ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (865,706)
  • 1970-1974  (755,931)
  • 1955-1959  (303,706)
  • 1940-1944  (110,020)
Collection
Years
Year
  • 1
    Publication Date: 2024-07-01
    Description: Sediments from near the basement of a number of Deep Sea Drilling Project (DSDP) sites, from the Bauer Deep, and from the East Pacific Rise have unusually high transition metal-to-aluminum ratios. Similarities in the chemical, isotopic, and mineralogical compositions of these deposits point to a common origin. All the sediments studied have rare-earth-element (REE) patterns strongly resembling the pattern of sea water, implying either that the REE's were coprecipitated with ferromanganese hydroxyoxides (hydroxyoxides denote a mixture of unspecified hydrated oxides and hydroxides), or that they are incorporated in small concentrations of phosphatic fish debris found in all samples. Oxygen isotopic data indicate that the metalliferous sediments are in isotopic equilibrium with sea water and are composed of varying mixtures of two end-member phases with different oxygen isotopic compositions: an iron-manganese hydroxyoxide and an iron-rich montmorillonite. A low-temperature origin for the sediments is supported by mineralogical analyses by x-ray diffraction which show that goethite, iron-rich montmorillonite, and various manganese hydroxyoxides are the dominant phases present. Sr87/Sr86 ratios for the DSDP sediments are indistinguishable from the Sr87/Sr86 ratio in modern sea water. Since these sediments were formed 30 to 90 m.y. ago, when sea water had a lower Sr87/Sr86 value, the strontium in the poorly crystalline hydroxyoxides must be exchanging with interstitial water in open contact with sea water. In contrast, uranium isotopic data indicate that the metalliferous sediments have formed a closed system for this element. The sulfur isotopic compositions suggest that sea-water sulfur dominates these sediments with little or no contribution of magmatic or bacteriologically reduced sulfur. In contrast, ratios of lead isotopes in the metalliferous deposits resemble values for oceanic tholeiite basalt, but are quite different from ratios found in authigenic marine manganese nodules. Thus, lead in the metalliferous sediments appears to be of magmatic origin. The combined mineralogical, isotopic, and chemical data for these sediments suggest that they formed from hydrothermal solutions generated by the interaction of sea water with newly formed basalt crust at mid-ocean ridges. The crystallization of solid phases took place at low temperatures and was strongly influenced by sea water, which was the source for some of the elements found in the sediments.
    Keywords: 5-37; 5-38; 5-39; 7-66; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg5; Leg7; North Pacific/BASIN; North Pacific/HILL
    Type: Dataset
    Format: application/zip, 18 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Christensen, Nikolas I; Salisbury, Matthew H (1973): Velocities, elastic moduli and weathering-age relations for Pacific Layer 2 basalts. Earth and Planetary Science Letters, 19(4), 461-470, https://doi.org/10.1016/0012-821X(73)90190-8
    Publication Date: 2024-07-01
    Description: Compressional (Vp) and shear (Vs) wave velocities have been measured to 10 kb in 32 cores of basalt from 14 Pacific sites of the Deep Sea Drilling Project. Both Vp and V s show wide ranges (3.70 to 6.38 km/sec for Vp and 1.77 to 3.40 km/sec for V s at 0.5 kb) which are linearly related to density and sea floor age, confirming earlier findings by Christensen and Salisbury of decreasing velocity with progressive submarine weathering based on studies of basalts from five sites in the Atlantic. Combined Pacific and Atlantic data give rates of decreasing velocity of -1.89 and -1.35 km/sec per 100 my for Vp and Vs respectively. New analyses of oceanic seismic refraction data indicate a decrease in layer 2 velocities with age similar to that observed in the laboratory, suggesting that weathering penetrates to several hundred meters in many regions and is largely responsible for the extreme range and variability of layer 2 refraction velocities.
