ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Structure-Activity Relationship  (204)
  • American Association for the Advancement of Science (AAAS)  (204)
  • American Chemical Society
  • American Geophysical Union
  • International Union of Crystallography (IUCr)
  • 1985-1989  (119)
  • 1980-1984  (85)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (204)
  • American Chemical Society
  • American Geophysical Union
  • International Union of Crystallography (IUCr)
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-09
    Description: Oligonucleotides complementary to regions of U1 and U2 small nuclear RNAs (snRNAs), when injected into Xenopus laevis oocytes, rapidly induced the specific degradation of U1 and U2 snRNAs, respectively, and then themselves were degraded. After such treatment, splicing of simian virus 40 (SV40) late pre-mRNA transcribed from microinjected viral DNA was blocked in oocytes. If before introduction of SV40 DNA into oocytes HeLa cell U1 or U2 snRNAs were injected and allowed to assemble into small nuclear ribonucleoprotein particle (snRNP)-like complexes, SV40 late RNA was as efficiently spliced as in oocytes that did not receive U1 or U2 oligonucleotides. This demonstrates that oocytes can form fully functional hybrid U1 and U2 snRNPs consisting of human snRNA and amphibian proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Z Q -- Prives, C -- CA33620/CA/NCI NIH HHS/ -- CA46121/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 9;241(4871):1328-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2970672" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Macromolecular Substances ; Oocytes ; *RNA Splicing ; *RNA, Small Nuclear ; *Ribonucleoproteins ; Ribonucleoproteins, Small Nuclear ; Species Specificity ; Structure-Activity Relationship ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-12-02
    Description: Human gamma-aminobutyric acid A (GABAA) receptor subunits were expressed transiently in cultured mammalian cells. This expression system allows the simultaneous characterization of ligand-gated ion channels by electrophysiology and by pharmacology. Thus, coexpression of the alpha and beta subunits of the GABAA receptor generated GABA-gated chloride channels and binding sites for GABAA receptor ligands. Channels consisting of only alpha or beta subunits could also be detected. These homomeric channels formed with reduced efficiencies compared to the heteromeric receptors. Both of these homomeric GABA-responsive channels were potentiated by barbiturate, indicating that sites for both ligand-gating and allosteric potentiation are present on receptors assembled from either subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pritchett, D B -- Sontheimer, H -- Gorman, C M -- Kettenmann, H -- Seeburg, P H -- Schofield, P R -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1306-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuroendocrinology, ZMBH, University of Heidelberg, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2848320" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Blotting, Northern ; Cells, Cultured ; Chloride Channels ; Chlorides/*physiology ; Cloning, Molecular ; Electric Conductivity ; Humans ; Macromolecular Substances ; Membrane Proteins/*physiology ; Muscimol/metabolism ; Receptors, GABA-A/*physiology/ultrastructure ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-09-16
    Description: In the proposed "zinc finger" DNA-binding motif, each repeat unit binds a zinc metal ion through invariant Cys and His residues and this drives the folding of each 30-residue unit into an independent nucleic acid-binding domain. To obtain structural information, we synthesized single and double zinc finger peptides from the yeast transcription activator ADR1, and assessed the metal-binding and DNA-binding properties of these peptides, as well as the solution structure of the metal-stabilized domains, with the use of a variety of spectroscopic techniques. A single zinc finger can exist as an independent structure sufficient for zinc-dependent DNA binding. An experimentally determined model of the single finger is proposed that is consistent with circular dichroism, one- and two-dimensional nuclear magnetic resonance, and visual spectroscopy of the single-finger peptide reconstituted in the presence of zinc.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parraga, G -- Horvath, S J -- Eisen, A -- Taylor, W E -- Hood, L -- Young, E T -- Klevit, R E -- New York, N.Y. -- Science. 1988 Sep 16;241(4872):1489-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3047872" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; DNA Mutational Analysis ; *DNA-Binding Proteins ; Magnetic Resonance Spectroscopy ; Metalloproteins ; Protein Conformation ; Saccharomyces cerevisiae ; Structure-Activity Relationship ; *Transcription Factors ; Zinc/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-01-08
