocci, it is recommended that they be reclassified into a new genus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Acetobacterium woodii ; Hydrogen-oxidizing acetate-forming anaerobe ; Fine structure ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Acetobacterium woodii is a Gram-positive anaerobic nonsporeforming bacterium able to grow on H2 and CO2 as sole sources of energy. The product of fermentation is acetic acid. Fine structural analysis showed rod-shaped flagellated cells, and coccoid cells without flagella arranged predominantly in pairs and chains. The cell wall was found to be composed of three layers. The cell surface exhibited a periodic array of particles consisting of subunits. The cytoplasmic membrane showed particles either either in random distribution or in a hexagonal pattern. Intracytoplasmic membranes were rarely observed, whereas inclusion bodies of varying shapes, predominantly in an uncommon disc-shape, could frequently be observed. Their content was dissolved in ultrathin sections indicating hydrophobic nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Phycobilisomes ; Phycobiliproteins ; Cyanobacteria ; Chromatic adaptation ; Fine structure ; Photosynthesis ; Protein assembly
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phycobilisomes, supramolecular complexes of water-soluble accessory pigments, serve as the major light-harvesting antennae in cyanobacteria and red algae. Regular arrays of these organelles are found on the surface of the thylakoid membranes of these organisms. In the present study, the hemi-discoidal phycobilisomes of several species of cyanobacteria were examined in thin sections of cells and by negative staining after isolation and fixation. Their fundamental structures were found to be the same. Isolated phycobilisomes possessed a triangular core assembled from three stacks of disc-shaped subunits. Each stack contained two discs which were ∼12 nm in diameter and ∼6–7 nm thick. Each of these discs was probably subdivided into halves ∼3–3.5 nm thick. Radiating from each of two sides of the triangular core were three rods ∼12 nm in diameter. Each rod consisted of stacks of 2 to 6 disc-shaped subunits ∼6 nm thick. These discs were subdivided into halves ∼3 nm thick. The average number of discs of ∼6 nm thickness forming the peripheral rods varied among the strains studied. For certain chromatically adapting strains, the average rod length was dependent upon the wavelength of light to which cells were exposed during growth. Analyses of phycobilisomes by spectroscopic techniques, polyacrylamide gel electrophoresis, and electron microscopy were compared. These analyses suggested that the triangular core was composed of allophycocyanin and that the peripheral rods contained phycocyanin and phycoerythrin (when present). A detailed model of the hemi-discoidal phycobilisome is proposed. This model can account for many aspects of phycobiliprotein assembly and energy transfer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Microtubules ; Anabaena ; Microtilaments ; Microplate-microtubule array ; Fine structure ; Blue-green algae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A microplate-microtubule array was observed in Anabaena sp. (B-378). This structure consists of an arched plate, about 8 nm thick, and various microtubules, 12 nm in diameter and 50 nm long, arranged in rows. The microtubules project at right angles from one side of the plate into the cytoplasm or towards the plasma membrane. Up to twelve microplate-microtubule arrays were observed in a single section of a cell. Microfilaments, about 2.8 nm in diameter and of undetermined length, were observed in four isolates of Anabaena. The microfilaments were always found in bundles, which varied in size, up to 0.63 μm across and 0.91 μ long. Microtubules, 10 nm in diameter and about 150 nm in length, were observed associated with one facet of polyhedral bodies in 8 out of 20 isolates of Anabaena. The microtubules occurred in groups of up to 20 or more, and were always oriented with the long axis parallel to a facet of a polyhedral body. In cross section, the microtubules had an electron transparent lumen 5 nm wide and a wall 2.5 nm thick. These structures are compared to previously deseribed microtubules and microfilaments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 120 (1979), S. 205-213 
    ISSN: 1432-072X
    Keywords: Cytoplasmic fibrils ; Treponemes ; Treponema refringens ; Fine structure ; Cell lysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cytoplasmic fibrils of Treponema refringens were studied in situ by electron microscopy of thin sectioned and negatively stained cells. From 5 to 21 parallel fibrils ran through the cell in a band adjacent to the inner side of the cytoplasmic membrane, on the inner sides of the curves of the spirochete. The nuclear areas of cells were adjacent to the fibrils. Cross sections of fibrils isolated from cells which had been lysed were polygonal and not uniformly electron dense. Polyacrylamide gel electrophoresis of partially purified fibril preparations indicated their main component to be a protein with a molecular weight of 97,000. Fibrils were solubilized by 1% trypsin, 1% pronase, 6 M urea, 1 N HCl, 0.005 N NaOH or 1.3% sodium dodecyl sulfate. By electron microscopy of negatively stained isolated fibrils, each fibril was found to be a complex arrangement of strands rather than a single tubule.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 111 (1970), S. 15-31 