    Keywords: 5-32; 5-34; 5-36; 6-54; 6-57; 7-61; 7-61A; 7-63; 7-66; 9-77B; 9-79; 9-82; 9-83; 9-84; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg5; Leg6; Leg7; Leg9; North Pacific; North Pacific/BASIN; North Pacific/HILL; North Pacific/Philippine Sea/RIDGE; North Pacific/PLAIN; North Pacific/RIDGE; North Pacific/VALLEY
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Salisbury, Matthew H; Christensen, Nikolas I (1973): Progressive weathering of submarine basalt with age: further evidence of sea-floor spreading. Geology, 1(2), 63 - 64, https://doi.org/10.1130/0091-7613(1973)1%3C63:PWOSBW%3E2.0.CO;2
    Publication Date: 2024-07-01
    Description: Densities of layer 2 basalt recovered during the Deep Sea Drilling Project have been found to decrease steadily with age, a finding ascribed to progressive submarine weathering in the context of sea-floor spreading. The least-squares solution for 52 density measurements gives a rate of decrease in density of (Delta p)/(Delta t) = -0.0046 g per ccm m.y. = -16 percent per 100 m.y., which is in excellent agreement with earlier estimates based on observed chemical depletion rates of dredged oceanic basalt. Weathering of sea-floor basalt, should it penetrate to any considerable depth in layer 2, will decrease layer 2 seismic refraction velocities, act as a source of geothermal heat, and substantially influence the chemistry of sea water and the overlying column of sediment.
    Keywords: 14-136; 14-137; 14-138; 14-141; 2-10; 3-14; 3-15; 3-18; 3-19; 4-23; 5-32; 5-36; 6-54; 6-57; 7-61; 7-63; 7-66; 9-77B; 9-79; 9-82; 9-83; 9-84; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg14; Leg2; Leg3; Leg4; Leg5; Leg6; Leg7; Leg9; North Atlantic/CONT RISE; North Atlantic/DIAPIR; North Atlantic/HILL; North Pacific; North Pacific/BASIN; North Pacific/HILL; North Pacific/Philippine Sea/RIDGE; North Pacific/PLAIN; North Pacific/RIDGE; North Pacific/VALLEY; South Atlantic/CONT RISE; South Atlantic/HILL; South Atlantic/PLAIN; South Atlantic/RIDGE
    Type: Dataset
    Format: application/zip, 22 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-01
    Description: Analysis of manganese in sediments of the equatorial Pacific.
    Keywords: BC; Box corer; Dredge, bucket; DRG_BU; FFGR; Free-fall grab; Mn-74-01-001-FFG-001; Mn-74-01-001-FFG-002; Mn-74-01-001-FFG-003; Mn-74-01-002-FFG-004; Mn-74-01-002-FFG-006; Mn-74-01-003-FFG-007; Mn-74-01-003-FFG-009; Mn-74-01-005-B2; Mn-74-01-006-FFG-016; Mn-74-01-006-FFG-017; Mn-74-01-006-FFG-018; Mn-74-01-006-FFG-019; Mn-74-01-006-FFG-020; Mn-74-01-006-FFG-021; Mn-74-01-006-FFG-022; Mn-74-01-006-FFG-023; Mn-74-01-006-FFG-025; Mn-74-01-006-FFG-026; Mn-74-01-007-FFG-028; Mn-74-01-007-FFG-029; Mn-74-01-008-FFG-032; Mn-74-01-009-FFG-036; Mn-74-01-010-FFG-037; Mn-74-01-010-FFG-038; Mn-74-01-010-FFG-039; Mn-74-01-010-FFG-042; Mn-74-01 IODE; Mn-74-02-13A-FFG-004; Mn-74-02-13B-D-001; Mn-74-02-13B-FFG-005; Mn-74-02-13B-FFG-007; Mn-74-02-13B-FFG-008; Mn-74-02-13C-D-002; Mn-74-02-13C-D-004; Mn-74-02-13C-FFG-009; Mn-74-02-13C-FFG-011; Mn-74-02-13C-FFG-012; Mn-74-02-15-FFG-021; Mn-74-02-15-FFG-025; Mn-74-02-16-FFG-030; Mn-74-02-16-FFG-037; Mn-74-02 IDOE DOMES; Moana Wave; MW7401; MW7401-01G01; MW7401-01G02; MW7401-01G03; MW7401-02G04; MW7401-02G06; MW7401-03G07; MW7401-03G09; MW7401-05B02; MW7401-06G16; MW7401-06G17; MW7401-06G18; MW7401-06G19; MW7401-06G20; MW7401-06G21; MW7401-06G22; MW7401-06G23; MW7401-06G25; MW7401-06G26; MW7401-07G28; MW7401-07G29; MW7401-08G32; MW7401-09G36; MW7401-10G37; MW7401-10G38; MW7401-10G39; MW7401-10G42; MW7402; MW7402-13D01; MW7402-13D02; MW7402-13D04; MW7402-13G04; MW7402-13G05; MW7402-13G07; MW7402-13G08; MW7402-13G09; MW7402-13G11; MW7402-13G12; MW7402-15G21; MW7402-15G25; MW7402-16G30; MW7402-16G37; MW7402D-SBT1; MW7402D-SBT2; MW7402D-SBT4; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Pacific Ocean; TRAWL; Trawl net
