ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (30)
  • Soil respiration  (30)
  • 1990-1994  (16)
  • 1985-1989  (14)
  • 1950-1954
  • Geosciences  (30)
  • Electrical Engineering, Measurement and Control Technology
Collection
  • Articles  (30)
Publisher
Years
  • 1990-1994  (16)
  • 1985-1989  (14)
  • 1950-1954
  • 1995-1999  (24)
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 18-20 
    ISSN: 1432-0789
    Keywords: Humic acids ; Peat substitute composts ; Straw decomposition ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Comparisons were made between the rates of microbial respiration during the incubation of milled wheat straw in the presence or absence of a dispersal of lignite humic acids. Lignite treatment significantly reduced both the rate of O2 consumption and CO2 evolution from the straw substrate over a 4-week period. In view of this observed inhibitory effect, additions of exogenous humic acids from lignite during composting might have a practical application as a means of increasing the microbial stability of horticultural composts derived from plant waste materials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Biological variation ; Coniferous forest ; Near-infrared spectrum ; Partial least-square regression ; Microbial biomass ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Near-infrared spectroscopy and soil physicochemical determinations (pHH2O, organic matter content, total C content, NH inf4 sup+ , total N content, cation-exchange capacity, and base saturation) were used to characterize fire-or wood ash-treated humus samples. The spectroscopic and the soil physicochemical analysis data from the humus samples were used separately to explain observed variations in soil respiration and microbial biomass C by partial least-square regression. The first regression component obtained from the physicochemical and spectroscopic characterization explained 10–12% and 60–80% of the biological variation, respectively. This suggests that information on organic material collected from near-infrared spectra is very useful for explaining biological variations in forest humus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Coniferous humus ; Ergosterol ; Soil respiration ; Substrate induced respiration ; Metabolic quotient ; Nitrification ; Pinus sylvestris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We studied the reactions of humus layer (F/H) microbial respiratory activity, microbial biomass C, and the fungal biomass, measured as the soil ergosterol content, to the application of three levels of wood ash (1000, 2500, and 5000 kg ha-1) and to fire treatment in a Scots pine (Pinus sylvestris L.) stand. Physicochemical measurements (pH, organic matter content, extractable and total C content, NH 4 + and total N content, cation-exchange capacity, base saturation) showed similarity between the fire-treated plots and those treated with the lowest dose of wood ash (1000 kg ha-1). The ash application did not change the level of microbial biomass C or fungal ergosterol when compared to the control, being around 7500 and 350 μg g-1 organic matter for the biomass C and ergosterol, respectively. The fire treatment lowered the values of both biomass measurements to about half that of the control values. The fire treatment caused a sevenfold fall in the respiration rate of fieldmoist soil to 1.8 μl h-1 g-1 organic matter compared to the values of the control or ash treatments. However, in the same soils adjusted to a water-holding capacity of 60%, the differences between the fire treatment and the control were diminished, and the ash-fertilized plots were characterized by a higher respiration rate compared to the control plots. The glucose-induced respiration reacted in the same way as the water-adjusted soil respiration. The metabolic quotient, qCO2, gradually increased from the control level with increasing applications of ash, reaching a maximum in the fire treatment. Nitrification was not observed in the treatment plots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 42-48 
    ISSN: 1432-0789
    Keywords: N2O ; Coated Calcium Carbide ; Acetylene ; Nitrification ; Denitrification ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 205-210 
    ISSN: 1432-0789
