ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (18,446)
  • Achnanthes brevipes var. intermedia; Achnanthes clevei; Achnanthes delicatula; Achnanthes hungarica; Achnanthes lanceolata; Achnanthes longipes; Actinocyclus ehrenbergi; Amphora ovalis; Amphora ovalis var. pediculus; Anomoeoneis sphaerophora; Biddulphia aurita; Biddulphia levis; Caloneis amphisbaena var. subsalina; Caloneis bacillum; Caloneis silicula; Campylodiscus bicostatus; Campylodiscus clypeus; Campylodiscus echeneis; Campylodiscus noricus var. hibern; Chaetoceros sp.; Cocconeis diminuta; Cocconeis disculus; Cocconeis pediculus; Cocconeis placentula; Cocconeis scutellum; Coscinodiscus asteromphalus; Coscinodiscus commutatus; Coscinodiscus excentricus; Coscinodiscus lacustris; Coscinodiscus oculus-iridis; Coscinodiscus radiatus; Cyclotella comta; Cyclotella meneghiniana; Cyclotella striata var. ambigua; Cymatopleura elliptica; Cymatopleura solea; Cymbella aspera; Cymbella cistula; Cymbella cuspidata; Cymbella cymbiformis; Cymbella ehrenbergi; Cymbella lanceolata; Cymbella prostrata; Cymbella tumida; Cymbella ventricosa; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatoma elongatum; Diatoma vulgaris; Diploneis didyma; Diploneis domblittensis; Diploneis elliptica; Diploneis fusca; Diploneis interrupta; Diploneis ovalis; Diploneis smithii var. rhombica; Epithemia argus; Epithemia intermedia; Epithemia sorex; Epithemia turgida; Epithemia zebra; Eucocconeis flexella; Eunotia lunaris; Eunotia pectinalis; Eunotia praerupta; Event label; FN_III; FN_IV-0; FN_IX; FN_IX-a1; FN_V; FN_V-100; FN_V-300; FN_VIII-2a; FN_X-20; FN_XII-300; FN_XIII-14a; FN_XIV-18; FN_XVI-22; Fragilaria capucina; Fragilaria construens; Fragilaria inflata; Fragilaria intermedia; Fragilaria leptostauron; Fragilaria pinnata; Fragilaria schulzi; Fragilaria virescens; Frustulia vulgaris; Geological sample; GEOS; Gomphonema acuminatum; Gomphonema angustatum; Gomphonema constrictum; Grammatophora oceanica; Gyrosigma acuminatum; Gyrosigma attenuatum; Hantzschia amphioxys; Hyalodiscus scoticus; Melosira ambigua; Melosira arenaria; Melosira granulata; Melosira italica; Melosira juergensi; Melosira moniliformis; Melosira varians; Meridion circulare; Navicula bacillum; Navicula cincta; Navicula costulata; Navicula cryptocephala; Navicula cuspidata; Navicula dicephala; Navicula elegans; Navicula gastrum; Navicula humerosa; Navicula hungarica; Navicula laterostrata; Navicula latissima; Navicula menisculus; Navicula oblonga; Navicula peregrina; Navicula platystoma; Navicula pseudotuscula; Navicula pupula; Navicula pusilla; Navicula pygmaea; Navicula radiosa; Navicula reinhardtii; Navicula rhynchocephala; Navicula schoenfeldii; Navicula scutelloides; Navicula tuscula; Navicula viridula; Neidium affine; Neidium bisulcatum; Neidium iridis; Nitzschia amphibia; Nitzschia angustata; Nitzschia apiculata; Nitzschia circumsuta; Nitzschia denticula var. ancyli; Nitzschia hungarica; Nitzschia scalaris; Nitzschia sigma; Nitzschia spectabilis; Nitzschia tryblionella; Opephora martyi; Pinnularia cardinalis; Pinnularia gentilis; Pinnularia interrupta; Pinnularia maior; Pinnularia nobilis; Pinnularia subcapitata; Pinnularia viridis; Rhabdonema arcuatum; Rhabdonema minutum; Rhizosolenia calcar-avis; Rhoicosphenia curvata; Rhopalodia gibba; Rhopalodia gibba var. ventricosa; Rhopalodia gibberula; Sample code/label; Stauroneis acuta; Stauroneis anceps; Stauroneis phoenicenteron; Stephanodiscus astraea; Surirella biseriata; Surirella caproni; Surirella elegans; Surirella linearis; Surirella ovata; Surirella robusta var. splendida; Surirella striatula; Surirella tenera; Surirella tenera var. nervosa; Synedra capitata; Synedra pulchella; Synedra tabulata; Synedra ulna; Synedra vaucheriae; Tabellaria fenestrata; Tabellaria flocculosa; Terpsinoe americana; Thalassiosira baltica; Vistula Lagoon, Baltic Sea
