ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21)
  • Nitrification  (21)
  • 1985-1989  (21)
  • 1965-1969
  • Geosciences  (21)
  • Economics
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Articles  (21)
Publisher
Years
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 335-338 
    ISSN: 1432-0789
    Keywords: Autotrophy ; Lime ; Lolium perenne ; Nitrate reductase ; Nitrification ; Stagnohumic gley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Three different nitrification assays (short-term nitrifier activity, assimilatory nitrate reductase activity of Lolium perenne, and nitrate accumulation in the absence of plants) were performed either on soil from a naturally acidic stagnohumic-gley or on leaves from L. perenne grown in this soil. Before the investigation the soil was limed and fertilised in a manner consistent with established agricultural pasture improvement strategies. Short-term nitrifier activity was only detected in soils above pH 5.6. However, nitrate reductase activity and nitrate accumulation both showed a near linear increase between soil pH 3.8 and 6.8. These findings are attributed to the nature of the assays, each of which considers a different component of the soil nitrifier population.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 247-254 
    ISSN: 1432-0789
    Keywords: Nitrification ; Abiotic factors ; Ammonium concentration ; Vmax of nitrification ; Michaelis-Menten constant for ammonium oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of temperature, water potential and ammonium concentrations were studied in field and laboratory experiments on arable soil. The two field experiments used different sampling intervals, one at daily (short-term) and the other at monthly (long-term) intervals. In the short-term field experiment, the numbers and activities of nitrifiers were assessed before and after natural rain or irrigation. The nitrifiers were apparently outcompeted by heterotrophs during the first days after wetting the soil. Potential nitrification was affected only slightly by changes in water potential, whereas the numbers of ammonium and nitrite oxidizers appeared more sensitive to these changes. The numbers of ammonium and nitrite oxidizers correlated strongly during the daily samplings. The potential nitrite-oxidation rates correlated with water potentials whereas the potential ammonium oxidation rates did not. Extractable ammonium decreased in proportion to increasing nitrate concentrations in both the rain-fed and the irrigated plots. In the long-term field experiments, the numbers of ammonium oxidizers correlated with water potentials but not with in situ temperature or with ammonium concentrations. The potential ammonium-oxidation rates correlated with water potentials and with ammonium-oxidizer numbers. The potential nitrite-oxidation rates correlated strongly with the potential ammonium-oxidation rates. The field experiments implied that nitrite oxidizers obtained substrate from ammonium oxidizers but also from nitrate reduction. In laboratory experiments nitrate accumulated at a Q 10 of about 2 and the V max for nitrification was observed at a water potential of −0.11 MPa (65% of water-holding capacity). The K m for ammonium oxidation at pH 8.2 was 1.72 mg l−1 soil water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 195-202 
    ISSN: 1432-0789
    Keywords: Nitrogen mineralization ; Nitrification ; Organic quality ; New Mexico
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest floor and mineral soil from ponderosa-pine, Douglas-fir, aspen and spruce-fir ecosystems located along a rising gradient in New Mexico were tested with laboratory assays for factors controlling N mineralization and nitrification. We concluded that low pH in combination with factors associated with organic quality controlled N mineralization and almost completely limited nitrification in spruce-fir soils, while N mineralization in the forest floor of ponderosa-pine was limited by low nutrient availability (other than N). Organic quality of the substrate and temporal changes in organic quality appeared to control N-mineralization and nitrification processes in forest-floor and mineral soils from all other sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 65-70 
    ISSN: 1432-0789
    Keywords: Fertilized soil ; Nitrification ; Denitrification ; N2O production ; C2H2 blockage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A sandy soil amended with different forms and amounts of fertilizer nitrogen (urea, ammonium sulphate and potassium nitrate) was investigated in model experiments for N2O emission, which may be evolved during both oxidation of ammonia to nitrate and anaerobic respiration of nitrate. Since C2H2 inhibits both nitrification and the reduction of N2O to N2 during denitrification, the amount of N2O evolved in the presence and absence of C2H2 represents the nitrogen released through nitrification and denitrification. Results show that amounts of N2O-N lost from soils incubated anaerobically with 0.1% C2H2 and treated with potassium nitrate (23.1 µg N-NO 3 − /g dry soil) exceeded those from soils incubated in the presence of 20% oxygen and treated with even larger amounts of nitrogen as urea and ammonium sulphate. This indicates that nitrogen losses by denitrification may potentially be higher than those occurring through nitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 77-82 