    Keywords: Microorganisms ; Soil respiration ; Macronutrients ; Annual changes ; Forest ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Viable microorganisms, soil respiration, and available N, Ca, Mg, Na, K, and P contents were determined in samples of five different forest soils collected in spring, summer, autumn, and winter. Viable microorganisms and soil respiration were positively correlated and showed a clear seasonal trend. The soils exhibited high microbial population values in spring and autumn and low values in summer and winter; total respiration values were largely higher in autumn than in the other seasons. Seasonal variations in available Ca, Na, and K contents were much more marked than those found for available N, Mg, and P. Available N and K and the microbial population showed similar seasonal trends whereas available Ca, Mg, Na, and P did not exhibit a distinguishable and uniform seasonal pattern. The quantities of available nutrients in soils followed the order Ca〉K=Na〉Mg〉P〉N. Soils developed over basic rocks showed higher values of both microbial density and microbial activity than those in soils developed over acid rocks. All the variables analysed were clearly related to the type of soil but varied with the date of sampling; a significant seasonal effect on the microbial population, microbial activity and available nutrients was detected in all the soils studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 41-44 
    ISSN: 1432-0789
    Keywords: Biological activity ; Soil respiration ; Mine spoil reclamation ; Soil cover ; Water-holding capacity ; Soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Measurements of soil respiration were made at a number of soil-covered reclaimed coal-mine spoil sites. Many chemical and physical soil factors likely to affect the respiration were also measured. A combination of principal component, cluster, and multiple regression analyses was used to indicate the important factors. These were found to be water-holding capacity and organic matter content. In some cases soil pH was also a controlling factor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 157-162 
    ISSN: 1432-0789
    Keywords: Denitrification ; Soil respiration ; Nitrous oxide ; Tropical volcanic soils ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of vegetation and nutrient availability on potentail denitrification rates were studied in two volcanic, alluvial-terrace soils in lowland Costa Rica that differ greatly in weathering stage and thus in availability of P and base cations. Potential denitrification rates were significantly higher in plots where vegetation had been left undisturbed than in plots where all vegetation had been removed continuously, and were higher on the less fertile of the two soils. The potential denitrification rates were correlated strongly with respiration rates, levels of mineralizable N, microbial biomass, and moisture content, and moderately well with concentrations of extractable NH inf4 sup+ , Kjeldahl N, and total C. In all plots, denitrification rates were stimulated by the removal of O2 and by the addition of glucose but not by the addition of water or NO inf3 sup- .
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1992), S. 221-227 
    ISSN: 1432-0789
    Keywords: Predator-prey ; Soil structure ; Typic Cryoboroll ; Porosity ; Soil respiration ; Protozoan population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil texture affects pore space, and bacterial and protozoan populations in soil. In the present study we tested the hypothesis that bacteria are more protected from protozoan predation in fine-textured soils than in coarse-textured soils because they have a larger volume of protected pore space available to them. The experiment consisted of three sterilized Orthic Black Chernozemic soils (silty clay, clay loam, and sandy loam) inoculated with bacteria, two treatments (with and without protozoa), and five sampling dates. The soils were amended with glucose and mineral N on day 0. On day 4 bacterial numbers in all three soils were approximately 3×109 g−1 soil. The greatest reduction in bacteria due to protozoan grazing occurred between day 4 and day 7. Compared to the treatment without protozoa, bacteria in the treatment with protozoa were reduced by 68, 50, and 75% in the silty clay, clay loam, and sandy loam, respectively. On day 4, 2 days after the protozoan inoculation, all protozoa were active. The numbers were 10330, 4760, and 15 380 g−1 soil for the silty clay, clay loam, and sandy loam, respectively. Between day 4 and day 7, the period of greatest bacterial decline, total protozoa increased greatly to 150480, 96160, and 192100 g−1 soil for the three soils, respectively. Most protozoa encysted by day 7. In all soils the addition of protozoa significantly increased CO2−C evolution per g soil relative to the treatment without protozoa. Our results support the hypothesis that bacteria are more protected from protozoan predation in fine-textured soils than in coarse-textured soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1992), S. 265-271 
    ISSN: 1432-0789
