ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8)
  • Maps
  • Ozone  (8)
  • 1980-1984  (8)
  • 1960-1964
  • Geosciences  (8)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 118 (1980), S. 20-34 
    ISSN: 1420-9136
    Keywords: Ozone ; Diffuse radiation influence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Previous work has shown the importance of the diffuse solar field in the photochemistry of atmospheric active species, the solar zenith angle being an effective parameter. In view of the diurnal and seasonal variability of this single quantity, in this paper estimates are presented of the daily-integrated values of the photodissociation coefficient of ozone throughout the year, for a purely molecular atmosphere in the absence of scattering and when the effects of molecular scattering are included, and for an absorbing-scattering turbid atmosphere characterized by two different aerosol loads. Also, different values of the ground albedo have been taken into account. Results are shown for a latitude of 45oN. The seasonal dependence is strong at altitudes below 20 km and less marked above 20 km. For an albedoA=0.3, the inclusion of molecular scattering increases the daily-integrated photodissociation coefficients approximately by 20% and 40% at 15 km and by 15% and 22% at 30 km, at the winter and summer solstice respectively. The presence of a heavy aerosol load modifies these results by a further factor which is approximately −5% and 10% at 15 km at the winter and summer solstice respectively, and is approximately constant at 8% throughout the year at 30 km.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 118 (1980), S. 1052-1065 
    ISSN: 1420-9136
    Keywords: Microwaves ; Ozone ; Passive sounding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract It is shown how to retrieve the atmospheric ozone profile by means of ground based microwave measurements of the radiative intensity. Chahine's iteration method is used. The method is tested by a numerical experiment. The retrieval rms about the mean error is approximately 0.4 ppm. The required measurement accuracy for the brightness temperatures is ±0.01 K.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 118 (1980), S. 695-705 
    ISSN: 1420-9136
    Keywords: Ozone ; Photochemistry ; System modelling ; Transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A scheme of a system of physical and chemical processes controlling the production, transport and destruction of ozone and its gaseous catalysts, as well as other related gases in the low and high stratosphere is presented. An account is made of temperature variations of the stratospheric layer resulting from changes in ozone content; also included is the effect of temperature variations on photochemical reaction rates and ozone and other gases transport between atmospheric layers. Parameters describing major relations of the system are inferred from the analysis of ozone and trace gas data and from the results of model calculations of interdependence between variations in temperature and ozone content of the layer. An analysis of minor fluctuations of the linearized system shows that photochemical processes are responsible for its aperiodic stability and that gas transport between atmospheric layers destabilizes the system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 120 (1982), S. 626-641 
    ISSN: 1420-9136
    Keywords: Climate ; Ozone ; Photochemical model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We have studied the effects on the ozone concentration and surface temperature, of perturbations in the atmospheric content of nitrous oxide, methane, carbon dioxide and chlorofluorocarbons (CFC). The sensitivity study has been carried out with a radiative-convective-photochemical model. The doubling of carbon dioxide concentration has the effect of warming the troposphere and cooling the stratosphere. As a result of this cooling, the change of ozone columnar density produced by 10 ppb of chlorine amount to 9.3% as compared to −10.9% obtained without temperature feedback. Perturbation in nitrous oxide correspond to an increase in NO x of the stratosphere with consequent ozone reduction while doubling the methane concentration correspond to a slight increase in columnar density. The effect of the increased methane concentration in the stratosphere contributes to reduce the effect of CFC due to the enhanced formation of HCl. The perturbation of these two minor constituents appreciably increase the greenhouse effect to 2.30 from 1.67°, obtained when carbon dioxide alone is considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1420-9136
