ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (397,980)
  • Wiley  (102,144)
  • National Academy of Sciences  (16,490)
  • 1985-1989  (318,196)
  • 1975-1979  (198,418)
Collection
Years
Year
  • 1
    Publication Date: 2023-05-24
    Description: An estimate of average river particulate matter (RPM) composition was bàsed on analyses of more than 40 elements in the Amazon, Congo, Ganges, Magdalena, Mekong, Parana and Orinoco rivers, to which were added literature data for 13 other major world rivers, covering the whole spectrum of morphoclimatic features. Geographic variations of major elements in RPM are mostly linked to weathering types and to the balance between weathering rate and river transport. As a result of chemical erosion, Al, Fe and Ti are enriched in RPM with respect to the average parent rock, while Na, Ca, Mg and Sr are strongly depleted. These figures are directly related to the relative importance of dissolved and particulate transport in rivers; this has been computed for each of 40 elements. In order to study weathering on a global scale, the total observed elemental fluxes (dissolved + particulate) have been computed and compared to theoretical ones. The latter were derived from the elemental content in the average parent rock and the total quantity of weathered material, computed from the Al ratio in RPM and in parent rock. Observed and theoretical fluxes are balanced for the less mobilized elements (rare earths, Co, Cr, Cs, Fe, Mn, Rb, Si, Th, Ti, U and V) for which no enrichment relative to Al is noted in RPM, and for B, Ba, Ca, K, Mg, Na, Sr which are relatively depleted in RPM due to their high dissolved transport. Additional fluxes have been found for Br, Sb, Pb, Cu, Mo, Zn and are possible also for Ni and P. This is reflected by marked enrichments in RPM relative to Al for the poorly or moderately dissolved transports (Pb, Cu, Zn). Several hypotheses involving either the natural origin (volcanic dust, marine aerosols, geochemical fractionation) or the artificial origin (worldwide pollution) are discussed to explain these discrepancies, assuming river transport and weathering either to be in a steady state on a global scale or not. However, none of them can fully account for these additional fluxes. It is most likely that these excesses have multiple origins, anthropogenic or natural or both. The comparison between RPM and deep-sea clay compositions emphasizes the prime influence of river input on oceanic sedimentation of Si, Al, Fe, Ti, lanthanides, Sc, Rb, V, etc. A few elements such as Zn, Sb, occur in excess in RPM as compared to deep-sea clays; in order to balance this excess, a remobilization of these elements out of the sediment can be considered. Finally, the enrichment of Co, Cu, Mn and Ni in deep-sea clays compared to RPM is discussed and attributed to several sources and processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 93 (B8). pp. 8911-8927.
    Publication Date: 2021-12-13
    Description: High-resolution seismic reflection and Sea Beam bathymetric data provide insights into the processes of sediment offscraping and accretion in the Middle America Trench off southern Mexico. Thick terrigenous sediments that are transported down Ometepec Canyon and accumulate along the trench floor are scraped off the oceanic plate and accreted in thrust packets to the lower trench slope. The packets offscraped represent most of the trench strata. Underlying hemipelagic deposits that accumulate on the seafloor seaward of the trench are subducted landward of the toe of the slope. Horizontal displacement on the thrust is less than 1 km. Leading edge folds are the surface expressions of the thrusts and strike subparallel to the base of the trench slope. The folds are continuous for as much as 10 km and have amplitudes as high as 200 m and wavelengths of 0.5 to 2 km. Folds are best developed along sections of the trench with interbedded silty turbidite and mud deposits. Fold are absent where thick coarse-grained fan deposits occur. Thickening of the thrust packets occurs by large-scale thrust duplication, by layer-parallel shortening, and by deposition of material that slumps off the leading edge of older upslope thrust blocks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Chemical Engineering Science, 42 (7). pp. 1645-1653.