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Piper, David Z (1974): Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta, 38(7), 1007-1022, https://doi.org/10.1016/0016-7037(74)90002-7
    Publication Date: 2024-07-01
    Description: The concentrations of rare-earth elements (REE) have been measured in 31 ferromanganese nodules from the Pacific and Indian Oceans and vary by almost a factor of 5. Too few nodules have been analyzed to define possible regional trends. The shale-normalized patterns, however, permit division of nodules into two groups: those from depth greater than 3000–3500 m and those from less depth. The factors that determine this change in the relative concentration of REE may be related to the mineralogy of manganese phases and/or the transport of REE to the deep ocean by particulate matter. Comparison of the REE patterns of nodules with those of phillipsite, phosphorite, clays, CaCO3 and seawater suggests that the patterns of these phases reflect fractionation from an initial pattern closely resembling that of shale. By assuming that the accumulation rate of REE in clays, CaCO3 and nodules is represented by that for surface sediments, it has been possible to estimate an accumulation rate of phillipsite in pelagic sediments of the Pacific of 0.02 mg/cm2/yr.
    Keywords: 2P-50; 5-37; ABR_Cruise7; ABR7_375-G; Agassiz; AMPH-006D; AMPH-007D; AMPH-009D; AMPH01AR; AMPH01AR-006D; AMPH02AR-007D; AMPH02AR-009D; AMPHITRITE; ANTIPODE; Anton Bruun; ANTP04MV-058D; ANTP-058D; Argo; DNWB0ABD; DODO; DODO-009D-1; DODO-011D; DODO-015D-1; DODO-113D; DODO-127D; DOWNWIND-B1; DOWNWIND-H; Dredge; Dredge, chain bag; Dredge, rock; DRG; DRG_C; DRG_R; DRILL; Drilling/drill rig; DWBD4; DWHD16; DWHD47; DWHD72; FANB01BD; FANBD-20D; FANBD-25D; FANFARE-B; GC; Glomar Challenger; Grab; GRAB; Gravity corer; GSS_537_551; Horizon; Indian Ocean; Leg5; MDPC02HO-036P; MDPC03HO-MP-043D; Melville; MIDPAC; MPC-36P; MPC-43D; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; North Pacific/HILL; Pacific Ocean; PC; PIP-MUS-11; PIP-MUS-21; PIP-NNN; Piston corer; PROA; PROA-072D; Prospector; Prospector-63; SAN_JUAN_1963; SB930001; SB930001-1D; SCAN; SCAN-035D; SCAN04AR-035D; Silas Bent; SNJ-DH5; SNJ-DH6; SNJ-DH9; Spencer F. Baird; STYX_I; STYX01AZ; STYX01AZ-003FF; STYXI-3FF; Thomas G. Thompson (1964); TT028; TT028-10; TT028-13; TT028-14; TT028-17; TT028-2; TT028-27; TT028-3; TT028-5; TT028-6; TT028-7; TT028-8; TT028-9; Western Pacific Ocean
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Krishnaswami, Seth (1976): Authigenic transition elements in Pacific pelagic clays. Geochimica et Cosmochimica Acta, 40(4), 425-434, https://doi.org/10.1016/0016-7037(76)90007-7
    Publication Date: 2024-07-01
    Description: The concentrations of Sc, Ti, Fe, Mn, Co, Ni, Cu, La, Th and U have been measured in several Pacific pelagic clays having widely different accumulation rates, 0.4-9.0 mm/103 yr. The authigenic fractions and deposition rates of these elements have been estimated from the measured concentrations using various models. The results show that in Pacific clays about 90% Mn, 80% Co and Ni and 50% Cu are authigenic whereas the major fraction (〉90%) of Sc, Ti, Fe, La, Th and U are of detrital origin. Anticorrelation between the clay accumulation rates and the concentrations of Mn, Co, Ni and Cu is observed. This suggests a uniform authigenic deposition of these elements superimposed on varying amounts of detrital materials. The concentrations of Sc, Ti and Th are almost independent of sedimentation rates, indicating that their authigenic deposition is small compared to their detrital contribution. Comparison of the authigenic deposition and river input rates shows that Mn, Co and Ni are accumulating in excess of their supply by factors of 2-10, whereas the converse is true for Cu and U. Additional sources to account for the budgetary discrepancies of Mn, Co and Ni are discussed, with particular reference to in situ leaching of detrital phases transported to the oceans via rivers.