  • Albatross IV (1963); Alboran Sea; Arabian Sea; Canarias Sea; CTD, handheld; Date/Time of event; Density, sigma, in situ; DEPTH, water; Eastern Basin; Elevation of event; Event label; Flores Sea; Gases, dissolved; Gulf of Aden; hCTD; Indian Ocean; Lakshadweep Sea; Latitude of event; Longitude of event; NODC-0418; North Pacific Ocean; Number; Pacific Ocean; pH; Philippine Sea; Phosphate; Red Sea; Salinity; SDSE_043CTD; SDSE_045CTD; SDSE_047CTD; SDSE_048CTD; SDSE_049CTD; SDSE_052CTD; SDSE_055CTD; SDSE_058CTD; SDSE_059CTD; SDSE_060CTD; SDSE_062CTD; SDSE_063CTD; SDSE_065CTD; SDSE_067CTD; SDSE_069CTD; SDSE_070CTD; SDSE_072CTD; SDSE_074CTD; SDSE_076CTD; SDSE_077CTD; SDSE_078CTD; SDSE_079CTD; SDSE_080CTD; SDSE_081CTD; SDSE_082CTD; SDSE_084CTD; SDSE_085CTD; SDSE_086CTD; SDSE_087CTD; SDSE_088CTD; SDSE_089CTD; SDSE_090CTD; SDSE_091CTD; SDSE_093CTD; SDSE_094CTD; SDSE_102CTD; SDSE_105CTD; SDSE_108CTD; SDSE_111CTD; SDSE_113CTD; SDSE_115CTD; SDSE_116CTD; SDSE_119CTD; SDSE_121CTD; SDSE_122CTD; SDSE_123CTD; SDSE_126CTD; SDSE_128CTD; SDSE_129CTD; SDSE_130CTD; SDSE_131CTD; SDSE_133CTD; SDSE_135CTD; SDSE_137CTD; SDSE_138CTD; SDSE_143CTD; SDSE_150CTD; SDSE_157CTD; SDSE_162CTD; SDSE_173CTD; SDSE_183-184CTD; SDSE_190CTD; SDSE_196CTD; SDSE_200CTD; SDSE_202CTD; SDSE_204CTD; SDSE_205CTD; SDSE_206CTD; SDSE_207CTD; SDSE_208CTD; SDSE_211CTD; SDSE_213CTD; SDSE_216CTD; SDSE_220CTD; SDSE_223CTD; SDSE_225CTD; SDSE_227CTD; SDSE_228CTD; SDSE_232CTD; SDSE_235CTD; SDSE_240CTD; SDSE_243CTD; SDSE_244CTD; SDSE_246CTD; SDSE_247CTD; SDSE_248CTD; SDSE_251CTD; SDSE_254CTD; SDSE_261CTD; SDSE_262CTD; SDSE_263CTD; SDSE_266CTD; SDSE_267CTD; SDSE_268CTD; SDSE_269CTD; SDSE_270CTD; SDSE_271CTD; SDSE_272CTD; SDSE_285CTD; SDSE_301CTD; SDSE_306CTD; SDSE_307CTD; SDSE_308CTD; SDSE_309CTD; SDSE_314CTD; SDSE_319CTD; SDSE_321CTD; SDSE_322CTD; SDSE_323CTD; SDSE_325CTD; SDSE_326CTD; SDSE_327CTD; SDSE_328CTD; SDSE_330CTD; SDSE_332CTD; SDSE_333CTD; SDSE_335CTD; SDSE_336CTD; SDSE_337CTD; SDSE_340CTD; SDSE_342CTD; SDSE_343CTD; SDSE_344CTD; SDSE_345CTD; SDSE_347CTD; SDSE_349CTD; SDSE_351CTD; SDSE_353CTD; SDSE_354CTD; SDSE_357CTD; SDSE_360CTD; SDSE_362CTD; SDSE_367CTD; SDSE_371CTD; SDSE_373CTD; SDSE_384CTD; SDSE_387CTD; SDSE_400CTD; Silicate; South Atlantic Ocean; South Pacific Ocean; Strait of Gibraltar; SwedishDeepSeaExpedition; Temperature, water; Western Basin
  • Wiley-Blackwell  (18,446)
  • PANGAEA  (2)
  • University of Chicago Press
  • 1985-1989  (16,437)
  • 1950-1954  (2,011)
Collection
Keywords
  • Polymer and Materials Science  (18,446)
  • Achnanthes brevipes var. intermedia; Achnanthes clevei; Achnanthes delicatula; Achnanthes hungarica; Achnanthes lanceolata; Achnanthes longipes; Actinocyclus ehrenbergi; Amphora ovalis; Amphora ovalis var. pediculus; Anomoeoneis sphaerophora; Biddulphia aurita; Biddulphia levis; Caloneis amphisbaena var. subsalina; Caloneis bacillum; Caloneis silicula; Campylodiscus bicostatus; Campylodiscus clypeus; Campylodiscus echeneis; Campylodiscus noricus var. hibern; Chaetoceros sp.; Cocconeis diminuta; Cocconeis disculus; Cocconeis pediculus; Cocconeis