    Keywords: Dehydrogenase activity ; Microbial biomass C ; Microbial biomass N ; N fertisisation ; C additions ; Soil respiration ; Solanum tuberosum L. ; Substrate-induced respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A range of soil microbiological parameters were measured at intervals throughout the growing season of a potato crop. Treatments applied to the soil at sowing were zero N fertilisation of N fertilisation at 120 kg N ha−1, either alone or supplemented with straw or sucrose at 1200 kg C ha−1. C and N flushes determined by fumigation-incubation and fumigation-extraction, and substrate-induced respiration, were measured as indicators of microbial biomass. Microbial activity was measured as respiration (CO2 production) and dehydrogenase activity (formazan production). The greatest effects were obtained from the addition of N plus sucrose. Both biomass size and activity were significantly stimulated for up to 25 days after incorporation, with the magnitude of the effects consistently diminishing over time. By 125 days after planting, there was no detectable legacy from any of the treatmentson any of the biomass parameters that were measured, and all values had reverted to those prevalent at planting. There was no consistent effect from adding N, either alone or supplemented with straw, on any of the biomass parameters. There was no evidence for crop-induced stimulation of the biomass. The experiment demonstrates that biomass is only influenced where the quantity, quality, and rate of incorporation of C into the soil is appropriate, in this case, only by adding C as a pulse of sucrose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 25-30 
    ISSN: 1432-0789
    Keywords: Soil biochemical properties ; Soil respiration ; Soil enzymes ; Reclamation ; Lignite-mine soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A number of biochemical parameters reflecting biological activity (respiration, ATP, enzyme activities) were determined in 0- to 7-year-old lignite mine soils. C (as CO2) and ATP contents and hydrolytic enzyme activities all increased with soil age. The kinetics of CO2 release showed that both labile and recalcitrant C-bearing substrates were mineralized, the mineralization constant of C decreased with soil age, but were always greater than those of native soils. The percentage of N mineralization, which tended to decrease with soil age, resulted in all cases in a predominance of ammoniacal forms. These findings suggest that since organic C and N accumulated with age in these soils, the C and N cycle is established progressively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 58-60 
    ISSN: 1432-0789
    Keywords: Soil microorganism diversity ; Phospholipid fatty acids ; Soil respiration ; Vitamin deficiency ; Lipid extraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A proposed new method for assessing the diversity of a soil microbial community is based on the species-typical ester-linked phospholipid fatty acids in the membranes of living cells. Soils that support only a few dominant species (bacteria, fungi, protozoa or algae) are expected to show few dominant fatty acids and vice versa. The phospholipid fatty-acid diversity in nine soils from Central Switzerland was calculated using Shannon's formula. By means of a respiration test, it was further established that the low-diversity soils responded significantly and positively (respiration increase) to small additions of a vitamin mixture containing thiamin, pyridoxin, calpan, folic acid, and biotin. The results indicate a connection between microbial diversity and a yet unspecified vitamin deficiency within the population. Whether the vitamin deficiency is the cause or the effect of the reduced diversity remains to be established.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 65-73 
    ISSN: 1432-0789
    Keywords: Microbial polymers ; Soil aggregation ; Bulk density ; Carbohydrates ; Glycoproteins ; Modulus of rupture ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The adherence of soil particles into stable aggregates increases with the addition of monosaccharides or polysaccharde polymers to soil, either as plant residues, microbial metabolites, or as simple carbohydrates. Microbial polysaccharides are one of the most effective organic agents that promote soil aggregate stability, but the effectiveness of these polymers in stabilizing soil particles varies dramatically between microbial strains, the amount present and the prevailing environmental conditions. We conducted glasshouse and laboratory studies to determine the effectiveness of selected microbial polymers in stabilizing soil aggregates. The addition and thorough mixing of 1.0 mg microbial polymer C g−1 soil of seven bacteria strains (Arthrobacter viscocus, Azotobacter indicus, Bacillus subtilus, Chromobacterium violaceum, Pseudomonas aeruginosa, Pseudomonas strain I, and Pseudomonas strain II), three deuteromycete strains (Cryptococcus laurentii, Hansenula holstii, and Mucor rouxii), and two reference compounds (hydroxyethyl guar and glucose) to an Arlington coarse-loamy soil resulted in stimulated soil respiration, increased aggregate stability, and decreased soil bulk density and modulus of rupture when incubated from 1 to 12 weeks. The monosaccharides present in the added polymers were rapidly decomposed and the sacchride content of the polymer-treated soil returned to the level of the soil control (with no polymer addition) after 2 weeks of incubation, while the maximum increase in soil aggregate stability was noted during the 3rd and 4th weeks of incubation. Statistical analyses showed that the glucose content of the polymers added was significantly correlated with soil aggregation [weeks 1 (r=0.78***) and 2 (r=0.61*)], but the extractable soil saccharides were not significantly correlated with increased aggregate stability or decreased soil bulk density during this study. When microbial extracellular polymers were added to soil only a transient increase in soil stability was measured upon decomposition of the added saccharides. This finding suggests that the stabilization of soil aggregates is a result of other microbial processes or metabolites rather than the direct binding effects of the added polysaccharides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 187-191 
    ISSN: 1432-0789
    Keywords: Dehydrogenase activity ; DHA ; Microbial biomass ; Microbial populations ; 2,4-D ; Nitrification ; Soil respiration ; Urease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of 15 years of field applications of 2,4-dichlorophenoxy acetate (2,4-D) on soil microbial population and biochemical processes were studied in a field cropped with maize followed by potatoes. Amine or ester formulations at the rate of 0.95 kg 2,4-D per hectare applied in May and October every year. Fungal, bacterial, and actinomycete populations, and microbial biomass C and N were reduced by the 2,4-D treatment, the reduction being more marked where the ester was used. N mineralization, nitrification, and potentially mineralizable N were reduced by the 2,4-D ester only, while urease activity was depressed by both formulations. Dehydrogenase activity and soil microbial respiration tended to be temporarily increased by the amine, but were reduced substantially by the ester, indicating that the ester probably interfered with nutrient cycling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-0789
    Keywords: Acid deposition ; Soil respiration ; Microbial biomass ; Phosphatase activity ; Dehydrogenase activity ; Picea abies L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil pH, total organic C, total N, exchangeable Al, available P, CO2 evolution, microbial biomass C and N, phosphatase and dehydrogenase activities were determined in acid soils sampled under spruce subjected to acid deposition, before and after liming. A slight decrease in pH values was observed from the edge of a tree canopy to the base of the trunk in acid soils. Liming drastically reduced exchangeable Al and increased CO2 evolution, microbial biomass, and the metabolic quotient. The microbial biomass C to total organic C ratio increased after liming but did not reach 2%, the average value considered valid in soils where the C content is in equilibrium, that is when C inputs are equal to C outputs. The microbial biomass C:N ratio decreased after liming, thus indicating that bacteria became predominant over fungi when soil acidity decreased. Dehydrogenase activity but not phosphatase activity was increased by liming. The decrease in phosphatase activity was not completely related to the increase in available P, but was also dependent on microbial growth and the decrease in acid phosphatase, the predominant component of acid soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 34-37 
    ISSN: 1432-0789
    Keywords: Cadmium ; Nickel ; Zinc ; Successive addition ; Soil respiration ; Dehydrogenase activity ; Carbon dioxide production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of single and successive additions of Cd, Ni, and Zn on CO2 evolution and dehydrogenase activity in a sandy luvisol were investigated in batch experiments under laboratory conditions. Successive additions of Cd, Ni, and Zn inhibited soil respiration relatively more than single doses, even before the same amount of metals had been added. In general, split additions of all metals reduced dehydrogenase activities in all soils to a lesser degree until the 28th day. Thereafter both modes of metal addition had the same effects throughout although the last successive addition was added on the 35th day. It is assumed that the relatively greater effect, especially on CO2 evolution, of successive additions during the first period was due to short-term increases metal concentrations in the soil solution after each application.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 122-126 