    Keywords: Solar Mesosphere Explorer ; Ozone ; Water vapor ; Solar ultraviolet monitor ; Limb radiance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The 1981–82 Solar Mesosphere Explorer (SME) mission is described. The SME experiment will provide a comprehensive study of mesospheric ozone and the processes which form and destroy it. Five instruments will be carried on the spinning spacecraft to measure the ozone density and its altitude distribution from 30 to 80 km, monitor the incoming solar ultraviolet radiation, and measure other atmospheric constituent which affect ozone. The polar-orbiting spacecraft will be placed into a 3pm-3 am Sun-synchronous orbit. The atmospheric measurements will scan the Earth's limb and measure: (1) the mesospheric and stratospheric ozone density distribution by inversion of Rayleigh-scattered ultraviolet limb radiance, and the thermal emission from ozone at 9.6 μm; (2) the water vapor density distribution by inversion of thermal emission at 6.3 μm; (3) the ozone photolysis rate by inversion of the O2(1Δg) 1.27 μm limb radiance; (4) the temperature profile by a combination of narrow-band and wide-band measurements of the 15 μm thermal emission by CO2; and, (5) theNO2 density distribution by inversion of Rayleighscattered limb radiance at 0.439 μm. The solar ultraviolet monitor will measure both the 0.2–0.31 μm spectral region and the Lyman-alpha (0.1216 μm) contribution to the solar irradiance. This combination of measurements will provide a rigorous test of the photochemical equilibrium theory of the mesospheric oxygen-hydrogen system, will determine what changes occur in the ozone distribution as a result of changes in the incoming solar radiation, and will detect changes that may occur as a result of meteorological disturbances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 119 (1980), S. 1-8 
    ISSN: 1420-9136
    Keywords: Ozone ; Solar proton event ; Stratospheric circulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (∼38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 119 (1980), S. 726-749 
    ISSN: 1420-9136
    Keywords: Ozone ; Stratosphere ; Nimbus-4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A comparison is made of the first two years of Nimbus-4 backscattered ultraviolet (BUV) ozone measurements with the predictions of the Ames two-dimensional model. The ozone observations used in this study consist of the mixing ratio on the 1-, 2-, 5-, and 10-mb pressure surfaces. These data are zone and time averaged to obtain seasonal means for 1970 and 1971 and are found to show strong and repeatable meridional and seasonal dependencies. The model used for comparison with the observations extends from 80°N to 80°S latitude and from altitudes of 0 to 60 km with 5° horizontal grid spacing and 2.5-km vertical grid spacing. The chemical reaction and photolysis rate constants used in the model are those recommended in the report of the NASA Panel for Data Evaluation (1979) Chemical reaction and photolysis rates are diurnally averaged, and the photodissociation rates are corrected for the effects of scattering. It is found that the large altitude, latitude, and seasonal changes in the ozone data agree well with the model predictions. Also shown are model predictions of the sensitivity of the comparisons to changes in the assumed mixing ratios of water vapor, odd nitrogen, and odd chlorine, as well as to changes in the ambient temperature and transport parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 120 (1982), S. 29-53 
    ISSN: 1420-9136
    Keywords: Ozone ; Satellite ; Trend
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The information content of the 7-year BUV data set has been reexamined by a comparison with a fairly large set of ground Dobson and M-83 instruments. The satellite-ground intercomparison of total ozone was done under different types of ground observation techniques (observation code) and different instrument exposure (exposure code) and for various distances of the subsatellite point from the station. Because of the existing latitudinal gradient in total ozone, at a given station the bias ground-BUV tends to be smaller when the subsatellite point is at a latitude higher than the station's latitude. Knowing the total ozone gradient at a given station, the BUV total ozone has been corrected to account for the ozone gradient and the correlation was calculated with the corresponding ground observations. These correlations seem to offer no improvement when compared with the correlations between the ground ozone and the actual BUV ozone at distances of the subsatellite point from the station within 200 km from the station used in previous studies. The seasonal variation of the BUV-ground correlation reveals information on the noise level of the measurements and the geographical distribution of the percentage mean bias: (Ground-BUV)×100/(Ground) is discussed. Both on short and on longer time scales it appears that the BUV derived ‘recommended total ozone’ data set is reasonably good and possible instrumental drifts are not large. The analysis includes an extension through April 1977 of the BUV and contour-derived total ozone trends byLondon andLing (1980). Over the northern hemisphere both data sets (contour and BUV) show comparable trends over middle and high latitudes which range from −3 D.U./year to −5 D.U./year during the 7-year period April 1970–April 1977. In the southern hemisphere, however, long-term variation in total ozone cannot be determined from ground observations alone. It is concluded that for unknown reasons during the 7-year period of study, total ozone has been decreasing over most of the globe. The negative growth rates at high latitudes of the northern hemisphere are highly significant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...