    ISSN: 1432-0878
    Keywords: Subcommissural organ ; Toads ; Apical secretion ; Fine structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ependymal cells of the toad subcommissural organ produce pale and dense secretory granules. Both types of granules are mainly concentrated in the apical cytoplasm and in the perinuclear region. Pale and dense granules are synthesized by and packed in the rough endoplasmic reticulum, bypassing the step of the Golgi apparatus. The apical cytoplasm of some subcommissural ependymal cells protrudes into the ventricle. All the cells project a few cilia and numerous slender, long microvilli into the ventricular lumen. Contacting the cilia and the microvilli there is a filamentous material identical to that observed in the fibre of Reissner at the aqueduct of Sylvius. In addition to filaments, the fibre of Reissner contains vacuolar formations. The fibre is surrounded by numerous ependymal cilia, some of which are embedded in the filamentous material of the fibre. The presence of numerous microvilli projected into the ventricle and the large number of vesicles scattered in the supranuclear cytoplasm seem to indicate that the subcommissural organ may have absorption functions. The fact that the intercellular space of the ependymal layer of the subcommissural organ is not separated from the ventricular lumen by tight junctions but by zonulae adhaerentes could indicate that the cerebrospinal fluid penetrates these intercellular spaces bathing all sides of the ependymal cells. The presence in the ependymal cells of vesicles opening into the intercellular space would be in agreement with the latter possibility. There are some ultrastructural differences between the ependymal cells of the cephalic end of the subcommissural organ and those of the caudal end. A critical analysis of Reissner's fibre formation is made.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 112 (1971), S. 212-246 
    ISSN: 1432-0878
    Keywords: Spiders ; Cupiennius salei ; Slit sense organs ; Fine structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Zusammenfassung Ein großes Einzelspaltsinnesorgan auf dem Tarsus der Spinne Cupienniua salei Keys. wird elektronenmikroskopisch untersucht und mit einem kleinen tarsalen Einzelorgan sowie dem zusammengsetzten (lyriformen) Organ des Metatarsus verglichen. 1. Der sog. Spalt besteht aus zwei Anteilen: a) Der in der Exocuticula gelegene hat die Gestalt einer Rinne (Länge ca. 51 μm, Breite ca. 2,2 μm), welche an den Enden ihrer Längserstreckung flach ist und in einer Mittelzone die Exocuticula bis auf einen ca. 0,23 μm starken Boden (innere Membran = M.i.) durchstößt. Die Exocuticula bildet um den Spalt herum einen verstärkenden Rahmen mit spezifischer Anordnung der exocuticularen Lamellen. b) Der in Meso- und Endocuticula gelegene Anteil öffnet sich von M. i. aus glockenförmig zur Epidermis hin. 2. Der Spalt ist überall von einer ca. 0,25 μm dicken Membran (äußere Membran M.a.) bedeckt, deren quantitativ wichtigste Komponente elektronenoptisch der innersten Lage der Epicuticula (dense layer) gleicht. 3. Das Spaltsinnesorgan wird von zwei Dendriten innerviert. Während einer davon nahe M.i. endet, zieht der andere durch eine Öffnung in dieser bis zu M. a. 4. Beide Dendrite weisen dieselbe feinstrukturelle Dreigliederung auf. a) Der dem Zellsoma folgende Abschnitt enthält Tubuli und einige randständige Mitochondrien. b) Nach distal folgt eine mitochondrienreiche und tubuluslose Dendritenanschwellung. c) Der somafernste Abschnitt beginnt mit einer Ciliarstruktur, deren Basalkörper in der Anschwellung liegen. Er zeichnet sich durch zahlreiche von periodischen Querstrukturen miteinander verbundene Tubuli sowie das vollkommene Fehlen von Mitochondrien aus. 5. Distal von der Ciliarstruktur umgibt eine gemeinsame elektronendichte Scheide die beiden Dendrite. 6. In der Mittelzone ihrer Längserstreckung bildet M.a. an einem in der Aufsicht tropfenförmigen und leicht versenkten Flächenausschnitt eine zylinderförmige Vertiefung (Tiefe ca. 1 μm, ø ca. 0,5 μm) aus, durch deren Boden der längere Dendrit samt Scheide hindurchzieht, um als fingerförmige Erhebung in dem Zylinder zu enden. Das Ende dieses Dendriten zeichnet sich durch eine extra- und intrazelluläre Ansammlung elektronendichter Substanz aus (Tubularkörper). 7. Eine innere und eine äußere Hüllzelle (Hz 1 bzw. Hz 2) umgeben die Dendrite gemeinsam. Hz 1 endet distal auf Höhe der Ciliarkörper, Hz 2 reicht nahe bis zu M.i. Der apikale Bereich von Hz 2 bildet eine große, nach distal offene Invagination aus, welche von Mikrovilli und einer daraufliegenden extrazellulären Substanz gesäumt wird. Elektronenoptisch vergleichbares Material findet sich in einem ausgedehnten Lakunensystem, das weiter proximal von weiteren Zellinvaginationen und erweiterten Extrazellularräumen gebildet wird. 8. Der sensorische Apparat eines kleinen tarsalen Einzelorgans sowie des metatarsalen lyriformen Organs stimmt im wesentlichen mit dem des großen tarsalen Einzelspalts überein.