    ISSN: 1432-0789
    Keywords: Biological activity ; Soil respiration ; Field method ; CO2-release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil respiration was investigated in three loamy Orthic Luvisols (two arable, one forest soil), three sandy Haplic Podzols (also two arable, one forest soil) with a modified intersite method according to Lundegardh (1924). The method allows characterization of the CO2-flux from the soil and interpretation of the different levels with regard to temperature, nutrient and air supply. The method is sensitive to tillage and fertilization effects. In the two arable Luvisols the mean cumulative respiration rate was not uniform compared with the forest soil; in one case it was much higher and in another much lower. CO2 evolution in the Podzol under spruce was much lower than in the two arable Podzols. In the sandy Podzols 5 replicate measurements gave adequate results, with an error probability of 10%, but in the loamy Luvisols it was necessary to use 10 replicates to specify the same degree of difference. If soil respiration is very high, immediately after fertilization with cattle slurry or dung on arable land, or after litterfall in a deciduous forest, more replicates are necessary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 242-246 
    ISSN: 1432-0789
    Keywords: Soil respiration ; Soil water ; Substrate-induced respiration ; CO2 evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary We studied the effects of amending soils with different volumes of water or glucose solution on respiration rates measured as CO2 evolution. Basal respiration was not significantly affected by the volume of water amendment, but substrate-induced respiration in static soil solutions was significantly reduced by increasing water contents. Inhibition of substrate-induced respiration was removed by continuously agitating the incubation vessels. Estimates of substrate-induced respiration rates for six soils differed markedly, depending on whether the vessels were stationary or agitated during the incubation. Agitation allowed increased discrimination between substrate-induced respiration rates for the soils, while static incubation only differentiated the soil with the highest substrate-induced respiration rate from the other soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 7 (1989), S. 152-157 
    ISSN: 1432-0789
    Keywords: Cadmium ; Threshold levels ; Soil respiration ; Microbial diversity ; Triticum aestivum L. ; Dose-response curve
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Inconsistent results were obtained from comparative studies on the impact of increasing Cd contamination in three soils on growth of spring-wheat plantlets and soil respiration. With identical soil Cd loads, plant growth was increasingly inhibited in the following sequence: Neutral sandy hortisol (pH 7.0) 〈 phaeosem (pH 6.9) 〈 acidic cambisol (pH 5.6), suggesting a strong dependence on pH. In contrast, oxidation of a glucose-glutamate mixture by these soils was increasingly inhibited in the sequence: Acidic cambisol 〈 neutral sandy hortisol 〈 phaeosem. Inhibition of plant growth was correlated with the extractability of Cd from soils by 0.1 M CaCl2. However, comparison of dose-response curves with dose-extractability and dose-uptake curves suggested the presence of a soil factor that modified plant uptake of available Cd. This factor, possibly the concentration of antagonistic cations, was apparently also active within the plants. The inconsistency in the responses of plant growth and of soil respiration with respect to the soil Cd load was ascribed to microbiological soil properties exceeding the importance of Cd availability. Relatively high in vitro sensitivity of prokaryotes and their biochemical interdependence together with relatively high diversities of streptomycetes and fungi were paralleled by a relatively strong inhibition of soil respiration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 87-94 
    ISSN: 1432-0789
    Keywords: Heavy metals ; Pollution ; Bacteria ; Soil respiration ; Litter decomposition ; Fungal hyphal length
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of a Cu-Ni smelter on the soil microbial parameters: physiological groups of bacteria, soil respiration, fungal hyphal length, and green-needle litter decomposition, were investigated. The microbial parameters were reduced and this was significantly explained (P〈0.01) by the supplied environmental variables: exchangeable Ca, Mg, K, Mn, Cu, Ni, Cd, Zn, soil moisture, pH, and organic C as loss on ignition (Canoco, RDA-analysis). The importance of measuring exchangeable cations for major and trace elements appeared to be a relevant factor that must be considered when establishing relationships between microbial populations, their activity and the effect of heavy metals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 154-159 