    ISSN: 1432-0789
    Keywords: Ecosystem production ; Mineralization ; Nitrification ; Ion exchange resin bag method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Estimates of ammonium and nitrate availability in conifer and hardwood forests using an ion exchange resin (IER) bag method and with on-site incubations of soil cores in buried bags were compared. Correlations between the two methods were generally high. Correlation coefficients (r) between IER nitrate and buried-bag mineralized nitrate ranged from 0.87 to 0.92. Both methods also correlated well with aboveground net primary production, litter fall N content, and fine root biomass. The major differences between the methods related to the relative importances of ammonium and nitrate forms of available N. The IER method indicated that both ammonium and nitrate were important on all sites, with nitrate predominating in most soils. The buried-bag results indicated that available N was primarily in the form of nitrate (all ammonium was oxidized), but that nitrate was insignificant on infertile sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 97-104 
    ISSN: 1432-0789
    Keywords: Nitrogen mineralization ; Nitrification ; Water-soluble inhibitors ; Allelochemic control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Bioassay experiments were performed to test for inhibition of the processes of nitrogen mineralization and nitrification by organics in the forest floor of a ponderosa pine ecosystem. Water-extractable organics in the forest floor were tested by applying filtered extracts to the assay soil. The extract decreased nitrate production by 17.0% and decreased net mineralization by 4.1%. Inhibition by volatile organics was tested by placing vials containing forest floor or selected terpenoids of ponderosa pine in sealed jars containing the assay soil. Nitrate production was inhibited by 87.4% and 100%, and net nitrogen mineralization was inhibited by 73.3% and 67.7% in the jars with forest floor and terpenoids, respectively. Organics which are partially water-soluble and are volatile (such as terpenoids) would be very effective inhibitors of nitrogen cycling processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 87-95 
    ISSN: 1432-0789
    Keywords: Fire effects on mineralization ; Ammonification ; Nitrification ; Ponderosa pine soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of a prescribed fire in a ponderosa pine ecosystem on the rates of decomposition and nitrogen mineralization (including ammonification and nitrification) in the forest floor and mineral soil horizons were evaluated. The prescribed fire immediately increased the rates of nitrogen mineralization and nitrification in the forest floor of all burned plots and in the mineral soil of one plot. The rates of decomposition, as measured by CO2 evolution, in both the forest floor and mineral soil were not significantly different immediately after the burn when expressed on an organic matter basis. The rates of nitrogen mineralization in the forest floor and mineral soil were higher 6 and 10 months after the burn. The rate of decomposition (as measured by respiration) was lower in the forest floor but not in the mineral soil 6 and 10 months after the burn. Volatile organics that may inhibit rates of nitrogen mineralization may have been consumed by prescribed fire.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 33-38 
    ISSN: 1432-0789
    Keywords: Microbial activity ; Nitrification ; Taiga ; Tillage system ; Crop residue management
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary C and N mineralization potentials were determined, in a 12-week laboratory incubation study, on soil samples obtained from recently cleared land which had been cropped to barley for 4 years (field soils) and from nearby undisturbed taiga (forest soils). Treatments for the cropped soils were conventional and no-tillage with and without crop residues removed. An average of about 3% of the total C was evolved as CO2 from the field soils compared with 〉 10% and 4% for the upper (Oie) and lower (Oa) forest-floor horizons, respectively. Significantly more C was mineralized from the Ap of the no-till treatment with residue left on the surface than from the other field Ap horizons. Both forest-floor horizons showed rather long lag periods for net mineralization compared with the field soils, but at the end of the incubation, more mineral N was recovered from the forest Oie despite a rather wide C:N ratio, than from the field soils. After 12 weeks about 115, 200 and 20 μg mineral N/g soil were recovered from the field Ap, the forest Oie and the forest Oa horizons, respectively. Very little C or N was mineralized from the B horizon of the forest or the field soils. Nitrification was rapid and virtually complete for the field soils but was negligible for both forest-floor O horizons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 201-204 
    ISSN: 1432-0789
