ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,851)
  • CYBERNETICS  (1,851)
  • 1990-1994  (1,831)
  • 1970-1974  (20)
  • 1
    Publication Date: 2009-11-23
    Description: The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions that are of intrinsic concern to AI. We present examples of current AI work on specific design tasks, and discuss new directions of research, both as extensions of current work and in the context of new design tasks where domain knowledge is either intractable or incomplete. The domains discussed include Digital Circuit Design, Mechanical Design of Rotational Transmissions, Design of Computer Architectures, Marine Design, Aircraft Design, and Design of Chemical Processes and Materials. Work in these domains is significant on technical grounds, and it is also important for economic and policy reasons.
    Keywords: CYBERNETICS
    Type: NASA. Ames Research Center, Collection of Viewgraphs; 41 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The integration of CLIPS into HyperCard combines the intuitive, interactive user interface of the Macintosh with the powerful symbolic computation of an expert system interpreter. HyperCard is an excellent environment for quickly developing the front end of an application with buttons, dialogs, and pictures, while the CLIPS interpreter provides a powerful inference engine for complex problem solving and analysis. In order to understand the benefit of integrating HyperCard and CLIPS, consider the following: HyperCard is an information storage and retrieval system which exploits the use of the graphics and user interface capabilities of the Apple Macintosh computer. The user can easily define buttons, dialog boxes, information templates, pictures, and graphic displays through the use of the HyperCard tools and scripting language. What is generally lacking in this environment is a powerful reasoning engine for complex problem solving, and this is where CLIPS plays a role. CLIPS 5.0 (C Language Integrated Production System, v5.0) was developed at the Johnson Space Center Software Technology Branch to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 5.0 supports forward chaining rule systems, object-oriented language, and procedural programming for the construction of expert systems. It features incremental reset, seven conflict resolution stategies, truth maintenance, and user-defined external functions. Since CLIPS is implemented in the C language it is highly portable; in addition, it is embeddable as a callable routine from a program written in another language such as Ada or Fortran. By integrating HyperCard and CLIPS the advantages and uses of both packages are made available for a wide range of applications: rapid prototyping of knowledge-based expert systems, interactive simulations of physical systems and intelligent control of hypertext processes, to name a few. HyperCLIPS 2.0 is written in C-Language (54%) and Pascal (46%) for Apple Macintosh computers running Macintosh System 6.0.2 or greater. HyperCLIPS requires HyperCard 1.2 or higher and at least 2Mb of RAM are recommended to run. An executable is provided. To compile the source code, the Macintosh Programmer's Workshop (MPW) version 3.0, CLIPS 5.0 (MSC-21927), and the MPW C-Language compiler are also required. NOTE: Installing this program under Macintosh System 7 requires HyperCard v2.1. This program is distributed on a 3.5 inch Macintosh format diskette. A copy of the program documentation is included on the diskette, but may be purchased separately. HyperCLIPS was developed in 1990 and version 2.0 was released in 1991. HyperCLIPS is a copyrighted work with all copyright vested in NASA. Apple, Macintosh, MPW, and HyperCard are registered trademarks of Apple Computer, Inc.