    ISSN: 1432-0789
    Keywords: Soil respiration ; Eucalyptus forests ; Glucose ; Water-soluble carbon ; Eucalyptus regnans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil respiration was measured in five eucalypt forests of southeastern Australia. Regardless of the type of forest, the rate of respiration in soils responded to the addition of an available C source (glucose) and did not to the addition of N or P. Addition of glucose, at up to 100% of the glucose equivalent in soil, increased the rate of respiration sigmoidally. The concentration of glucose needed to achieve the maximum rate of respiration in the topsoil (0–2 cm) of an Eucalyptus regnans forest was at least an order of magnitude greater than its equivalent in the soil. The results indicate that microbial respiration in soils from eucalypt forests is limited by an available source of C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 144-153 
    ISSN: 1432-0789
    Keywords: Cryoboralf ; Cryoboroll ; Microarthropods ; Nematodes ; Protozoa ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary This study compared the dynamics of shoots, roots, microbial biomass and faunal populations in two different soils cropped to barley. The dynamics of microbial C, protozoa, nematodes, acari, collembola, shoot and root mass were measured between July and October under barley at Ellerslie (Black Chernozem, Typic Cryoboroll) and Breton (Gray Luvisol, Typic Cryoboralf) in central Alberta. Very wet soil conditions in early July reduced the barley yield at Breton. The peak shoot mass was greater at Ellerslie (878 g m−2) compared to Breton (582 g m−2), but the root mass did not differ significantly between sites. Microbial C at 0–30 cm depth was greater at Ellerslie (127 g m−2) than Breton (68 g m−2). The average protozoa population (no. m−2) did not differ significantly between sites. The average nematode population at 0–20 cm depth was greater at Ellerslie (5.1 × 106 no. m−2) compared to Breton (1.0 × 106 no. m−2) Acari and collembola populations at 0–10 cm depth at Ellerslie (43 × 103 and 43 × 102 no. m−2), respectively) were greater than at Breton (2 × 104 and 9 × 102 no. m−2) respectively). Tenday laboratory incubations of 0–10 cm soil samples from Ellerslie evolved more CO2-C (120 μg g−1 soil) compared to samples from Breton (97 μg g−1 soil), but the CO2-C evolution did not differ when expressed on an area basis (g m−2) due to the greater soil bulk density at Breton. The soil from Breton respired twice as much CO2-C when expressed as a proportion of soil C and 1.5 times as much CO2-C when expressed as a proportion of microbial C, compared to the soil from Ellerslie. The greater CO2-C: microbial C ratio, lower flush C:N ratio, and greater protozoa population: soil C ratio at Breton compared to Ellerslie suggest that the food web was relatively more active at Breton and was related to greater C availability and water availability at Breton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1432-0789
    Keywords: Soil enzymes ; Soil respiration ; Hill agriculture ; Wetland rice ; Dehydrogenase activity - Urease activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Dehydrogenase activity (a measure of microbial biomass), urease activity and CO2 evolution were measured in soils planted to rice (Oryza sativa L.) under three different agricultural practices prevalent in hill regions. The effects of hill slope, terrace and valley agriculture were investigated for two cropping seasons. The valleys and terraces were kept flooded during each cropping season while the hill slopes were cultivated with dryland practices. The type of agricultural practice and the date of observation had a significant influence on enzyme activity and CO2 evolution. A positive correlation was observed between dehydrogenase and urease activity and soil moisture content. Dehydrogenase and urease activity and soil respiration were positively correlated among themselves. The activity of both enzymes and CO2 evolution were highest in valley soils followed by terrace and hill-slope sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 95-96 
    ISSN: 1432-0789