    Publication Date: 2021-11-03
    Description: The kinetics of methane hydrate decomposition was studied using a semibatch stirred-tank reactor. The decomposition was accomplished by reducing the pressure on a hydrate slurry in water to a value below the three-phase equilibrium pressure at the reactor temperature. The data were obtained at temperatures from 274 to 283 K and pressures from 0.17 to 6.97 MPa. The stirring rates were high enough to eliminate mass-transfer effects. Analysis of the data indicated that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the decomposition pressure. The proportionality constant showed an Arrhenius temperature dependence. An estimate of the hydrate particle diameters in the experiments permitted the development of an intrinsic model for the kinetics of hydrate decomposition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 87 (2). pp. 251-258.
    Publication Date: 2021-06-11
    Description: 1. Effects of noradrenaline and the related compounds adrenaline, dopamine, octopamine, tryamine, clonidine and isoprenaline were studied in isolated heart preparations from the cuttlefish Sepia officinalis L. 2. All analogues produced a positive inotropic affect, with noradrenaline being the most potent substance. The chronotropic effects of the tested compounds differed widely. 3. The action of substances of the phenylethanolamine group were not antagonized by propanolol but were partly antagonized by phentolamine. 4. Serotonin and its analogues also produced cardio-excitation. These effects were blocked by cyproheptadine but not by methysergide. 5. These results indicate the presence of two different receptors in the Sepia myocardium: one type reacting with noradrenaline most effectively and a second type being stimulated by serotonin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 93 (B8). pp. 9027-9057.
    Publication Date: 2021-06-01
    Description: We have determined the centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15°20′, and Vema transforms. We have also estimated the depth extent of faulting during each earthquake from the centroid depth and the fault width. For five of the transforms, earthquake centroid depths lie in the range 7–10 km beneath the seafloor, and the maximum depth of seismic faulting is 14–20 km. On the basis of a comparison with a simple thermal model for transform faults, this maximum depth of seismic behavior corresponds to a nominal temperature of 900° ± 100°C. In contrast, the nominal temperature limiting the maximum depth of faulting during oceanic intraplate earthquakes with strike-slip mechanisms is 700° ± 100°C. The difference in these limiting temperatures may be attributed to the different strain rates characterizing intraplate and transform fault environments. Three large earthquakes on the 15°20′ transform have shallower centroid depths of 4–5 km and a maximum depth of seismic faulting of 10 km, corresponding to a limiting temperature of 600°C. The shallower extent of seismic behavior along the 15°20′ transform may be related to a recent episode of extension across the transform associated with the northward migration of the triple junction among North American, South American, and African plates to its present position near the transform. The source mechanisms for all events in this study display the strike-slip motion expected for transform fault earthquakes; slip vector azimuths agree to within 2°–3° of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for five of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases the site of secondary reverse faulting is near a compressional jog in the current trace of the active transform fault zone. We find no evidence to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from simple thermal models or weaker than normal oceanic lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-05
    Description: Maturing females of the octopod Japetella diaphana (Hoyle) develop a luminous oral ring. Studies of specimens of different size show that this structure develops from a muscular ring which undergoes great cellular proliferation, associated with gradual degeneration of the original muscle. The light‐producing cells (photocytes) have a relatively uniform cytoplasm whose most characteristic components are small mitochondria, granular aggregates and microtubular or microfibrillar bundles. It is concluded that the original muscle tissue is not transformed directly into luminous tissue. Possible uses of the luminescence are discussed, based on the postures adopted by live specimens in shipboard aquaria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 104 . pp. 23-30.
    Publication Date: 2021-01-19
    Description: The octopus Eledone cirrhosa (Lamarck 1798), enclosed in a small chamber of flowing sea water, was tested for responses to water-borne chemicals. Incidence of body movements and change in ventilation rate were recorded by a non-invasive technique- At concentrations no more than 1x10 -4M at the animal, the octopuses responded to betaine, proline, alanine, lactic acid, and serine (order of decreasing sensitivity)- Glutamic acid and trimethylamine oxide were considerably less stimulatory, arginine and taurine were hardly more effective than sea-water controls.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Geology, 23 (1-2). pp. 57-75.