    Description: The Bacillus subtilis ribonuclease P consists of a protein and an RNA. At high ionic strength the reaction is protein-independent; the RNA alone is capable of cleaving precursor transfer RNA, but the turnover is slow. Kinetic analyses show that high salt concentrations facilitate substrate binding in the absence of the protein, probably by decreasing the repulsion between the polyanionic enzyme and substrate RNAs, and also slow product release and enzyme turnover. It is proposed that the ribonuclease P protein, which is small and basic, provides a local pool of counter-ions that facilitates substrate binding without interfering with rapid product release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reich, C -- Olsen, G J -- Pace, B -- Pace, N R -- GM34527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jan 8;239(4836):178-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington 47405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3122322" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*enzymology ; Endoribonucleases/*physiology ; Kinetics ; Nucleic Acid Precursors/metabolism ; RNA, Transfer/metabolism ; Ribonuclease P ; Ribonucleoproteins/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-07-01
    Description: A method of combinatorial cassette mutagenesis was designed to readily determine the informational content of individual residues in protein sequences. The technique consists of simultaneously randomizing two or three positions by oligonucleotide cassette mutagenesis, selecting for functional protein, and then sequencing to determine the spectrum of allowable substitutions at each position. Repeated application of this method to the dimer interface of the DNA-binding domain of lambda repressor reveals that the number and type of substitutions allowed at each position are extremely variable. At some positions only one or two residues are functionally acceptable; at other positions a wide range of residues and residue types are tolerated. The number of substitutions allowed at each position roughly correlates with the solvent accessibility of the wild-type side chain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reidhaar-Olson, J F -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):53-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Codon ; DNA/genetics/metabolism ; *DNA-Binding Proteins ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Plasmids ; Protein Conformation ; Repressor Proteins/*genetics ; Structure-Activity Relationship ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-12-02
    Description: D-galactose-binding (or chemoreceptor) protein of Escherichia coli serves as an initial component for both chemotaxis towards galactose and glucose and high-affinity active transport of the two sugars. Well-refined x-ray structures of the liganded forms of the wild-type and a mutant protein isolated from a strain defective in chemotaxis but fully competent in transport have provided a molecular view of the sugar-binding site and of a site for interacting with the Trg transmembrane signal transducer. The geometry of the sugar-binding site, located in the cleft between the two lobes of the bilobate protein, is novel in that it is designed for tight binding and sequestering of either the alpha or beta anomer of the D-stereoisomer of the 4-epimers galactose and glucose. Binding specificity and affinity are conferred primarily by polar planar side-chain residues that form intricate networks of cooperative and bidentate hydrogen bonds with the sugar substrates, and secondarily by aromatic residues that sandwich the pyranose ring. Each of the pairs of anomeric hydroxyls and epimeric hydroxyls is recognized by a distinct Asp residue. The site for interaction with the transducer is about 18 A from the sugar-binding site. Mutation of Gly74 to Asp at this site, concomitant with considerable changes in the local ordered water structures, contributes to the lack of productive interaction with the transmembrane signal transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyas, N K -- Vyas, M N -- Quiocho, F A -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1290-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3057628" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*ultrastructure ; Binding Sites ; *Calcium-Binding Proteins ; Carrier Proteins/*ultrastructure ; *Chemotaxis ; Computer Simulation ; DNA Mutational Analysis ; Escherichia coli ; Galactose/metabolism ; Glucose/metabolism ; Hydrogen Bonding ; Models, Molecular ; *Monosaccharide Transport Proteins ; *Periplasmic Binding Proteins ; Protein Conformation ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-24