    Keywords: Soil respiration ; Substrate-induced respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Freezing was investigated as a means of preserving samples in soil respiration studies. Concentrations of CO2 in the headspaces of incubation bottles before and after freezing, and respiration rates derived from fresh or frozen samples were not significantly different over periods of up to 30 days. Freezing permits many samples to be assayed for respiratory activity at one time, increases the accuracy of the incubation period and defers the need to analyse headspace concentrations of CO2 until it is convenient.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 9-13 
    ISSN: 1432-0789
    Keywords: Soil respiration ; ATP ; Heavy metal effects ; Dormant population ; Microbial biomass ; Urban soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of heavy metals on microbial biomass and activity were investigated in 30 urban soils, contaminated mainly with Zn and Pb to different extents, in terms of the physicochemical and biological characteristics of the soils. Evaluated by simple and multiple regression analyses, the microbial biomass was not affected significantly by easily soluble Zn + Pb (extractable with 0.1 NHCI). The biomass was accounted for as a function of cation exchange capacity (CEC), total organic C and the numbers of fungal colonies present (R 2 = 0.692). Carbon dioxide evolution from soils, which reflected microbial activity, was studied on soils incubated with microbial-promoting substrates (glucose and ammonium sulfate) or without. Carbon dioxide evolution was negatively related to Zn+Pb, and this inhibitory effect of the metals was greater in the soils incubated with substrates. Carbon dioxide evolution in soils with substrates was closely related to Zn+Pb, bacterial numbers and the numbers of fungal colonies (R 2 = 0.718). Carbon dioxide evolution in soils without substrates was accounted for as a function of Zn + Pb, biomass and the C/N ratio (R 2 = 0.511). Using these relationships, the effects of heavy metals on soil microorganisms are discussed in terms of metabolically activated and dormant populations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1432-0789
    Keywords: Rhizopseudomonads ; Seed inoculation ; Rhizosphere microbiota ; Coliform bacteria ; Soil respiration ; Zea mays ; Hordeum vulgare
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The addition of sugars or amino acids to the soil gave rise to the development of different groups of microorganisms. The increase in the number of different groups of microorganisms in the soil had an influence on the microbiota in the rhizoplane and endorhizosphere of maize and barley grown in that soil. Furthermore, growth of maize and barley decreased with increasing microbial activity and density in soil. This effect could be counteracted effectively by the rhizopseudomonad strain 7NSK2. The beneficial effect of the strain 7NSK2 correlated inversely with the microbial activity, as measured by soil respiration, in the bulk-pretreated soil. The effect of seed inoculation with the rhizopseudomonad strain 7NSK2 on the root microbiota of maize and barley was evaluated. The strain 7NSK2 was capable of colonizing the rhizoplane and endorhizosphere of the maize cultivar Beaupré and barley cultivar Than very effectively and of considerably altering their composition. The number of total bacteria, fungi, pseudomonads and coliform bacteria in the rhizoplane and endorhizosphere of both plants was strongly reduced by inoculating the seeds with the strain 7NSK2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 3 (1987), S. 211-216 
    ISSN: 1432-0789
    Keywords: Bioactivity ; Soil ; Lime ; Spruce forest ; ATP test ; Soil respiration ; Microcalorimetric measurements ; FDA hydrolysis ; Iron reduction test
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The stimulative effect of lime on the bioactivity of various soil horizons was demonstrated by the ATP test, and respiration and microcalorimetric measurements, but not by FDA hydrolysis or the iron reduction test. The latter showed clear inhibition. When the natural structure of layers was saved while sampling, a smaller stimulation of bioactivity was observed than in the case of mixing natural layers. No stimulation was recorded when the lime layer was removed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 76-82 
    ISSN: 1432-0789
    Keywords: Biomass accumulation ; Decomposition ; Litter ; Soil organic matter ; Soil respiration ; 14C deposition ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In a field experiment with 14C-labeled winter wheat conducted in the north-central region of the United States, crop-accumulated carbon (grain excluded) returned to the soil was found to be 542 g m−2 year−1. Almost half of the carbon from the underground compartment was released in the form of CO2 during the first 3 months after harvest due to very favorable conditions for biological activity. After 18 months, no less than 80% of the carbon from the plant residues was mineralized. About 16% of straw carbon and 24% of root carbon was transferred into soil organic matter. The annual rate of soil organic matter decomposition was approximated as 1.7%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 137-143 