    Keywords: Fertilizer ; Nitrification ; Denitrification ; N2O emission ; Anhydrous ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field studies to determine the effect of different rates of fertilization on emission of nitrous oxide (N2O) from soil fertilized with anhydrous ammonia showed that the fertilizer-induced emission of N2O-N in 116 days increased from 1.22 to 4.09 kg ha−1 as the rate of anhydrous ammonia N application was increased from 75 to 450 kg ha−1. When expressed as a percentage of the N applied, the fertilizer-induced emission of N2O-N in 116 days decreased from 1.6% to 0.9% as the rate of fertilizer N application was increased from 75 to 450 kg N ha−1. The data obtained showed that a 100% increase in the rate of application of anhydrous ammonia led to about a 60% increase in the fertilizer-induced emission of N2O. Field studies to determine the effect of depth of fertilizer injection on emission of N2O from soil fertilized with anhydrous ammonia showed that the emission of N2O-N in 156 days induced by injection of 112 kg anhydrous ammonia N ha−1 at a depth of 30 cm was 107% and 21 % greater than those induced by injection of the same amount of N at depths of 10 cm and 20 cm, respectively. The effect of depth of application of anhydrous ammonia on emission of N2O was less when this fertilizer was applied at a rate of 225 kg N ha−1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 195-199 
    ISSN: 1432-0789
    Keywords: Fertilizer N ; Nitrification ; Denitrification ; N2O emission ; Anhydrous ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha−1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils. Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 μg NH4OH-N g−1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 μg NH4OH-N g−1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1988), S. 344-349 
    ISSN: 1432-0789
    Keywords: Nitrification ; Deamination ; Grassland ; N fertilisers ; pH ; Denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil nitrification was compared in soils from 89-year-old grassland experimental plots with diverse chemical characteristics. Measurements of NaClO3-inhibited short-term nitrifier activity (SNA) and deamination of 1,2-diamino-4-nitrobenzene were used to study nitrification and deamination activities, respectively, in soil from each of 12 plots. Using multiple regression analysis, an expression for the relationship between SNA, soil pH and fertiliser N additions was derived which indicated that both the frequency and the quantity of farmyard manure additions were important in determining the rate of nitrification. SNA was greatest where there were large and frequent additions of farmyard manure. In soil with pH below 5.2 SNA was very low or insignificant. The effect of (NH4)2SO4 additions could not be assessed because they acidified the soil. We suggest that additions of farmyard manure increase the potential for NO3 − leaching or for denitrification. Deaminase assays indicated that soils with a higher pH showed greater N mineralisation than soils with a lower pH, except at the low extreme. There was no obvious relationship between SNA and deaminase activity at higher levels of pH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0789
    Keywords: Ammonium ; Nitrate ; N-mineralization ; Nitrification ; Fertilization ; Irrigation ; Forest ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Forest-floor and 0–10 cm depth mineral soil horizons in two stands of Douglas fir were sampled for available NH4 +-N and NO3 −-N, N-mineralization potentials, and nitrification potentials for 2 years. The plots in each stand were sampled for 1 year, treated with either ammonium sulfate, carbohydrate (sawdust-sucrose), irrigation, carbohydrate plus irrigation, or no treatment (control), and then sampled for 1 year following treatment. In general, the direction of change following the treatments was the same for both the forest-floor and the mineral soils. Fertilization increased the NH4 +-N and NO3 −-N pools, nitrification potential, and N-mineralization potential, while treatment with carbohydrate decreased all of these characteristics. Irrigation generally increased NH4 +-N pools, nitrification potential, and N-mineralization potential, but decreased these characteristics in the soil at one site. Irrigation plus carbohydrate gave similar results to those of carbohydrate alone. Treatments altered pool sizes and/or potentials, but did not reduce within-year variance in any of these characteristics. Distinct seasonal patterns occurred in all measurements, suggesting that control of short-term variation in N-transformation processes is by factors which are dynamic in nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 106-111 
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Soil water content ; N2O production ; Acetylene ; Ammonium fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effect of soil water content [60%–100% water-holding capacity (WHC)] on N2O production during autotrophic nitrification and denitrification in a loam soil was studied in a laboratory experiment by selectively inhibiting nitrification with a low C2H2 concentration (2.1 Pa). Nitrifiers usually produced more N2O than denitrifiers. During an initial experimental period of 0–6 days the nitrifiers produced more N2O than the denitrifiers by a factor ranging from 1.4 to 16.5, depending on the water content and length of incubation. The highest N2O production rate by nitrifiers was observed at 90% WHC, when the soil had become partly anaerobic, as indicated by the high denitrification rate. At 100% WHC there were large gaseous losses from denitrification, while nitrification losses were smaller except for the first period of measurement, when there was still some O2 remaining in the soil. The use of 10 kPa C2H2 to inhibit reduction of N2O to N2 stimulated the denitrification process during prolonged incubation over several days; thus the method is unsuitable for long-term studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-0789