    Keywords: CYBERNETICS
    Type: NPO-18087
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The C Language Integrated Production System, CLIPS, is a shell for developing expert systems. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. The primary design goals for CLIPS are portability, efficiency, and functionality. For these reasons, the program is written in C. CLIPS meets or outperforms most micro- and minicomputer based artificial intelligence tools. CLIPS is a forward chaining rule-based language. The program contains an inference engine and a language syntax that provide a framework for the construction of an expert system. It also includes tools for debugging an application. CLIPS is based on the Rete algorithm, which enables very efficient pattern matching. The collection of conditions and actions to be taken if the conditions are met is constructed into a rule network. As facts are asserted either prior to or during a session, CLIPS pattern-matches the number of fields. Wildcards and variables are supported for both single and multiple fields. CLIPS syntax allows the inclusion of externally defined functions (outside functions which are written in a language other than CLIPS). CLIPS itself can be embedded in a program such that the expert system is available as a simple subroutine call. Advanced features found in CLIPS version 4.3 include an integrated microEMACS editor, the ability to generate C source code from a CLIPS rule base to produce a dedicated executable, binary load and save capabilities for CLIPS rule bases, and the utility program CRSV (Cross-Reference, Style, and Verification) designed to facilitate the development and maintenance of large rule bases. Five machine versions are available. Each machine version includes the source and the executable for that machine. The UNIX version includes the source and binaries for IBM RS/6000, Sun3 series, and Sun4 series computers. The UNIX, DEC VAX, and DEC RISC Workstation versions are line oriented. The PC version and the Macintosh version each contain a windowing variant of CLIPS as well as the standard line oriented version. The mouse/window interface version for the PC works with a Microsoft compatible mouse or without a mouse. This window version uses the proprietary CURSES library for the PC, but a working executable of the window version is provided. The window oriented version for the Macintosh includes a version which uses a full Macintosh-style interface, including an integrated editor. This version allows the user to observe the changing fact base and rule activations in separate windows while a CLIPS program is executing. The IBM PC version is available bundled with CLIPSITS, The CLIPS Intelligent Tutoring System for a special combined price (COS-10025). The goal of CLIPSITS is to provide the student with a tool to practice the syntax and concepts covered in the CLIPS User's Guide. It attempts to provide expert diagnosis and advice during problem solving which is typically not available without an instructor. CLIPSITS is divided into 10 lessons which mirror the first 10 chapters of the CLIPS User's Guide. The program was developed for the IBM PC series with a hard disk. CLIPSITS is also available separately as MSC-21679. The CLIPS program is written in C for interactive execution and has been implemented on an IBM PC computer operating under DOS, a Macintosh and DEC VAX series computers operating under VMS or ULTRIX. The line oriented version should run on any computer system which supports a full (Kernighan and Ritchie) C compiler or the ANSI standard C language. CLIPS was developed in 1986 and Version 4.2 was released in July of 1988. Version 4.3 was released in June of 1989.
    Keywords: CYBERNETICS
    Type: COS-10025
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: VASP is a variable dimension Fortran version of the Automatic Synthesis Program, ASP. The program is used to implement Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most modern control problems in linear, time-variant (or time-invariant) control systems. These subprograms include operations of matrix algebra, computation of the exponential of a matrix and its convolution integral, and the solution of the matrix Riccati equation. The user calls these subprograms by means of a FORTRAN main program, and so can easily obtain solutions to most general problems of extremization of a quadratic functional of the state of the linear dynamical system. Particularly, these problems include the synthesis of the Kalman filter gains and the optimal feedback gains for minimization of a quadratic performance index. VASP, as an outgrowth of the Automatic Synthesis Program, has the following improvements: more versatile programming language; more convenient input/output format; some new subprograms which consolidate certain groups of statements that are often repeated; and variable dimensioning. The pertinent difference between the two programs is that VASP has variable dimensioning and more efficient storage. The documentation for the VASP program contains a VASP dictionary and example problems. The dictionary contains a description of each subroutine and instructions on its use. The example problems include dynamic response, optimal control gain, solution of the sampled data matrix Riccati equation, matrix decomposition, and a pseudo-inverse of a matrix. This program is written in FORTRAN IV and has been implemented on the IBM 360. The VASP program was developed in 1971.
