ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • pyrolysis products  (3)
  • Wiley-Blackwell  (3)
  • 1985-1989  (3)
  • 1950-1954
  • Architecture, Civil Engineering, Surveying  (3)
  • Geosciences
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Fire and Materials 11 (1987), S. 109-130 
    ISSN: 0308-0501
    Keywords: combustion products ; fire data ; literature reviews ; polystyrene ; pyrolysis products ; test methods ; toxicity ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The current English literature through 1984 on the products of pyrolysis and combustion from polystyrenes and the toxicity of those products is reviewed. Among 57 compounds detected by chemical analyses of the thermal decomposition products produced under various atmospheric conditions (vacuum, inert and oxidative), the main volatile component is the styrene monomer, Evidence is provided that the mass fraction of styrene increases with furnace temperatures at least through 500°C. At 800°C and above, the concentration of styrene decreases. In oxidative atmospheres, carbon monoxide (CO), carbon dioxide (CO2) and oxidative hydrocarbons are formed. The concentrations of CO and CO2 are a function of temperature and combustion conditions, i.e. greater amounts are produced in the flaming than in the non-flaming mode. Eleven different test procedures were used to evaluate the toxicity of the pyrolysis and combustion atmospheres of polystyrenes. The more toxic environments produced under flaming conditions appear to be mainly attributed to CO and CO2 but rather to some other toxicant, probably the styrene monomer. When compared with other common materials used in buildings and residences, polystyrenes, in general, are among the least toxic.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Fire and Materials 11 (1987), S. 131-142 
    ISSN: 0308-0501
    Keywords: carbon monoxide ; combustion products ; hydrochloric acid ; large-scale fire tests ; polyvinyl chloride ; pyrolysis products ; small-scale fire tests ; toxicity ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Poly(vinyl chlorides) (PVC) constitute a major class of synthetic plastics, Many surveys of the voluminous literature have been performed. This report reviews the literature published in English from 1969 through 1984 and endeavors to be more interpretive than comprehensive. PVC compounds, in general, are among the more fire resistant common organic polymers, natural or synthetic. The major products of thermal decomposition include hydrogen chloride, benzene and unsaturated hydrocarbons. In the presence of oxygen, carbon monoxide, carbon dioxide and water are included among the common combustion products. The main toxic products from PVC fires are hydrogen chloride (a sensory and pulmonary irritant) and carbon monoxide (an asphyxiant). The LC50 value calculated for a series of natural and synthetic materials thermally decomposed according to the NBS toxicity test method ranged from 0.045 to 57 mg l-1 in the flaming mode and from 0.045 to 〉 40 mg l-1 in the non-flaming mode. The LC50 results for a PVC resin decomposed under the same conditions were 17 mg l-1 in the flaming mode and 20 mg l-1 in the non-flaming mode. These results indicate that PVC decomposition products are not extremely toxic when compared with those from other common building materials. When the combustion toxicity (based on their HCI content) of PVC materials in compared with pure HCI experiments, it appears that much of the post-exposure toxicity can be explained by the HCI that is generated.
    Additional Material: 12 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0308-0501
    Keywords: ABS ; plastics ; chemistry ; combustion products ; literature reviews ; nylon ; polyester ; polyethylene ; polystyrene ; polyvinyl chloride ; pyrolysis products ; polyurethane foams ; rigid foams ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A series of literature reviews was undertaken by the National Bureau of Standards to examine the toxicity and chemistry of the effluents produced when seven plastics were decomposed under various thermal and atmospheric condition. These plastics are: acrylonitrile-butadiene-styrenes, nylons, polyesters, polyethylenes, polystyrenes, poly(vinyl chlorides) and rigid polyurethane foams. The English-language literature on each of these was reviewed and published as a separate report of the National Bureau of Standards. Over 400 different thermal decomposition products, many common to more than one plastic, were identified. The toxicity of most of these individual products is products, many common to more than one plastic, were identified. The toxicity of most of these individual products is unknown and an assessment of the toxicity of the multitude of possible combinations is not feasible at this time. Therefore a variety of bioassay toxicity protocols have been used to assess the toxicity of the gaseous atmospheres generated by the thermal decomposition of these plastics. In general, these seven plastics did not produce unusually or extremely toxic pyrolysis or combustion products when compared with those of other synthetic or natural materials. In a few cases involving additives, toxic products of concern were produced.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...