placentula; Cocconeis scutellum; Coscinodiscus asteromphalus; Coscinodiscus commutatus; Coscinodiscus excentricus; Coscinodiscus lacustris; Coscinodiscus oculus-iridis; Coscinodiscus radiatus; Cyclotella comta; Cyclotella meneghiniana; Cyclotella striata var. ambigua; Cymatopleura elliptica; Cymatopleura solea; Cymbella aspera; Cymbella cistula; Cymbella cuspidata; Cymbella cymbiformis; Cymbella ehrenbergi; Cymbella lanceolata; Cymbella prostrata; Cymbella tumida; Cymbella ventricosa; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatoma elongatum; Diatoma vulgaris; Diploneis didyma; Diploneis domblittensis; Diploneis elliptica; Diploneis fusca; Diploneis interrupta; Diploneis ovalis; Diploneis smithii var. rhombica; Epithemia argus; Epithemia intermedia; Epithemia sorex; Epithemia turgida; Epithemia zebra; Eucocconeis flexella; Eunotia lunaris; Eunotia pectinalis; Eunotia praerupta; Event label; FN_III; FN_IV-0; FN_IX; FN_IX-a1; FN_V; FN_V-100; FN_V-300; FN_VIII-2a; FN_X-20; FN_XII-300; FN_XIII-14a; FN_XIV-18; FN_XVI-22; Fragilaria capucina; Fragilaria construens; Fragilaria inflata; Fragilaria intermedia; Fragilaria leptostauron; Fragilaria pinnata; Fragilaria schulzi; Fragilaria virescens; Frustulia vulgaris; Geological sample; GEOS; Gomphonema acuminatum; Gomphonema angustatum; Gomphonema constrictum; Grammatophora oceanica; Gyrosigma acuminatum; Gyrosigma attenuatum; Hantzschia amphioxys; Hyalodiscus scoticus; Melosira ambigua; Melosira arenaria; Melosira granulata; Melosira italica; Melosira juergensi; Melosira moniliformis; Melosira varians; Meridion circulare; Navicula bacillum; Navicula cincta; Navicula costulata; Navicula cryptocephala; Navicula cuspidata; Navicula dicephala; Navicula elegans; Navicula gastrum; Navicula humerosa; Navicula hungarica; Navicula laterostrata; Navicula latissima; Navicula menisculus; Navicula oblonga; Navicula peregrina; Navicula platystoma; Navicula pseudotuscula; Navicula pupula; Navicula pusilla; Navicula pygmaea; Navicula radiosa; Navicula reinhardtii; Navicula rhynchocephala; Navicula schoenfeldii; Navicula scutelloides; Navicula tuscula; Navicula viridula; Neidium affine; Neidium bisulcatum; Neidium iridis; Nitzschia amphibia; Nitzschia angustata; Nitzschia apiculata; Nitzschia circumsuta; Nitzschia denticula var. ancyli; Nitzschia hungarica; Nitzschia scalaris; Nitzschia sigma; Nitzschia spectabilis; Nitzschia tryblionella; Opephora martyi; Pinnularia cardinalis; Pinnularia gentilis; Pinnularia interrupta; Pinnularia maior; Pinnularia nobilis; Pinnularia subcapitata; Pinnularia viridis; Rhabdonema arcuatum; Rhabdonema minutum; Rhizosolenia calcar-avis; Rhoicosphenia curvata; Rhopalodia gibba; Rhopalodia gibba var. ventricosa; Rhopalodia gibberula; Sample code/label; Stauroneis acuta; Stauroneis anceps; Stauroneis phoenicenteron; Stephanodiscus astraea; Surirella biseriata; Surirella caproni; Surirella elegans; Surirella linearis; Surirella ovata; Surirella robusta var. splendida; Surirella striatula; Surirella tenera; Surirella tenera var. nervosa; Synedra capitata; Synedra pulchella; Synedra tabulata; Synedra ulna; Synedra vaucheriae; Tabellaria fenestrata; Tabellaria flocculosa; Terpsinoe americana; Thalassiosira baltica; Vistula Lagoon, Baltic Sea