    Keywords: Denitrification ; Nitrification ; Selective inhibitors ; Nitrapyrin ; Acetylene ; Nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrapyrin and C2H2 were evaluated as nitrification inhibitors in soil to determine the relative contributions of denitrification and nitrification to total N2O production. In laboratory experiments nitrapyrin, or its solvent xylene, stimulated denitrification directly or indirectly and was therefore considered unsuitable. Low partial pressures of C2H2 (2.5–5.0 Pa) inhibited nitrification and had only a small effect on denitrification, which made it possible to estimate the contribution of denitrification. The contribution of nitrification was estimated by subtracting the denitrification value from total N2O production (samples without C2H2). The critical C2H2 concentrations needed to achieve inhibition of nitrification, without affecting the N2O reductase in denitrifiers, must be individually determined for each set of experimental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1988), S. 79-87 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Mineralization ; Nitrification ; Subarctic ; Volcanic ash
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary C and N pool sizes and rates of mineralization were studied in volcanic-ash deposits found in different subarctic habitats in southwestern Alaska. Surface ash samples were taken from white-spruce, alder, and moist- and dry-tundra habitats and were analysed for total and microbial C and N. C and N dynamics were studied using a 28-day aerobic laboratory incubation, with weekly measurement of evolved CO2 and determination of inorganic-N pools initially and after 10 and 28 days. Total and microbial C and N and cumulative respired CO2 all followed a similar pattern among the different habitats, with the moist-tundra habitat having the highest values and the spruce site the lowest. The size of the microbial biomass C and N pool in the spruce habitat was among the lowest reported for any ecosystem. Little net N mineralization occurred in the spruce-forest and dry-tundra ash over 28 days. Ash from the moist-tundra habitat immobilized a significant amount of N during the first 10 days of incubation, yet showed a large net release of N after 28 days. In contrast, the ash from the alder site exhibited net mineralization after both periods, with N production after 28 days being about 3.5 times that after 10 days. In addition, the alder-habitat ash was the only soil that showed net nitrification. Rates of total C and N accretion in the tundra and alder habitats were rapid relative to rates found for primary successions. The results of this study show that habitat has a profound effect on C and N cycling in subarctic environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1989), S. 254-258 
    ISSN: 1432-0789
    Keywords: N-mineralisation ; Nitrification ; Arginine ammonification ; Inorganic pollutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Long-term effects of 12 inorganic pollutants on N transformations were studied in a sandy cambisol. As, Be, Br, Cd, Cr, F, Pb, Hg, Se, Sn, and V were added to the soil as inorganic salts in 1975 and 1976. Soil samples were taken in 1984 to determine total N mineralisation and nitrification. All pollutants except Se and Sn inhibited N mineralisation. The most toxic elements under investigation were Be and Hg. Nitrification was reduced to a lower degree than total N mineralisation. As, Be, Cd, Cr, F, Pb, Se, and Sn failed to inhibit this process at all. It is assumed that nitrifying bacteria became adapted to these pollutants in the course of time. The arginine-ammonification method was less sensitive in detecting the effects of pollutants on N transformation than the N mineralisation test.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 204-211 
    ISSN: 1432-0789
    Keywords: Nitrification ; Heterocyclic N compounds ; Pyrazoles ; Triazoles ; Pyridines ; Thiadiazoles ; 2-Ethynylpyridine ; Nitrapyrin ; Etridiazole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The relationship between the structures of diverse heterocyclic nitrogen (N) compounds and the effectiveness of these compounds for the inhibition of nitrification in soil was studied by determining the effects of different amounts of 12 unsubstituted and 33 substituted heterocyclic N compounds on the production of (NO 2 − +NO 3 − )-N in soils incubated at 25 °C for 21 days after treatment with ammonium sulfate. The results showed that unsubstituted heterocyclic N compounds containing two adjacent ring N atoms inhibit nitrification in soil and that two of these compounds, pyrazole and 1,2,4-triazole, are potent inhibitors. They also showed that several substituted pyrazoles and thiadiazoles are good inhibitors of nitrification in soil (e.g., 3-methylpyrazole and 3,4-dichloro-1,2,5-thiadiazole).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 205-212 
    ISSN: 1432-0789