    Description: The N-methyl-D-aspartate (NMDA) class of excitatory amino acid receptors regulates the strength and stability of excitatory synapses and appears to play a major role in excitotoxic neuronal death associated with stroke and epilepsy. The conductance increase gated by NMDA is potentiated by the amino acid glycine, which acts at an allosteric site tightly coupled to the NMDA receptor. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current. In solutions containing low levels of glycine, I2CA completely blocks the response to NMDA, suggesting that NMDA alone is not sufficient for channel activation. I2CA will be useful for defining the interaction of glycine with NMDA receptors and for determining the in vivo role of glycine in excitotoxicity and synapse stabilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huettner, J E -- HL-35034/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 24;243(4898):1611-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2467381" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/*analogs & derivatives/physiology ; Cells, Cultured ; Electric Conductivity ; Glycine/*antagonists & inhibitors ; In Vitro Techniques ; Indoles/*pharmacology ; Ion Channels/drug effects ; N-Methylaspartate ; Neural Inhibition ; Rats ; Receptors, N-Methyl-D-Aspartate ; Receptors, Neurotransmitter/*drug effects ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-24
    Description: Repeating copolymers of (dT-dC)n.(dA-dG)n sequences (TC.AGn) can assume a hinged DNA structure (H-DNA) which is composed of triple-stranded and single-stranded regions. A model for the formation of H-DNA is proposed, based on two-dimensional gel electrophoretic analysis of DNA's with different lengths of (TC.AG)n copolymers. In this model, H-DNA formation is initiated at a small denaturation bubble in the interior of the copolymer, which allows the duplexes on either side to rotate slightly and to fold back, in order to make the first base triplet. This nucleation establishes which of several nonequivalent H-DNA conformations is to be assumed by any DNA molecule, thereby trapping each molecule in one of several metastable conformers that are not freely interconvertible. Subsequently, the acceptor region spools up single-stranded polypyrimidines as they are released by progressive denaturation of the donor region; both the spooling and the denaturation result in relaxation of negative supercoils in the rest of the DNA molecule. From the model, it can be predicted that the levels of supercoiling of the DNA determine which half of the (dT-dC)n repeat is to become the donated third strand.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Htun, H -- Dahlberg, J E -- GM 30220/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 24;243(4898):1571-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2648571" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/*ultrastructure ; DNA, Single-Stranded ; DNA, Superhelical ; *Nucleic Acid Conformation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-03-24
    Description: The compound 1,6-dihydropurine ribonucleoside, prepared by reduction of nebularine in the presence of ultraviolet light, is bound by adenosine deaminase approximately 10(8)-fold less tightly than 6-hydroxy-1,6-dihydropurine ribonucleoside, a nearly ideal transition-state analog. This difference in affinities, which is associated with the presence of a single hydroxyl group in the second compound, suggests the degree to which one or a few hydrogen bonds may stabilize the transition state in an enzyme reaction of this type.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kati, W M -- Wolfenden, R -- GM-18325/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 24;243(4898):1591-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of North Carolina, Chapel Hill 27514.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2928795" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*metabolism ; Adenosine Deaminase Inhibitors ; Hydrogen Bonding ; Hydroxides ; Ligands ; Nucleoside Deaminases/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-04-07
    Description: Protein engineering and x-ray crystallography have been used to study the role of a surface loop that is present in pancreatic phospholipases but is absent in snake venom phospholipases. Removal of residues 62 to 66 from porcine pancreatic phospholipase A2 does not change the binding constant for micelles significantly, but it improves catalytic activity up to 16 times on micellar (zwitterionic) lecithin substrates. In contrast, the decrease in activity on negatively charged substrates is greater than fourfold. A crystallographic study of the mutant enzyme shows that the region of the deletion has a well-defined structure that differs from the structure of the wild-type enzyme. No structural changes in the active site of the enzyme were detected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuipers, O P -- Thunnissen, M M -- de Geus, P -- Dijkstra, B W -- Drenth, J -- Verheij, H M -- de Haas, G H -- New York, N.Y. -- Science. 1989 Apr 7;244(4900):82-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2704992" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallography ; Enzyme Activation ; Kinetics ; Molecular Sequence Data ; Mutation ; Pancreas/enzymology ; Phospholipases/*metabolism ; Phospholipases A/genetics/*metabolism/physiology ; Phospholipases A2 ; *Protein Conformation ; Snake Venoms/analysis ; Structure-Activity Relationship ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...