  • Albatross IV (1963); Alboran Sea; Arabian Sea; Canarias Sea; CTD, handheld; Date/Time of event; Density, sigma, in situ; DEPTH, water; Eastern Basin; Elevation of event; Event label; Flores Sea; Gases, dissolved; Gulf of Aden; hCTD; Indian Ocean; Lakshadweep Sea; Latitude of event; Longitude of event; NODC-0418; North Pacific Ocean; Number; Pacific Ocean; pH; Philippine Sea; Phosphate; Red Sea; Salinity; SDSE_043CTD; SDSE_045CTD; SDSE_047CTD; SDSE_048CTD; SDSE_049CTD; SDSE_052CTD; SDSE_055CTD; SDSE_058CTD; SDSE_059CTD; SDSE_060CTD; SDSE_062CTD; SDSE_063CTD; SDSE_065CTD; SDSE_067CTD; SDSE_069CTD; SDSE_070CTD; SDSE_072CTD; SDSE_074CTD; SDSE_076CTD; SDSE_077CTD; SDSE_078CTD; SDSE_079CTD; SDSE_080CTD; SDSE_081CTD; SDSE_082CTD; SDSE_084CTD; SDSE_085CTD; SDSE_086CTD; SDSE_087CTD; SDSE_088CTD; SDSE_089CTD; SDSE_090CTD; SDSE_091CTD; SDSE_093CTD; SDSE_094CTD; SDSE_102CTD; SDSE_105CTD; SDSE_108CTD; SDSE_111CTD; SDSE_113CTD; SDSE_115CTD; SDSE_116CTD; SDSE_119CTD; SDSE_121CTD; SDSE_122CTD; SDSE_123CTD; SDSE_126CTD; SDSE_128CTD; SDSE_129CTD; SDSE_130CTD; SDSE_131CTD; SDSE_133CTD; SDSE_135CTD; SDSE_137CTD; SDSE_138CTD; SDSE_143CTD; SDSE_150CTD; SDSE_157CTD; SDSE_162CTD; SDSE_173CTD; SDSE_183-184CTD; SDSE_190CTD; SDSE_196CTD; SDSE_200CTD; SDSE_202CTD; SDSE_204CTD; SDSE_205CTD; SDSE_206CTD; SDSE_207CTD; SDSE_208CTD; SDSE_211CTD; SDSE_213CTD; SDSE_216CTD; SDSE_220CTD; SDSE_223CTD; SDSE_225CTD; SDSE_227CTD; SDSE_228CTD; SDSE_232CTD; SDSE_235CTD; SDSE_240CTD; SDSE_243CTD; SDSE_244CTD; SDSE_246CTD; SDSE_247CTD; SDSE_248CTD; SDSE_251CTD; SDSE_254CTD; SDSE_261CTD; SDSE_262CTD; SDSE_263CTD; SDSE_266CTD; SDSE_267CTD; SDSE_268CTD; SDSE_269CTD; SDSE_270CTD; SDSE_271CTD; SDSE_272CTD; SDSE_285CTD; SDSE_301CTD; SDSE_306CTD; SDSE_307CTD; SDSE_308CTD; SDSE_309CTD; SDSE_314CTD; SDSE_319CTD; SDSE_321CTD; SDSE_322CTD; SDSE_323CTD; SDSE_325CTD; SDSE_326CTD; SDSE_327CTD; SDSE_328CTD; SDSE_330CTD; SDSE_332CTD; SDSE_333CTD; SDSE_335CTD; SDSE_336CTD; SDSE_337CTD; SDSE_340CTD; SDSE_342CTD; SDSE_343CTD; SDSE_344CTD; SDSE_345CTD; SDSE_347CTD; SDSE_349CTD; SDSE_351CTD; SDSE_353CTD; SDSE_354CTD; SDSE_357CTD; SDSE_360CTD; SDSE_362CTD; SDSE_367CTD; SDSE_371CTD; SDSE_373CTD; SDSE_384CTD; SDSE_387CTD; SDSE_400CTD; Silicate; South Atlantic Ocean; South Pacific Ocean; Strait of Gibraltar; SwedishDeepSeaExpedition; Temperature, water; Western Basin
  • Chemistry  (50,495)
  • General Chemistry  (7,292)
  • +
Publisher
  • Wiley-Blackwell  (18,446)
  • PANGAEA  (2)
  • University of Chicago Press
Years
Year
  • 1
    Publication Date: 2024-06-26
    Keywords: Albatross IV (1963); Alboran Sea; Arabian Sea; Canarias Sea; CTD, handheld; Date/Time of event; Density, sigma, in situ; DEPTH, water; Eastern Basin; Elevation of event; Event label; Flores Sea; Gases, dissolved; Gulf of Aden; hCTD; Indian Ocean; Lakshadweep Sea; Latitude of event; Longitude of event; NODC-0418; North Pacific Ocean; Number; Pacific Ocean; pH; Philippine Sea; Phosphate; Red Sea; Salinity; SDSE_043CTD; SDSE_045CTD; SDSE_047CTD; SDSE_048CTD; SDSE_049CTD; SDSE_052CTD; SDSE_055CTD; SDSE_058CTD; SDSE_059CTD; SDSE_060CTD; SDSE_062CTD; SDSE_063CTD; SDSE_065CTD; SDSE_067CTD; SDSE_069CTD; SDSE_070CTD; SDSE_072CTD; SDSE_074CTD; SDSE_076CTD; SDSE_077CTD; SDSE_078CTD; SDSE_079CTD; SDSE_080CTD; SDSE_081CTD; SDSE_082CTD; SDSE_084CTD; SDSE_085CTD; SDSE_086CTD; SDSE_087CTD; SDSE_088CTD; SDSE_089CTD; SDSE_090CTD; SDSE_091CTD; SDSE_093CTD; SDSE_094CTD; SDSE_102CTD; SDSE_105CTD; SDSE_108CTD; SDSE_111CTD; SDSE_113CTD; SDSE_115CTD; SDSE_116CTD; SDSE_119CTD; SDSE_121CTD; SDSE_122CTD; SDSE_123CTD; SDSE_126CTD; SDSE_128CTD; SDSE_129CTD; SDSE_130CTD; SDSE_131CTD; SDSE_133CTD; SDSE_135CTD; SDSE_137CTD; SDSE_138CTD; SDSE_143CTD