    ISSN: 1432-0789
    Keywords: Acid irrigation ; Spruce forest ; ATP test ; Soil respiration ; Microcalorimetric measurements ; FDA hydrolysis ; Iron reduction test
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of irrigation, acid precipitation and liming on the bioactivity in a spruce forest soil were measured with different tests. Except for the iron reduction test and the FDA hydrolysis, the highest activities were measured in the upper horizons and mostly decreased gradually in the deeper ones. The determination of heat output and respiration without additional energy supply and ATP measurement gave similar results: acid precipitation inhibits the bioactivity in O1 and Of1, layers; lime stimulated it mostly in Of2 horizons. Except for the results of ATP measurement, in Of2 horizons the influence of lime exceeded that of acid irrigation. The results obtained from respiration and microcalorimetric measurements after the introduction of an energy supply were similar: Humidity, derived either from acid precipitation or from irrigation, stimulated the activity as well as lime, clearly in Of2, to a smaller extent also in deeper horizons. The bioactivity in Oft increased significantly in the plots in the order: control, plot with acid irrigation, plot with normal irrigation, limed plot, limed plot with acid irrigation, and limed plot with normal irrigation. The difference between irrigated and acid-irrigated plots is due to the inhibitive effects of protons and SO 4 2− . The FDA hydrolysis test showed a clear stimulative effect of humidity in Of horizons of non-limed plots. With the iron reduction test, stimulation in acid-irrigated and inhibition in limed samples was demonstrated. The maximum bioactivity measured with this method was localized in deeper horizons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 15-21 
    ISSN: 1432-0789
    Keywords: Denitrification ; Aerobic respiration ; Water potential ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of soil moisture on denitrification and aerobic respiration was studied in a mull rendzina soil. N2O formation did not occur below −30 kPa matric water potential (Ψm), above 0.28 air-filled porosity (a) and below 0.55 fractional water saturation (Θv/PV ≙ volumetric water content/total pore volume). Half maximum rates of N2O production and O2 consumption were obtained between Ψm = −1.2 and −12 kPa,a = 0.05 and 0.23, and Θv/PV = 0.63 and 0.92. No oxygen consumption was measured at Θv/PC ≧ 1.17. O2 uptake and denitrification occurred simultaneously arounda = 0.10 (at Ψm = −10 kPa and Θv/PV = 0.81) at mean rates of 3.5 µl O2 and 0.3 µl N2 h−1g−1 soil. Undisturbed, field-moist soil saturated with nitrate solution showed constant consumption and production rates, respectively, of 0.6 µl O and 0.22 µl N2O h−1g−1 soil, whereas the rates of air-dried remoistened soil were at least 10 times these values. The highest rates obtained in remoistened soil amended with glucose and nitrate were 130 µl O2 and 27 µl N2O h−1g−1 soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 1 (1985), S. 117-122 
    ISSN: 1432-0789
    Keywords: Soil respiration ; 14C-glucose metabolites ; Zn effects ; bacterial and fungal populations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of zinc added to a diluvial sandy clay loam soil on its microflora and the metabolic products of amended glucose in the soil were investigated, and its influences on both biological and chemical turnover are discussed. Changes in the soil microflora were followed by counting the microbes and measuring their contributions to soil respiration. The transformations of 14C-glucose products were traced in five divided fractions. Amended glucose was readily assimilated into microbial tissues and transformed to metabolites in the control soil. Within the initial 24 h of the incubation, most of the glucose was decomposed and about 40% of the substrate evolved as carbon dioxide. This primary metabolism was attributed to the bacterial population, and the subsequent secondary metabolism was associated with fungal growth rather than bacteria. On the other hand, zinc (1000 μg/g) added as chloride prolonged the primary metabolism of glucose and a large part of the incubation period for 96 h was occupied by this metabolism, which was mostly dependent on the fungal population. Viable bacterial number noticeably within the first 24 h of the incubation. During the course of the subsequent incubation, however, this number increased and the selection for zinc tolerance was suggested.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...