    Keywords: CYBERNETICS
    Type: ARC-10616
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The Simple Tool for Automated Reasoning program (STAR) is an interactive, interpreted programming language for the development and operation of artificial intelligence (AI) application systems. STAR provides an environment for integrating traditional AI symbolic processing with functions and data structures defined in compiled languages such as C, FORTRAN and PASCAL. This type of integration occurs in a number of AI applications including interpretation of numerical sensor data, construction of intelligent user interfaces to existing compiled software packages, and coupling AI techniques with numerical simulation techniques and control systems software. The STAR language was created as part of an AI project for the evaluation of imaging spectrometer data at NASA's Jet Propulsion Laboratory. Programming in STAR is similar to other symbolic processing languages such as LISP and CLIP. STAR includes seven primitive data types and associated operations for the manipulation of these structures. A semantic network is used to organize data in STAR, with capabilities for inheritance of values and generation of side effects. The AI knowledge base of STAR can be a simple repository of records or it can be a highly interdependent association of implicit and explicit components. The symbolic processing environment of STAR may be extended by linking the interpreter with functions defined in conventional compiled languages. These external routines interact with STAR through function calls in either direction, and through the exchange of references to data structures. The hybrid knowledge base may thus be accessed and processed in general by either side of the application. STAR is initially used to link externally compiled routines and data structures. It is then invoked to interpret the STAR rules and symbolic structures. In a typical interactive session, the user enters an expression to be evaluated, STAR parses the input, evaluates the expression, performs any file input/output required, and displays the results. The STAR interpreter is written in the C language for interactive execution. It has been implemented on a VAX 11/780 computer operating under VMS, and the UNIX version has been implemented on a Sun Microsystems 2/170 workstation. STAR has a memory requirement of approximately 200K of 8 bit bytes, excluding externally compiled functions and application-dependent symbolic definitions. This program was developed in 1985.
    Keywords: CYBERNETICS
    Type: NPO-16965
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The Simple Tool for Automated Reasoning program (STAR) is an interactive, interpreted programming language for the development and operation of artificial intelligence (AI) application systems. STAR provides an environment for integrating traditional AI symbolic processing with functions and data structures defined in compiled languages such as C, FORTRAN and PASCAL. This type of integration occurs in a number of AI applications including interpretation of numerical sensor data, construction of intelligent user interfaces to existing compiled software packages, and coupling AI techniques with numerical simulation techniques and control systems software. The STAR language was created as part of an AI project for the evaluation of imaging spectrometer data at NASA's Jet Propulsion Laboratory. Programming in STAR is similar to other symbolic processing languages such as LISP and CLIP. STAR includes seven primitive data types and associated operations for the manipulation of these structures. A semantic network is used to organize data in STAR, with capabilities for inheritance of values and generation of side effects. The AI knowledge base of STAR can be a simple repository of records or it can be a highly interdependent association of implicit and explicit components. The symbolic processing environment of STAR may be extended by linking the interpreter with functions defined in conventional compiled languages. These external routines interact with STAR through function calls in either direction, and through the exchange of references to data structures. The hybrid knowledge base may thus be accessed and processed in general by either side of the application. STAR is initially used to link externally compiled routines and data structures. It is then invoked to interpret the STAR rules and symbolic structures. In a typical interactive session, the user enters an expression to be evaluated, STAR parses the input, evaluates the expression, performs any file input/output required, and displays the results. The STAR interpreter is written in the C language for interactive execution. It has been implemented on a VAX 11/780 computer operating under VMS, and the UNIX version has been implemented on a Sun Microsystems 2/170 workstation. STAR has a memory requirement of approximately 200K of 8 bit bytes, excluding externally compiled functions and application-dependent symbolic definitions. This program was developed in 1985.