; SDSE_150CTD; SDSE_157CTD; SDSE_162CTD; SDSE_173CTD; SDSE_183-184CTD; SDSE_190CTD; SDSE_196CTD; SDSE_200CTD; SDSE_202CTD; SDSE_204CTD; SDSE_205CTD; SDSE_206CTD; SDSE_207CTD; SDSE_208CTD; SDSE_211CTD; SDSE_213CTD; SDSE_216CTD; SDSE_220CTD; SDSE_223CTD; SDSE_225CTD; SDSE_227CTD; SDSE_228CTD; SDSE_232CTD; SDSE_235CTD; SDSE_240CTD; SDSE_243CTD; SDSE_244CTD; SDSE_246CTD; SDSE_247CTD; SDSE_248CTD; SDSE_251CTD; SDSE_254CTD; SDSE_261CTD; SDSE_262CTD; SDSE_263CTD; SDSE_266CTD; SDSE_267CTD; SDSE_268CTD; SDSE_269CTD; SDSE_270CTD; SDSE_271CTD; SDSE_272CTD; SDSE_285CTD; SDSE_301CTD; SDSE_306CTD; SDSE_307CTD; SDSE_308CTD; SDSE_309CTD; SDSE_314CTD; SDSE_319CTD; SDSE_321CTD; SDSE_322CTD; SDSE_323CTD; SDSE_325CTD; SDSE_326CTD; SDSE_327CTD; SDSE_328CTD; SDSE_330CTD; SDSE_332CTD; SDSE_333CTD; SDSE_335CTD; SDSE_336CTD; SDSE_337CTD; SDSE_340CTD; SDSE_342CTD; SDSE_343CTD; SDSE_344CTD; SDSE_345CTD; SDSE_347CTD; SDSE_349CTD; SDSE_351CTD; SDSE_353CTD; SDSE_354CTD; SDSE_357CTD; SDSE_360CTD; SDSE_362CTD; SDSE_367CTD; SDSE_371CTD; SDSE_373CTD; SDSE_384CTD; SDSE_387CTD; SDSE_400CTD; Silicate; South Atlantic Ocean; South Pacific Ocean; Strait of Gibraltar; SwedishDeepSeaExpedition; Temperature, water; Western Basin
    Type: Dataset
    Format: text/tab-separated-values, 15537 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-09
    Keywords: Achnanthes brevipes var. intermedia; Achnanthes clevei; Achnanthes delicatula; Achnanthes hungarica; Achnanthes lanceolata; Achnanthes longipes; Actinocyclus ehrenbergi; Amphora ovalis; Amphora ovalis var. pediculus; Anomoeoneis sphaerophora; Biddulphia aurita; Biddulphia levis; Caloneis amphisbaena var. subsalina; Caloneis bacillum; Caloneis silicula; Campylodiscus bicostatus; Campylodiscus clypeus; Campylodiscus echeneis; Campylodiscus noricus var. hibern; Chaetoceros sp.; Cocconeis diminuta; Cocconeis disculus; Cocconeis pediculus; Cocconeis placentula; Cocconeis scutellum; Coscinodiscus asteromphalus; Coscinodiscus commutatus; Coscinodiscus excentricus; Coscinodiscus lacustris; Coscinodiscus oculus-iridis; Coscinodiscus radiatus; Cyclotella comta; Cyclotella meneghiniana; Cyclotella striata var. ambigua; Cymatopleura elliptica; Cymatopleura solea; Cymbella aspera; Cymbella cistula; Cymbella cuspidata; Cymbella cymbiformis; Cymbella ehrenbergi; Cymbella lanceolata; Cymbella prostrata; Cymbella tumida; Cymbella ventricosa; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatoma elongatum; Diatoma vulgaris; Diploneis didyma; Diploneis domblittensis; Diploneis elliptica; Diploneis fusca; Diploneis interrupta; Diploneis ovalis; Diploneis smithii var. rhombica; Epithemia argus; Epithemia intermedia; Epithemia sorex; Epithemia turgida; Epithemia zebra; Eucocconeis flexella; Eunotia lunaris; Eunotia pectinalis; Eunotia praerupta; Event label; FN_III; FN_IV-0; FN_IX; FN_IX-a1; FN_V; FN_V-100; FN_V-300; FN_VIII-2a; FN_X-20; FN_XII-300; FN_XIII-14a; FN_XIV-18; FN_XVI-22; Fragilaria capucina; Fragilaria construens; Fragilaria inflata; Fragilaria intermedia; Fragilaria leptostauron; Fragilaria pinnata; Fragilaria schulzi; Fragilaria virescens; Frustulia vulgaris; Geological sample; GEOS; Gomphonema acuminatum; Gomphonema angustatum; Gomphonema constrictum; Grammatophora oceanica; Gyrosigma acuminatum; Gyrosigma attenuatum; Hantzschia amphioxys; Hyalodiscus scoticus; Melosira ambigua; Melosira arenaria; Melosira granulata; Melosira italica; Melosira juergensi; Melosira moniliformis; Melosira varians; Meridion