ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 111-677A; 111-677B; DRILL; Drilling/drill rig; Joides Resolution; Leg111; North Pacific Ocean; Ocean Drilling Program; ODP  (3)
  • Deep Sea Drilling Project; DSDP  (3)
  • PANGAEA  (6)
  • American Association for the Advancement of Science
  • Cell Press
  • 1985-1989  (6)
Collection
Keywords
Publisher
  • PANGAEA  (6)
  • American Association for the Advancement of Science
  • Cell Press
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lyle, Mitchell W; Owen, Robert M; Leinen, Margaret W (1986): History of hydrothermal sedimentation at the East Pacific Rise, 19°S. In: Leinen, M; Rea DK; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 92, 585-596, https://doi.org/10.2973/dsdp.proc.92.139.1986
    Publication Date: 2023-09-30
    Description: The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.
    Keywords: Deep Sea Drilling Project; DSDP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Shackleton, Nicholas J; Hall, Michael A (1989): Stable isotope history of the Pleistocene at ODP Site 677. In: Becker, K; Sakai, H; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Programm), 111, 295-316, https://doi.org/10.2973/odp.proc.sr.111.150.1989
    Publication Date: 2024-01-09
    Description: Oxygen and carbon isotope ratio measurements are presented for Globigerinoides ruber and for benthic species (mainly Uvigerina spp.) in the Pleistocene and uppermost Pliocene section of ODP Hole 677A in the Panama Basin. This provides the best available continuous Pleistocene stable isotope records from any location, fully justifying the recoring of DSDP Site 504. Oxygen isotope stage 22 (age about 0.85 Ma) was of similar magnitude to the most extensive glacials of the Brunhes and constitutes a logical base for the middle Pleistocene. Oxygen isotope stages as defined by Ruddiman et al. (1986, doi:10.1016/0012-821X(86)90024-5) and by Raymo et al. (1989, doi:10.1029/PA004i004p00413) back to stage 104 are recognized. Although the internationally agreed base of the Quaternary at or near stage 62 (about 1.6 Ma) is not marked by a major isotopic event, it does approximate the base of a regime characterized by highly regular 41,000-yr climate cycles. The records at Site 677 are ideal for time-series analyses and will permit a new attempt to develop a chronology for the early Pleistocene based on tuning to the orbital frequencies. The carbon isotope records also appear to contain considerable variance at orbital frequencies throughout the sequence analyzed.
    Keywords: 111-677A; 111-677B; DRILL; Drilling/drill rig; Joides Resolution; Leg111; North Pacific Ocean; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Alexandrovich, Joanne M (1989): Radiolarian biostratigraphy of ODP Leg 111, Site 677, eastern equatorial Pacific, Late Miocene through Pleistocene. In: Becker, K; Sakai, H; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 111, 245-262, https://doi.org/10.2973/odp.proc.sr.111.145.1989
    Publication Date: 2024-01-09
    Description: Well-preserved late Miocene through Pleistocene age radiolarian assemblages were recovered during ODP Leg 111 at Site 677, on the southern flank of the Costa Rica Rift in the eastern equatorial Pacific. Radiolarian "event" biostratigraphy (first and last morphotypic appearances) was established for Holes 677A and 677B using 21 species yielding 24 reliable datum levels. The cold upwelling waters above this site have prevented many typical tropical Pacific stratigraphic radiolarians from being useful age indicators. Biostratigraphic datum levels were assigned absolute ages based on previous work and were used to date the cores. Sedimentation rates varied from 3.7 cm/1000 yr in the late Pleistocene to 6.0 cm/1000 yr in the late Miocene. The age of the oldest sediments at this site is estimated as 5.89-6.37 Ma, which indicates that Site 677 is between magnetic anomalies 3A and 4. A total of 67 taxa were assessed for stratigraphic relevance at this site and are listed in the Appendix. One previously unknown Pliocene radiolarian stratigraphic indicator, Botryostrobus euporus (Ehrenberg), is identified.