    Keywords: CYBERNETICS
    Type: NPO-16832
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL). CLIPS 6.0 provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. CLIPS provides several delivery options for programs including the ability to generate stand alone executables or to load programs from text or binary files. CLIPS 6.0 provides support for the modular development and execution of knowledge bases with the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such that explicit control can be maintained over restricting the access of the constructs by other modules. This type of control is similar to global and local scoping used in languages such as C or Ada. By restricting access to deftemplate and defclass constructs, modules can function as blackboards, permitting only certain facts and instances to be seen by other modules. Modules are also used by rules to provide execution control. The CRSV (Cross-Reference, Style, and Verification) utility included with previous version of CLIPS is no longer supported. The capabilities provided by this tool are now available directly within CLIPS 6.0 to aid in the development, debugging, and verification of large rule bases. COSMIC offers four distribution versions of CLIPS 6.0: UNIX (MSC-22433), VMS (MSC-22434), MACINTOSH (MSC-22429), and IBM PC (MSC-22430). Executable files, source code, utilities, documentation, and examples are included on the program media. All distribution versions include identical source code for the command line version of CLIPS 6.0. This source code should compile on any platform with an ANSI C compiler. Each distribution version of CLIPS 6.0, except that for the Macintosh platform, includes an executable for the command line version. For the UNIX version of CLIPS 6.0, the command line interface has been successfully implemented on a Sun4 running SunOS, a DECstation running DEC RISC ULTRIX, an SGI Indigo Elan running IRIX, a DEC Alpha AXP running OSF/1, and an IBM RS/6000 running AIX. Command line interface executables are included for Sun4 computers running SunOS 4.1.1 or later and for the DEC RISC ULTRIX platform. The makefiles may have to be modified slightly to be used on other UNIX platforms. The UNIX, Macintosh, and IBM PC versions of CLIPS 6.0 each have a platform specific interface. Source code, a makefile, and an executable for the Windows 3.1 interface version of CLIPS 6.0 are provided only on the IBM PC distribution diskettes. Source code, a makefile, and an executable for the Macintosh interface version of CLIPS 6.0 are provided only on the Macintosh distribution diskettes. Likewise, for the UNIX version of CLIPS 6.0, only source code and a makefile for an X-Windows interface are provided. The X-Windows interface requires MIT's X Window System, Version 11, Release 4 (X11R4), the Athena Widget Set, and the Xmu library. The source code for the Athena Widget Set is provided on the distribution medium. The X-Windows interface has been successfully implemented on a Sun4 running SunOS 4.1.2 with the MIT distribution of X11R4 (not OpenWindows), an SGI Indigo Elan running IRIX 4.0.5, and a DEC Alpha AXP running OSF/1 1.2. The VAX version of CLIPS 6.0 comes only with the generic command line interface. ASCII makefiles for the command line version of CLIPS are provided on all the distribution media for UNIX, VMS, and DOS. Four executables are provided with the IBM PC version: a windowed interface executable for Windows 3.1 built using Borland C++ v3.1, an editor for use with the windowed interface, a command line version of CLIPS for Windows 3.1, and a 386 command line executable for DOS built using Zortech C++ v3.1. All four executables are capable of utilizing extended memory and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.
    Keywords: CYBERNETICS
    Type: MSC-22434
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL). CLIPS 6.0 provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. CLIPS provides several delivery options for programs including the ability to generate stand alone executables or to load programs from text or binary files. CLIPS 6.0 provides support for the modular development and execution of knowledge bases with the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such that explicit control can be maintained over restricting the access of the constructs by other modules. This type of control is similar to global and local scoping used in languages such as C or Ada. By restricting access to deftemplate and defclass constructs, modules can function as blackboards, permitting only certain facts and instances to be seen by other modules. Modules are also used by rules to provide execution control. The CRSV (Cross-Reference, Style, and Verification) utility included with previous version of CLIPS is no longer supported. The capabilities provided by this tool are now available directly within CLIPS 6.0 to aid in the development, debugging, and verification of large rule bases. COSMIC offers four distribution versions of CLIPS 6.0: UNIX (MSC-22433), VMS (MSC-22434), MACINTOSH (MSC-22429), and IBM PC (MSC-22430). Executable files, source code, utilities, documentation, and examples are included on the program media. All distribution versions include identical source code for the command line version of CLIPS 6.0. This source code should compile on any platform with an ANSI C compiler. Each distribution version of CLIPS 6.0, except that for the Macintosh platform, includes an executable for the command line version. For the UNIX version of CLIPS 6.0, the command line interface has been successfully implemented on a Sun4 running SunOS, a DECstation running DEC