circulare; Navicula bacillum; Navicula cincta; Navicula costulata; Navicula cryptocephala; Navicula cuspidata; Navicula dicephala; Navicula elegans; Navicula gastrum; Navicula humerosa; Navicula hungarica; Navicula laterostrata; Navicula latissima; Navicula menisculus; Navicula oblonga; Navicula peregrina; Navicula platystoma; Navicula pseudotuscula; Navicula pupula; Navicula pusilla; Navicula pygmaea; Navicula radiosa; Navicula reinhardtii; Navicula rhynchocephala; Navicula schoenfeldii; Navicula scutelloides; Navicula tuscula; Navicula viridula; Neidium affine; Neidium bisulcatum; Neidium iridis; Nitzschia amphibia; Nitzschia angustata; Nitzschia apiculata; Nitzschia circumsuta; Nitzschia denticula var. ancyli; Nitzschia hungarica; Nitzschia scalaris; Nitzschia sigma; Nitzschia spectabilis; Nitzschia tryblionella; Opephora martyi; Pinnularia cardinalis; Pinnularia gentilis; Pinnularia interrupta; Pinnularia maior; Pinnularia nobilis; Pinnularia subcapitata; Pinnularia viridis; Rhabdonema arcuatum; Rhabdonema minutum; Rhizosolenia calcar-avis; Rhoicosphenia curvata; Rhopalodia gibba; Rhopalodia gibba var. ventricosa; Rhopalodia gibberula; Sample code/label; Stauroneis acuta; Stauroneis anceps; Stauroneis phoenicenteron; Stephanodiscus astraea; Surirella biseriata; Surirella caproni; Surirella elegans; Surirella linearis; Surirella ovata; Surirella robusta var. splendida; Surirella striatula; Surirella tenera; Surirella tenera var. nervosa; Synedra capitata; Synedra pulchella; Synedra tabulata; Synedra ulna; Synedra vaucheriae; Tabellaria fenestrata; Tabellaria flocculosa; Terpsinoe americana; Thalassiosira baltica; Vistula Lagoon, Baltic Sea
    Type: Dataset
    Format: text/tab-separated-values, 1541 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Makromolekulare Chemie 150 (1987), S. 189-192 
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A morphological study was made to examine the friction and wear mechanisms of ultrahigh molecular weight polyethylene in air and water by means of transmission electron microscopy of a carbon replica film of a very thin layer of the polymer surface slid against a steel ball. Electron diffractions revealed that a molecular orientation with a typical fiber pattern was formed in the friction in air, while thin ribbon-like crystals with particular crystal orientations were formed in water in a way that the sliding took place on the crystallographic a - c plane, giving rise to a low friction coefficient of the polymer.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Makromolekulare Chemie 150 (1987), S. 137-150 
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: Es wurde der relative Wirkungsgrad von fünf handelsüblichen Stabilisatoren bei Photooxidation und thermischer Alterung von Polypropylen (PP) anhand der Änderungen der mechanischen Eigenschaften untersucht. Es wurden Polypropylenproben mit unterschiedlichem Anteil an Cyasorb UV-531 hergestellt (bezeichnet als PC0.5-31, PC1-31, PC1.5-31 und PC2-31). Der Einfluß der Photooxidation auf das thermische Verhalten ist mit Hilfe der Differentialscanningkalorimetrie und durch thermogravimetrische Analysen untersucht worden. 2-Hydroxy-4-n-octyloxybenzophenon (2 Gew.-%) war am wirksamsten, Polypropylen, gegen Verfärbung und Brüchigkeit zu stabilisieren. Bei einer Probe mit 1% Stabilisatorzusatz fanden sich nach 32 h Bestrahlung noch 81% des ursprünglichen Wertes der Streckgrenze gegenüber 18% bei unstabilisiertem PP.
