ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Forschungsdaten  (7)
  • Deep Sea Drilling Project; DSDP  (5)
  • displacement
  • induced
  • 1985-1989  (3)
  • 1980-1984  (4)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Pickering, Kevin T; Stow, Dorrik A V (1986): Inorganic major, minor, and trace element geochemistry and clay mineralogy of sediments from the Deep Sea Drilling Project Leg 96, Gulf of Mexico. In: Bouma, AH; Coleman, JM; Meyer, AW; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 96, 733-739, https://doi.org/10.2973/dsdp.proc.96.144.1986
    Publikationsdatum: 2024-06-25
    Beschreibung: Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Kreuzer, H; Müller, P; Wissmann, Gerd; Reinecke, T (1984): Petrography and K-Ar dating of the Mazagan granodiorite, Deep Sea Drilling Project Leg 79, Holes 544A and 547B. In: Hinz, K; Winterer, EL; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 79, 543-549, https://doi.org/10.2973/dsdp.proc.79.118.1984
    Publikationsdatum: 2024-04-27
    Beschreibung: Gneissic granodiorite was recovered by drilling at the base of the Mazagan escarpment, 100 km west of the Casablanca, Morocco, at 4000 m water depth. Coarse, predeformative muscovite yielded dates of -515 Ma, fine-grained muscovite of -455 Ma, biotite -360 and 335 Ma, and feldspar -315 Ma. These dates are tentatively correlated with the microscopic results. We assume a minimum age of middle Cambrian for the granodiorite, an Ordovician deformation and mylonitization, and a Late Carboniferous overprint under upper greenschist facies conditions.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Mottl, Michael J; Druffel, Ellen R M; Hart, Stanley R; Lawrence, James R; Saltzman, Eric S (1985): Chemistry of hot waters sampled from basaltic basement in Hole 504B, Deep Sea Drilling Project Leg 83, Costa Rica Rift. In: Anderson, RN; Honnorez, J; Becker, K; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 83, 315-328, https://doi.org/10.2973/dsdp.proc.83.115.1985
    Publikationsdatum: 2023-12-11
    Beschreibung: Seawater that has been altered by reaction with basaltic basement has been sampled from Deep Sea Drilling Project Hole 504B, located on 5.9-m.y.-old crust on the southern flank of the Costa Rica Rift. Fourteen water samples have been collected on Legs 69, 70, and 83, both before and after renewed drilling on the latter two legs, at temperatures from 69 to 133°C and pressures from 390 to 425 bars. The water sampled prior to renewed drilling on Leg 83 had occupied the hole for nearly 2 yr. since it was last flushed with surface seawater at the end of Leg 70. Despite some contamination by seawater during sampling, the composition of two of these waters has been determined by using nitrate as a tag for the contaminant. Both the 80 and 115°C waters have seawater chlorinity, but have lost considerable Mg, Na, K, sulfate, and 02, and have gained Ca, alkalinity, Si, NH3 and H2S. The loss of sulfate is due to anhydrite precipitation, as indicated by the d34S value of the remaining dissolved sulfate. The 87Sr/86Sr ratio has been lowered to 0.7086 for the 80°C water and 0.7078 for the 115°C water, whereas the Sr concentration is nearly unchanged. The changes in major element composition relative to seawater are also larger for the 115°C water, indicating that the basement formation water at this site probably varies in composition with depth. Based on their direction relative to seawater, the compositional changes for the 80 and 115°C waters do not complement the changes inferred for the altered rocks from Hole 504B, suggesting that the bulk composition of the altered rocks, like their mineralogy, is largely unrelated to the present thermal and alteration regime in the hole. The exact nature of the reacted seawaters cannot be determined yet, however. During its 2 yr. residence in the hole, the surface seawater remaining at the end of Leg 70 would have reacted with the wall rocks and exchanged with their interstitial formation waters by diffusion and possibly convection. How far these processes have proceeded is not yet certain, although calculations suggest that diffusion alone could have largely exchanged the surface seawater for interstitial water. The d18O of the samples is indistinguishable from seawater, however, and the d14C of the 80°C sample is similar to that of ocean bottom water. Although the interpretation of these species is ambiguous, that of tritium should not be. Tritium analyses, which are in progress, should clarify the nature of the reacted seawaters obtained from the hole.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Lyle, Mitchell W; Owen, Robert M; Leinen, Margaret W (1986): History of hydrothermal sedimentation at the East Pacific Rise, 19°S. In: Leinen, M; Rea DK; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 92, 585-596, https://doi.org/10.2973/dsdp.proc.92.139.1986
    Publikationsdatum: 2023-09-30
    Beschreibung: The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Simoneit, Bernd R T; Vuchev, Vassil T; Grimalt, Joan O (1984): Organic matter along the sedimentary sequences of the Moroccan Continental Margin, Leg 79, Sites 545 and 547. In: Hinz, K; Winterer, EL; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 79, 807-824, https://doi.org/10.2973/dsdp.proc.79.133.1984
    Publikationsdatum: 2023-07-20
    Beschreibung: The lipids and kerogens of 15 sediment samples from Site 547 (ranging from Pleistocene to Early Jurassic/Triassic) and 4 from Site 545 (Cretaceous) have been analyzed. A strong terrestrial contribution of organic matter was found, and significant autochthonous inputs were also present, especially at Site 545. Both strongly reduced and highly oxidized sediments have been found in the Cenozoic and Jurassic samples of Site 547. On the contrary, all the Cretaceous sections of Sites 547 and 545 are anoxic. Sediments from anoxic paleoenvironments are immature and have a high content of sterenes, diasterenes, steradienes, hopenes, and ßß hopanes. Samples from oxic paleoenvironments are mainly mature and their content of hopenes and steriod structures is below the detection level. Nevertheless, their hopane distributions have the immature ßß homologs as the predominant molecular markers. For Site 545 the most abundant molecular markers are ring A monoaromatic steranes, and their presence is attributed to microbial and chemical transformations during early diagenesis.
    Schlagwort(e): Deep Sea Drilling Project; DSDP
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2023-05-12
    Beschreibung: Abstract
    Beschreibung: Sodankylä geophysical observatory (SGO) has operated in Sodankylä in northern Finland since 1913. SGO was originally founded by the Finnish Academy of Science and Letters. Now it takes care of national and international duties studying the space and geoenvironment as an independent research organisation in the University of Oulu. SGO performs long-term measurements, builds instruments, innovates and maintains domestic and international measurements, and performs research from these measurements. The seismic observations at SGO started in Sodankylä 1956. In 2005-2006 SGO seismic stations were updated to broadband instrumentation and connected to GEOFON data center. Today, the number of seismic stations has increased to 9. The stations have Streckeisen STS-2 or Nanometrics Trillium PA/PH broadband sensors. 3 of the stations are so called Posthole stations located in borehole 7-20 m below surface. The rest of the stations are located on the surface or in a more traditional type of vault. Data acquisition systems are either Earth Data PS6-24 digitisers and PC with Seiscomp or Nanometrics Centaurs. The continuous wave form data is collected at 100 Hz sampling frequency. The VH, LH and BH channel data is available from GEOFON data center and the 100Hz HH data from SGO by request. Further information about instrumentation can be found at the Institute’s web site (https://www.sgo.fi/). Waveform data are available from the GEOFON data centre, under network code FN, and arefully open.
    Schlagwort(e): geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Materialart: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    GFZ Data Services
    Publikationsdatum: 2023-02-08
    Beschreibung: Abstract
    Beschreibung: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki.The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data are available from the GEOFON data centre, under network code HE, and arefully open.
    Schlagwort(e): geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Materialart: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...