    Keywords: 2P-50; 2P-52; Argo; ARRH-TF; CARR2_9D; CARROUSEL2; DODO; DODO-009D-1; Dredge; DRG; East Pacific Ocean; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Pacific Ocean; Prospector; Prospector-63; SAN_JUAN_1963; SNJ-DH2; Spencer F. Baird; TRI-02D; TRIP03AR; TRIPOD_3; ZETES; ZTES03AR; ZTES03AR-003D; ZTES-3D
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: MacDougall, J Douglas (1977): Uranium in marine basalts: Concentration, distribution and implications. Earth and Planetary Science Letters, 35(1), 65-70, https://doi.org/10.1016/0012-821X(77)90029-2
    Publication Date: 2024-07-01
    Description: The uranium content of glass from chilled margins of oceanic tholeiitic basalt flows is generally 〈0.1 ppm, even for old samples with highly altered crystalline interiors. Such low values represent the original whole rock concentrations, although subsequent to eruption low-temperature weathering has added uranium, and other elements, to the crystalline portions of these basalts. Consideration of the K/U ratios of altered samples suggests that basalt weathering may provide the major oceanic sink for these two elements.
    Keywords: 16-163; 18-177A; 2-10; 22-211; 22-213; 22-215; 23-220; 24-231; 24-236; 24-238; 25-240; 34-319; 34-320; 5-32; 5-36; 5-37; 5-39; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Indian Ocean//BASIN; Indian Ocean//FRACTURE ZONE; Indian Ocean/Arabian Sea/HILL; Indian Ocean/Gulf of Aden/BASIN; Leg16; Leg18; Leg2; Leg22; Leg23; Leg24; Leg25; Leg34; Leg5; North Atlantic/CONT RISE; North Pacific/CONT RISE; North Pacific/HILL; North Pacific/PLAIN; North Pacific/RIDGE; South Pacific/BASIN
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Leinen, Margaret W; Stakes, Debra S (1979): Metal accumulation rates in the central equatorial Pacific during Cenozoic time. Geological Society of America Bulletin, 90(4), 357-375, https://doi.org/10.1130/0016-7606(1979)90%3C357:MARITC%3E2.0.CO;2
    Publication Date: 2024-07-01
    Description: Accumulation rates of Mg, Al, Si, Mn, Fe, Ni, Cu, Zn, opal, and calcium carbonate have been calculated from their concentrations in samples from equatorial Deep Sea Drilling Project sites. Maps of element accumulation rates and of Q-mode factors derived from raw data indicate that the flux of trace metals to equatorial Pacific sediments has varied markedly through time and space in response to changes in the relative and absolute influence of several depositional influences: biogenic, detrital, authigenic, and hydrothermal sedimentation. Biologically derived material dominates the sediment of the equatorial Pacific. The distributions of Cu and Zn are most influenced by surface-water biological activity, but Ni, Al, Fe, and Mn are also incorporated into biological material. All of these elements have equatorial accumulation maxima similar to those of opal and calcium carbonate at times during the past 50 m.y. Detritus distributed by trade winds and equatorial surface circulation contributes Al, non-biogenic Si, Fe, and Mg to the region. Detrital sediment is most important in areas with a small supply of biogenic debris and low bulk-accumulation rates. Al accumulation generally increases toward the north and east, indicating its continental source and distribution by the northeast trade winds. Maxima in biological productivity during middle Eocene and latest Miocene to early Pliocene time and concomitant well-developed surface circulation contributed toward temporal maxima in the accumulation rates of Cu, Zn, Ni, and Al in sediments of those ages. Authigenic material is also important only where bulk-sediment accumulation rates are low. Ni, Cu, Zn, and sometimes Mn are associated with this sediment. Fe is almost entirely of hydrothermal origin. Mn is primarily hydrothermal, but some is probably scavenged from sea water by amorphous iron hydroxide floes along with other elements concentrated in hydrothermal sediments, Ni, Cu, and Zn. During the past 50 m.y. all of these elements accumulated over the East Pacific Rise at rates nearly an order of magnitude higher than those at non-rise-crest sites. In addition, factor analysis indicates that some of this material is carried substantial distances to the west of the rise crest. Accumulation rates of Fe in basal metalliferous sediments indicate that the hydrothermal activity that supplied amorphous Fe oxides to the East Pacific Rise areas was most intense during middle Eocene and late Miocene to early Pliocene time.