RISC ULTRIX, an SGI Indigo Elan running IRIX, a DEC Alpha AXP running OSF/1, and an IBM RS/6000 running AIX. Command line interface executables are included for Sun4 computers running SunOS 4.1.1 or later and for the DEC RISC ULTRIX platform. The makefiles may have to be modified slightly to be used on other UNIX platforms. The UNIX, Macintosh, and IBM PC versions of CLIPS 6.0 each have a platform specific interface. Source code, a makefile, and an executable for the Windows 3.1 interface version of CLIPS 6.0 are provided only on the IBM PC distribution diskettes. Source code, a makefile, and an executable for the Macintosh interface version of CLIPS 6.0 are provided only on the Macintosh distribution diskettes. Likewise, for the UNIX version of CLIPS 6.0, only source code and a makefile for an X-Windows interface are provided. The X-Windows interface requires MIT's X Window System, Version 11, Release 4 (X11R4), the Athena Widget Set, and the Xmu library. The source code for the Athena Widget Set is provided on the distribution medium. The X-Windows interface has been successfully implemented on a Sun4 running SunOS 4.1.2 with the MIT distribution of X11R4 (not OpenWindows), an SGI Indigo Elan running IRIX 4.0.5, and a DEC Alpha AXP running OSF/1 1.2. The VAX version of CLIPS 6.0 comes only with the generic command line interface. ASCII makefiles for the command line version of CLIPS are provided on all the distribution media for UNIX, VMS, and DOS. Four executables are provided with the IBM PC version: a windowed interface executable for Windows 3.1 built using Borland C++ v3.1, an editor for use with the windowed interface, a command line version of CLIPS for Windows 3.1, and a 386 command line executable for DOS built using Zortech C++ v3.1. All four executables are capable of utilizing extended memory and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.
    Keywords: CYBERNETICS
    Type: MSC-22433
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL). CLIPS 6.0 provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. CLIPS provides several delivery options for programs including the ability to generate stand alone executables or to load programs from text or binary files. CLIPS 6.0 provides support for the modular development and execution of knowledge bases with the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such that explicit control can be maintained over restricting the access of the constructs by other modules. This type of control is similar to global and local scoping used in languages such as C or Ada. By restricting access to deftemplate and defclass constructs, modules can function as blackboards, permitting only certain facts and instances to be seen by other modules. Modules are also used by rules to provide execution control. The CRSV (Cross-Reference, Style, and Verification) utility included with previous version of CLIPS is no longer supported. The capabilities provided by this tool are now available directly within CLIPS 6.0 to aid in the development, debugging, and verification of large rule bases. COSMIC offers four distribution versions of CLIPS 6.0: UNIX (MSC-22433), VMS (MSC-22434), MACINTOSH (MSC-22429), and IBM PC (MSC-22430). Executable files, source code, utilities, documentation, and examples are included on the program media. All distribution versions include identical source code for the command line version of CLIPS 6.0. This source code should compile on any platform with an ANSI C compiler. Each distribution version of CLIPS 6.0, except that for the Macintosh platform, includes an executable for the command line version. For the UNIX version of CLIPS 6.0, the command line interface has been successfully implemented on a Sun4 running SunOS, a DECstation running DEC RISC ULTRIX, an SGI Indigo Elan running IRIX, a DEC Alpha AXP running OSF/1, and an IBM RS/6000 running AIX. Command line interface executables are included for Sun4 computers running SunOS 4.1.1 or later and for the DEC RISC ULTRIX platform. The makefiles may have to be modified slightly to be used on other UNIX platforms. The UNIX, Macintosh, and IBM PC versions of CLIPS 6.0 each have a platform specific interface. Source code, a makefile, and an executable for the Windows 3.1 interface version of CLIPS 6.0 are provided only on the IBM PC distribution diskettes. Source code, a makefile, and an executable for the Macintosh interface version of CLIPS 6.0 are provided only on the Macintosh distribution diskettes. Likewise, for the UNIX version of CLIPS 6.0, only source code and a makefile for an X-Windows interface are provided. The X-Windows interface requires MIT's X Window System, Version 11, Release 4 (X11R4), the Athena Widget Set, and the Xmu library. The source code for the Athena Widget Set is provided on the distribution medium. The X-Windows interface has been successfully implemented on a Sun4 running SunOS 4.1.2 with the MIT distribution of X11R4 (not OpenWindows), an SGI Indigo Elan running IRIX 4.0.5, and a DEC Alpha AXP running OSF/1 1.2. The VAX version of CLIPS 6.0 comes only with the generic command line interface. ASCII makefiles for the command line version of CLIPS are provided on all the distribution media for UNIX, VMS, and DOS. Four executables are provided with the IBM PC version: a windowed interface executable for Windows 3.1 built using Borland C++ v3.1, an editor for use with the windowed interface, a command line version of CLIPS for Windows 3.1, and a 386 command line executable for DOS built using Zortech C++ v3.1. All four executables are capable of utilizing extended memory and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.