    Notes: Summary A large single slit sense organ on the tarsus of the spider Cupiennius salei Keys, was examined electronmicroscopically and compared with a small single slit sense organ also on the tarsus and with the compound (lyriform) organ on the metatarsus. 1. The so-called slit consists of two parts. The upper one is a trough-shaped chamber in the exocuticle, flat at both ends of its longitudinal axis and growing deeper towards its mid-portion until only a floor remains 0.23 μm thick (inner membrane of the slit = M.i.). The exocuticle thickens around the slit into a reinforcing frame with specific arrangement of the exocuticular lamellae. The lower part opens out from M.i. like a bell into the meso- and endocuticle. 2. The trough-shaped upper chamber is covered by a membrane 0.25 μm thick (outer membrane of the slit = M.a.). The main component of this membrane resembles the “dense layer” of the epicuticle. 3. The slit is innervated by two dendrites. One of them ends close to M.i. The other passes through an opening of M.i. and runs up to M. a. 4. Both dendrites are composed of three portions markedly different in fine structure. a) The portion close to the soma contains tubules and a modest number of mitochondria. b) More distally a pronounced swelling of the dendrite follows, rich in mitochondria but lacking tubules. c) The most distal part begins with a ciliary configuration of microtubules. Its basal bodies are located in the dendritic swelling. This part does not contain any mitochondria but numerous tubules with a network of electron dense material between them. 5. Distal to their ciliary segments both dendrites are surrounded by a common sheath of high electron density. 6. Viewed from above a slight, flat, tear-shaped depression can be seen in M.a. Towards its middle the depression deepens to form a cylinder (ø 0.5 μm, depth 1 μm). The end of the longer dendrite penetrates the floor of this cylinder and projects like a finger into its interior. About 0.7 μm proximal and distal to the dendrite — M.a. junction, electron dense material accumulates around and within the dendrite (tubular body). 7. Two sheath cells surround both dendrites in common. The inner cell terminates at the level of the ciliary structure. The outer cell continues more distally towards M.i. The apical part of the outer sheath cell forms a large invagination bordered by a microvillous cell membrane and an extracellular layer of medium electron density. A substance very similar or identical with that of the layer is found deeper within the leg in a spaceous lacunar system formed by further cell invaginations and extended extracellular gaps. 8. The fine structure of the input apparatus of a small single slit on the tarsus and the compound lyriform organ on the metatarsus is essentially the same as that of the large single tarsal slit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 113 (1971), S. 420-440 
    ISSN: 1432-0878
    Keywords: Crayfish ; Hepatopancreas ; Cell differentiation ; Digestion ; Fine structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ultrastructure of R-, F-, and B-cells and of the myoepithelial network in crayfish hepatopancreas tubules was studied as a basis for the functional interpretation of hepatopancreatic digestive activity: 1. R-cells absorb luminal nutrients, mainly via contact digestion and molecular transport, and they store and metabolize glycogen and lipids. To this extent, R-cells combine the functions of vertebrate intestinal absorptive and hepatic parenchymal cells. 2. F-cells synthesize digestive enzymes and sequester them in a supranuclear vacuole which enlarges by pinocytic intake of luminal nutrients and fluids. 3. F-cell to B-cell transformation results from continued engorgement of the F-cell's supranuclear vacuole until only the nuclear region and a pinocytically activeapical complex remain identifiable. 4. B-cell secretion involves pinching off of the apical complex followed by extrusion of the enzyme-rich vacuolar contents. 5. The tubule's myoepithelial network consists of circular fibers, each containing a single myofibril, which branch to form longitudinal fibers. Sarcomeres are long (10–12 μ) and each thick myofilament is surrounded by 11–13 thin ones. This arrangement permits coordinated, tonic contractions of tubule segments which transport nutrients “in” and enzymes “out”. 6. Neurosecretory control of tubular function is suggested by the presence of vesicle-containing, extratubular cell processes which contact the circular muscle fibers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...