    Keywords: 16-159; 16-160; 16-161; 16-162; 16-163; 5-42; 8-69; 8-70; 8-71; 8-72; 8-73; 8-74; 8-75; 9-77; 9-78; 9-79; 9-80; 9-81; 9-82; 9-83; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg16; Leg5; Leg8; Leg9; North Pacific; North Pacific/BASIN; North Pacific/CONT RISE; North Pacific/HILL; North Pacific/PLAIN; North Pacific/VALLEY; South Pacific; South Pacific/BASIN; South Pacific/CONT RISE; South Pacific/VALLEY
    Type: Dataset
    Format: application/zip, 41 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: von der Borch, Christopher C (1971): Glassy objects in Tertiary deep-sea clays cored by the Deep Sea Drilling Project. Marine Geology, 10(1), 5-14, https://doi.org/10.1016/0025-3227(71)90073-9
    Publication Date: 2024-07-01
    Description: Small glassy spheres, ellipsoids, teardrops, cylinders and dumbbells occur in large numbers in Tertiary deep sea clays cored in the northeastern Pacific by the Deep Sea Drilling Project. These objects morphologically resemble microtektites, but have the composition of an oceanic tholeiite. On the basis of their composition and stratigraphic relationship it is considered that they are of volcanic origin and most likely have been formed in deep water by submarine volcanic processes.
    Keywords: 5-32; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Leg5; North Pacific/PLAIN
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hunt, John M (1975): Origin of gasoline range alkanes in the deep sea. Nature, 254(5499), 411-413, https://doi.org/10.1038/254411a0
    Publication Date: 2024-07-01
    Description: It is believed that C4 to C7 hydrocarbons in petroleum are formed by the cracking of organic matter at depths generally exceeding 1,000 m at temperatures in excess of 50 °C (Cordel, 1972; Dow, 1974; Tissot et al., 1974)). Also, none of the alkanes in the butane-heptane range are formed biologically as far as is known at present. Consequently, it is thought that they do not occur in shallow, Recent sediments. In 1962, I analysed 22 samples of Recent sediments from 7 different environments and verified that these hydrocarbons were not present at the p.p.m. level (Dunton and Hunt, 1962) although traces of a few hydrocarbons such as butane, isobutane, isopentane and n-heptane have been found (Sokolov, 1957; Veber and Turkeltaub, 1958; Erdman et al., 1958; Emery and Hoggan, 1958). No identification of individual hexanes or heptanes has been reported except when there has been clear evidence of seepage from deeper source sediments (McIver, 1973).
    Keywords: 1-3; 22-217; 22-218; 24-233A; 26-250A; 26-254; 29-280A; 29-282; 31-299; 5-34; Antarctic Ocean/CONT RISE; Antarctic Ocean/Tasman Sea; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Gulf of Mexico/PLAIN; Indian Ocean//BASIN; Indian Ocean//FAN; Indian Ocean//RIDGE; Indian Ocean/Gulf of Aden/TRENCH; Leg1; Leg22; Leg24; Leg26; Leg29; Leg31; Leg5; North Pacific/Japan Sea; North Pacific/PLAIN
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...