    Keywords: CYBERNETICS
    Type: MSC-22430
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL). CLIPS 6.0 provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. CLIPS provides several delivery options for programs including the ability to generate stand alone executables or to load programs from text or binary files. CLIPS 6.0 provides support for the modular development and execution of knowledge bases with the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such that explicit control can be maintained over restricting the access of the constructs by other modules. This type of control is similar to global and local scoping used in languages such as C or Ada. By restricting access to deftemplate and defclass constructs, modules can function as blackboards, permitting only certain facts and instances to be seen by other modules. Modules are also used by rules to provide execution control. The CRSV (Cross-Reference, Style, and Verification) utility included with previous version of CLIPS is no longer supported. The capabilities provided by this tool are now available directly within CLIPS 6.0 to aid in the development, debugging, and verification of large rule bases. COSMIC offers four distribution versions of CLIPS 6.0: UNIX (MSC-22433), VMS (MSC-22434), MACINTOSH (MSC-22429), and IBM PC (MSC-22430). Executable files, source code, utilities, documentation, and examples are included on the program media. All distribution versions include identical source code for the command line version of CLIPS 6.0. This source code should compile on any platform with an ANSI C compiler. Each distribution version of CLIPS 6.0, except that for the Macintosh platform, includes an executable for the command line version. For the UNIX version of CLIPS 6.0, the command line interface has been successfully implemented on a Sun4 running SunOS, a DECstation running DEC RISC ULTRIX, an SGI Indigo Elan running IRIX, a DEC Alpha AXP running OSF/1, and an IBM RS/6000 running AIX. Command line interface executables are included for Sun4 computers running SunOS 4.1.1 or later and for the DEC RISC ULTRIX platform. The makefiles may have to be modified slightly to be used on other UNIX platforms. The UNIX, Macintosh, and IBM PC versions of CLIPS 6.0 each have a platform specific interface. Source code, a makefile, and an executable for the Windows 3.1 interface version of CLIPS 6.0 are provided only on the IBM PC distribution diskettes. Source code, a makefile, and an executable for the Macintosh interface version of CLIPS 6.0 are provided only on the Macintosh distribution diskettes. Likewise, for the UNIX version of CLIPS 6.0, only source code and a makefile for an X-Windows interface are provided. The X-Windows interface requires MIT's X Window System, Version 11, Release 4 (X11R4), the Athena Widget Set, and the Xmu library. The source code for the Athena Widget Set is provided on the distribution medium. The X-Windows interface has been successfully implemented on a Sun4 running SunOS 4.1.2 with the MIT distribution of X11R4 (not OpenWindows), an SGI Indigo Elan running IRIX 4.0.5, and a DEC Alpha AXP running OSF/1 1.2. The VAX version of CLIPS 6.0 comes only with the generic command line interface. ASCII makefiles for the command line version of CLIPS are provided on all the distribution media for UNIX, VMS, and DOS. Four executables are provided with the IBM PC version: a windowed interface executable for Windows 3.1 built using Borland C++ v3.1, an editor for use with the windowed interface, a command line version of CLIPS for Windows 3.1, and a 386 command line executable for DOS built using Zortech C++ v3.1. All four executables are capable of utilizing extended memory and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.
    Keywords: CYBERNETICS
    Type: MSC-22429
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...