    Notes: The relative effectiveness of five commercially available stabilizers on the photooxidation and thermal ageing of polypropylene (PP) was investigated by following changes in mechanical properties. Samples of PP containing different percentages of Cyasorb UV-531 were prepared (designated as PC0.5-31, PC1-31, PC1.5-31, and PC2-31, respectively). The effect of photooxidation on thermal behaviour was investigated by differential scanning calorimetry and thermogravimetric analysis. 2-Hydroxy-4-n-octyloxy benzophenone (2% w/w) was most effective in stabilizing PP towards discolouration and brittleness. After 32 h irradiation, 81% retention in yield strength was observed in case of PC1-31 against 18% in case of PP.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of the nature of the polyols used in polyurethane (PUR) synthesis on the structural transformations after ageing by UV irradiation has been studied. The investigations were performed on PUR prepared from polyester and polyether diol oligomers.The characterization of the samples before and after ageing in view of the structural changes, which influence the course of the photooxidative degradation and photocrosslinking as well as in view of changes of mechanical properties has been done. Comparative investigations were performed by spectroscopic and viscometric measurements.The results show pronounced heterogeneity of the degradative reactions, including the existence of crosslinking processes and producing thus very inhomogeneous polymeric material. The course and the intensity of photooxidative degradation of PUR differ together with changes of mechanical properties depending whether polyester or polyether polyol have been used. The processes of photooxidative degradation is less expressed in polyesterurethane then in polyurethane based on polyether, under the same conditions of experiments. Different structures of polyester diols caused the various ageing behaviour of PUR too.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: QUALIFICATION OF HALS COMPOUNDSA complex method of examination has been developed suitable for the qualification of light stabilizers; by this method, according to experience, the efficacy of HALS compounds can be extensively and expediently characterized.Several light stabilizers of the HALS-type were examined and qualified, used alone or together with a UV-absorber.It has been found that, when selecting the appropriate structure for a given polymer, the weatherability of polyolefine foils is effectively increase to six-eightfold; the increase is even tenfold when the stabilizer is combined with a benzophenone-type compound.As a utilization of these experiences, a contract with the industry, led to the production of an LDPE based agricultural foil with a life-time of several years.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Natural hail impact tests are scarcely available because hailstorms are limited to a small area and cannot be predicted regarding time, place and intensity. Therefore we relied on laboratory tests simulating natural hailstones by polyamide balls (5-50 mm dia.) whose final velocity could be varied according to meteorological data. So the influence of diameter (weight) and velocity of the artificial hailstones could be taken into consideration independently.The energy of damage or equivalent natural hailstone diameter were determined for 16 mm double skin sheet from PMMA as 0.2 J (14 mm dia.) for star shaped cracks and 2 J (26 mm dia.) for holes. These values do not significantly decrease after 10 years weathering. 10 mm double skin sheets from PC show an extremly high energy of damage of abt. 10 J (38 mm dia.) which decreases to a medium level of 2 J (26 mm dia.) after several years weathering. This decrease is remarkably reduced by weather resistant protective coating.As hailstorms consist to more than 80% of hailstones below 10 mm dia. (0.04 J) the mentioned sheet materials are quite hail resistant also after long weathering periods, but they cannot withstand an extreme hail catastrophe as in Munich July 12, 1984.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The influence of the specimen temperature on many ageing processes is well known. Two aspects is dealt with: -Measurements of the specimen temperature on several positions of a specimen in commercial weathering devices at different exposure conditions. Technical measures to achieve to uniform ageing at all positions of a planar and homogeneous specimen. Examples from practical use.-Changing specimen temperatures (+60°C to -20°C) during the course of accelerated weathering, i.e. a combination of conventional accelerated weathering with a temperature cycle test.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: An Folien (Dicke 100 pm) aus isotaktischem Polypropylen mit verschiedenen Antioxidansgehalten (0,0% bis 0,1%) wird die thermooxidative Alterunq mit der isothermen Langzeit-Differential-Thermo-Analyse (ILDTA) bis zu Temperaturen weit unter dem Kristallitschmelzbereich verfolqt und die Messwerte mit Ergebnissen aus dem Zeitstand-Zugversuch korreliert. Dabei zeigt sich, daß aus Messunqen mit der ILDTA bereits vor Einsetzen der autokatalytischen Zersetzunq sreaktion Ruckschlüsse auf die thermische Vorqeschichte der Proben und Aussagen auf das rnit einem Abfall der mechanischen Eigenschaften verbundene Ende der thermo-oxidativen Stabilität des Polymeren getroffen werden können.Weiters bietet die ILDTA die Moglichkeit, durch den direkten Zusamenhang zwischen Oxidationszeit und Antioxidansögehalt die örtliche Stabilisatorverteilung in Platten und in Folien zu bestimmen und damit Diffusionsvorqange zu verfolgen.