    Keywords: 111-677A; 111-677B; DRILL; Drilling/drill rig; Joides Resolution; Leg111; North Pacific Ocean; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mottl, Michael J; Druffel, Ellen R M; Hart, Stanley R; Lawrence, James R; Saltzman, Eric S (1985): Chemistry of hot waters sampled from basaltic basement in Hole 504B, Deep Sea Drilling Project Leg 83, Costa Rica Rift. In: Anderson, RN; Honnorez, J; Becker, K; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 83, 315-328, https://doi.org/10.2973/dsdp.proc.83.115.1985
    Publication Date: 2023-12-11
    Description: Seawater that has been altered by reaction with basaltic basement has been sampled from Deep Sea Drilling Project Hole 504B, located on 5.9-m.y.-old crust on the southern flank of the Costa Rica Rift. Fourteen water samples have been collected on Legs 69, 70, and 83, both before and after renewed drilling on the latter two legs, at temperatures from 69 to 133°C and pressures from 390 to 425 bars. The water sampled prior to renewed drilling on Leg 83 had occupied the hole for nearly 2 yr. since it was last flushed with surface seawater at the end of Leg 70. Despite some contamination by seawater during sampling, the composition of two of these waters has been determined by using nitrate as a tag for the contaminant. Both the 80 and 115°C waters have seawater chlorinity, but have lost considerable Mg, Na, K, sulfate, and 02, and have gained Ca, alkalinity, Si, NH3 and H2S. The loss of sulfate is due to anhydrite precipitation, as indicated by the d34S value of the remaining dissolved sulfate. The 87Sr/86Sr ratio has been lowered to 0.7086 for the 80°C water and 0.7078 for the 115°C water, whereas the Sr concentration is nearly unchanged. The changes in major element composition relative to seawater are also larger for the 115°C water, indicating that the basement formation water at this site probably varies in composition with depth. Based on their direction relative to seawater, the compositional changes for the 80 and 115°C waters do not complement the changes inferred for the altered rocks from Hole 504B, suggesting that the bulk composition of the altered rocks, like their mineralogy, is largely unrelated to the present thermal and alteration regime in the hole. The exact nature of the reacted seawaters cannot be determined yet, however. During its 2 yr. residence in the hole, the surface seawater remaining at the end of Leg 70 would have reacted with the wall rocks and exchanged with their interstitial formation waters by diffusion and possibly convection. How far these processes have proceeded is not yet certain, although calculations suggest that diffusion alone could have largely exchanged the surface seawater for interstitial water. The d18O of the samples is indistinguishable from seawater, however, and the d14C of the 80°C sample is similar to that of ocean bottom water. Although the interpretation of these species is ambiguous, that of tritium should not be. Tritium analyses, which are in progress, should clarify the nature of the reacted seawaters obtained from the hole.
    Keywords: Deep Sea Drilling Project; DSDP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jenkins, D Graham; Houghton, Simon D (1989): Late Miocene to Pleistocene planktonic foraminifers from Ocean Drilling Program Site 677, Panama Basin. In: Becker, K; Sakai, H; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 111, 289-293, https://doi.org/10.2973/odp.proc.sr.111.147.1989
    Publication Date: 2024-01-09
    Description: Forty-three core-catcher samples from the upper Miocene to uppermost Pleistocene of ODP Site 677 were examined for planktonic foraminifers. Range charts were compiled for Holes 677A and 677B, and zonal markers and datum planes are correlated with the most recently published time scale. The absence of key species such as Globorotalia truncatulinoides, Globorotalia tosaensis, Globorotalia miocenica, and Globorotalia margaritae prohibits the use of any of the standard tropical zonal schemes. The zonal scheme used here was devised for this area on DSDP Leg 9.
    Keywords: 111-677A; 111-677B; DRILL; Drilling/drill rig; Joides Resolution; Leg111; North Pacific Ocean; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pickering, Kevin T; Stow, Dorrik A V (1986): Inorganic major, minor, and trace element geochemistry and clay mineralogy of sediments from the Deep Sea Drilling Project Leg 96, Gulf of Mexico. In: Bouma, AH; Coleman, JM; Meyer, AW; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 96, 733-739, https://doi.org/10.2973/dsdp.proc.96.144.1986
    Publication Date: 2024-06-25
    Description: Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.
    Keywords: Deep Sea Drilling Project; DSDP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...