    Publication Date: 2020-12-08
    Description: Several types of abyssal bedforms have been discovered during surveys with a deeply towed instrument package at water depths of 1.5–6 km in the Pacific and Atlantic Oceans. Cores and current-meter records obtained at the same sites provide data for interpreting their dynamics. Wave and current ripples are best portrayed in bottom photographs, but medium-scale bedforms, including sand waves, mud waves and erosional furrows, are described by interpreting high-resolution side-looking sonar records. The largest examples affect surface-ship echograms, though their shape and structure can seldom be resolved without near-bottom observations. Wave ripples are common on the slopes of seamounts and ridges, while current ripples and sand waves occur beneath some fast thermohaline currents whose beds are shallower than the foraminiferal compensation depth. Depositional and erosional bedforms in cohesive sediment have been found beneath the deepest thermohaline currents; they may be restricted to areas where the flow is unusually steady in direction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Palaeogeography, Palaeoclimatology, Palaeoecology, 71 (1-2). pp. 119-136.
    Publication Date: 2020-08-07
    Description: Pore fluids extracted from near-surface sediments of the deformation front along the Oregon subduction zone have, in general, the dissolved nutrient pattern characteristic of bacterial sulfate reduction. However, in certain locations there are peculiar ammonium distributions and anomalously 13C-depleted dissolved ΣCO2. These carbon isotope and nutrient patterns are attributed to the concurrent microbially-mediated oxidation of sedimentary organic matter (POC) and methane (CH4) originating from depth. In contrast to the oxidation of sedimentary organic matter in the sulfate zone, utilization of methane as the carbon source by sulfate-reducing bacteria would generate only half as much total carbon dioxide for each mole of sulfate consumed and would not generate any dissolved ammonium. The isotopically light ΣCO2 released from methane oxidation depletes the total metabolic carbon dioxide pool. Therefore, NH4+, ΣCO2 and δ13C of interstitial carbon dioxide in these pore fluids distintcly reflect the combined contributions of each of the two carbon substrates undergoing mineralization; i.e. methane and sedimentary organic matter. By appropriately partitioning the nutrient and substrate relationships, we calculate that in the area of the marginal ridge of the Oregon subduction zone as much as 30% of the ΣCO2 in pore fluids may result from methane oxidation. The calculation also predicts that the carbon isotope signature of the carbon dioxide derived from methane is between −35‰ and −63‰ PDB. Such an isotopically light gas generated from within the accretionary complex could be the residue of a biogenic methane pool. Fluid advection is required to carry such methane from depth to the present near-surface sediments. This mechanism is consistent with large-scale, tectonically-induced fluid transport envisioned for accreted sediments of the world's convergent plate boundaries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Coupled ocean-atmosphere models. Elsevier Oceanography Series, 40 . Elsevier, Amsterdam, The Netherlands, pp. 543-590. ISBN 0-444-42486-5
    Publication Date: 2020-08-03
    Description: The potential vorticity profile in the seasonal pycnocline can be predicted from the surface buoyancy and momentum fluxes by means of the Lagrangian correlation of seasonally varying mixed-layer depth and density. Water flows geostrophically from the seasonal pycnocline into the permanent pycnocline, through the sloping surface of depth D defined by the annual maximum depth of the mixed layer. Potential vorticity flows into the permanent pycnocline where U(D)· ∇D ≤W(D) and vice versa. A theory is given for the regional variation of D, and methods of determining D from hydrographic data are reviewed. This physical understanding of potential vorticity sources and sinks makes it possible to reformulate ventilated thermocline models in terms of flux rather than density boundary conditions, and guides the design of coupled models of ocean—atmosphere circulation. It leads to formulae for water-mass formation and the nutrient balance in the seasonal boundary layer.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...