    Notes: Thermo-oxidative ageing processes were investigated in films (100 μm thick) made from isotactic polypropylene with different antioxidant concentrations between 0% and 0.1% using isothermal long-term differential thermal analysis (ILDTA). The end of the oven life of polypropylene coincided with the loss of mechanical properties which was confirmed by tensile tests at temperatures far below the crystallite melting range. Already prior to the beginning of autocatalytic decomposition, ILDTA experiments permits conclusions to be drawn on the thermal history of the specimens and statements made regarding the end of thermo-oxidative stability of the polymer, which is accompanied by a deterioration in the mechanical properties.In consequence of the correlation between oxidation time and antioxidant concentration the local antioxidant concentration in sheets or films can be measured by ILDTA. Thus, investigating the diffusion of an antioxidant in polypropylene using ILDTA is possible.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: Die Größenverteilungsfunktion von Dispersionen mit extrem breiter Verteilung (Durchmesserbereich 20 〈 D 〈 2000 nm) kann in der analytischen Ultrazentrifuge (AUC) nicht durch eine Standardmethode, z. B. durch Messung der Trübung τ bei einer einzigen Konzentration, bestimmt werden, weil sich die spezifische Trübung τ/c von sehr kleinen und sehr großen Teilchen zu stark unterscheidet. Um dieses Problem zu lösen, haben wir eine neue AUC-Technik, die sogenannte Coupling-PSD-Technik entwickelt. Dabei werden zwei unterschiedliche Konzentrationen derselben Dispersion gleichzeitig in einem einzigen AUC-Lauf vermessen und zwei korrespondierende Lichtintensitiit-Zeit-Kurven aufgezeichnet. Bei einer niedrigen Standardkonzentration cs werden hauptsachlich die größeren Teilchen erfaßt während bei einer 5 bis 30 mal heheren Konzentration ch vor allem die kleineren Teilchen registriert werden. Die beiden I(t)-Kurven werden mathematisch verkniipft und unter Verwendung des Stokeschen Gesetzes und der Streutheorie von Mie für homogene isotrope Kugeln in die gesuchte breite Verteilungsfunktion umgerechnet. Wir benutzen eine mit einem 8-Zellen-Rotor und einem Multiplexer ausgestattete AUC. Da sehr groBe und sehr kleine Teilchen gleichzeitig in einem einzigen Zentrifugenlauf bestimmt werden, kennen wir nicht mehr wie zuvor eine konstante Rotorgeschwindigkeit N anwenden, sondern miissen diese mit Hilfe eines Geschwindigkeitsprogramms N(t) innerhalb einer Stunde von 0 auf 40000 U/min erhehen.
    Notes: The particle size distribution (PSD) of extremely broad distributed dispersions (diameter range 20 〈 D 〈 2000 nm) is not possible to be measured by analytical ultracentrifuge (AUC) using the standard technique, i.e. measuring turbidity τ at a single concentration c, because the specific turbidity τ/c varies too much between very small and very large particles. To solve this problem we have developed a new AUC technique, the so-called Coupling-PSD-Technique. Here two different concentrations of the same dispersion are measured simultaneously by one single AUC run with two corresponding curves of light intensity I vs. time t being registered. At a low standard concentration cs, mainly the larger particles are detected, while at a concentration ch 5 to 30 times higher mainly the smaller particles are registered. Both I(t)-curves are coupled mathematically and transformed into the requested broad distribution curve employing Stokes' law and Mie's light scattering theory for homogeneous isotropic spheres.We use an AUC together with an 8-cells-rotor and a multiplexer. Because very large and very small particles are to be measured simultaneously in one single run, we can no more apply a constant rotor speed N as before, but by means of a time program N(t) we always have to increase the rotor speed from 0 to 40000 rpm within one hour.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...