    Keywords: Nitrate production ; Nitrification ; Humisol ; Methane oxidation ; Methanotrophs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The coexistence of chemoautotrophic nitrifiers and methanotrophs in a cultivated humisol was investigated. Under laboratory conditions which supported the growth and activity of methanotrophs, the nitrifiers were partially or completely inhibited. The inhibition was related to a competition for available oxygen and a high assimilatory requirement for inorganic nitrogen by the Methanotrophs. Dissolved methane concentrations as high as 250 μM had no direct effect on the oxidation of ammonium. Simultaneous nitrification and methane oxidation was observed only if relatively high levels of ammonium and oxygen were maintained. Coupled nitrification-assimilatory/dissimilatory nitrate reduction resulted from the high oxygen demand of the actively growing methanotrophs. This study suggests that the potential competitive effects of methanotrophs may influence nitrification by chemoautotrophic nitrifiers in certain environmental systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 341-346 
    ISSN: 1432-0789
    Keywords: Nitrification ; Phosphatase ; Dehydrogenase ; Aerosol ; Soil thickness ; Soil enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil was exposed to red phosphorous/butyl rubber (RP/BR) aerosols at various relative humidities in a recirculating environmental wind tunnel. Soil microbial and enzymatic activities were measured immediately after exposure and periodically thereafter for 56 days. The nitrification potential was significantly reduced in soil amended with ammonium sulfate and exposed to RP/BR smoke, and could be related to a decline in soil pH. The rate of nitrate formation in unamended soil with time was also reduced, but by 57 days postexposure, concentrations were similat to those of unexposed controls in all but the thinnest soil lense. Soil dehydrogenase and phosphatase enzyme activities were sensitive to RP/BR smoke and in some treatments no activity was detected. The measured activities did not recover within the 56-day postexposure period and in some cases declined. Soil lense thickness was the greatest factor controlling the degree of RP/BR effects, indicating that injury to soil microbial and enzymatic activities may be surficial. Deposition of smoke particles increased with increasing relative humidity, which had a significant impact on the activities measured.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 1 (1985), S. 3-7 
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Soil profile
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrous oxide (N2O) fluxes at the soil surface and concentrations at 0.1, 0.2, and 0.3 m were determined in a 40-year-old planted tallgrass (XXX) prairie, a 40-year-old white pine (Pinus strobus) plantation, and field plots treated annually for 18 years either with 33 metric tons of manure ha−1 (330 kg N ha−1) and NH4NO3 (80 kg N ha−1) or with only NH4NO3 (control). Nitrous oxide fluxes from the prairie, forest, manure-amended, and control sites from 13 May to 10 November 1980 ranged from 0.2 to 1.3, 3.5 to 19.5, 3.7 to 79.0, and 1.7 to 24.8 ng N2O-N m−2s−1, respectively. We observed periods when there was no apparent relationship between the N2O flux from the surface and N2O concentrations in the soil profile. This was generally the case in the prairie and in the field sites following the application of N fertilizer. The N2O concentrations in the soil profile increased markedly and coincided with increased soil water content following periods of heavy rainfall for all sites except the prairie. Nitrous oxide concentration gradients indicate that following heavy rainfalls the site of N2O production was moved from the surface deeper into the soil profile. We suggest that the source of N2O production near the surface is nitrification and that N2O is produced by denitrification of NO3 leached into the soil following heavy rainfall.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 1 (1985), S. 131-140 
    ISSN: 1432-0789
    Keywords: Nitrification ; MPN of ammonium oxidizers ; Chlorate inhibition ; Arable soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The number of ammonium-oxidizing bacteria was measured with the most probable number (MPN) method while potential ammonium oxidation rates were determined with a chlorate inhibition technique in two arable soils. A new method for measuring actual in situ ammonium oxidation in soil cores is presented. One soil was cropped for 4 years with one of four crop-fertilizer combinations: Unfertilized lucerne ley, unfertilized barley, nitrate-fertilized grass ley, or nitrate-fertilized barley. The highest ammonium oxidizer numbers and potential rates were found in the grass ley. The unfertilized barley had one-third the number and activity of the grass ley. Actual rates were in general 5–25 times lower than potential rates. The other soil was that undergoing a 27-year-old field trial with a fallow and four different cropping treatments: No addition, nitrate, nitrate + straw, or manure. Ammonium oxidizer numbers were highest in the manure and straw treatments. MPN numbers and potential rates were lowest in the fallow treatment. Typical specific potential rates were 30 ng N oxidized cell−1 h−1. Actual rates were in general 40 times lower than potential rates. Actual ammonium oxidation measurements seem to correspond to actual in situ activity at the moment of sampling, whereas the MPN technique and the potential measurements reflect events that occurred weeks to months before the sampling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...