ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (45)
  • Other Sources
  • tomato
  • 1995-1999  (45)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (45)
Collection
  • Articles  (45)
  • Other Sources
Publisher
Years
Year
Topic
  • 1
    ISSN: 1573-8469
    Keywords: cellophane ; conduciveness ; conventional ; cover crops ; damping-off ; Lycopersicon esculentum ; organic ; receptivity ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Testing of soil samples in greenhouse assays for suppressiveness to soilborne plant pathogens requires a considerable investment in time and effort as well as large numbers of soil samples. To make it possible to process large numbers of samples efficiently, we compared an in vitro growth assay with a damping-off assay using Pythium aphanidermatum as the test organism on tomato seedlings. The in vitro test compares the radial growth or relative growth of the fungus in soil to that in autoclaved soil and reflects suppressiveness of soils to the pathogen. We used soils from a field experiment that had been farmed either organically or conventionally and into which a cover crop (oats and vetch in mixture) had been incorporated 0, 10, 21, and 35 days previously. We obtained a significant, positive correlation between damping-off severities of tomato seedlings in damping-off assays and both relative and radial growth in vitro. In addition, radial and relative growth of P. aphanidermatum in the in vitro assay were positively correlated with several carbon and nitrogen variables measured for soil and incorporated debris. We did not find differences between the two farming systems for either growth measures of P. aphanidermatum or disease severities on tomato at different stages of cover crop decomposition. The in vitro assay shows potential for use with any fungus that exhibits rapid saprophytic growth, and is most suitable for routine application in suppressiveness testing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 104 (1998), S. 279-286 
    ISSN: 1573-8469
    Keywords: bean ; grey mould ; pepper ; plant growth-promoting rhizobacteria ; systemic acquired resistance ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Biocontrol of Botrytis cinerea with Trichoderma spp. is generally believed to result from direct interaction of the biocontrol agent with the pathogen or from a Trichoderma-induced change in environmental conditions that affects B. cinerea development. In this work we provide arguments for the participation of induced plant defence in T. harzianum T39 control of B. cinerea. In tomato, lettuce, pepper, bean and tobacco, T. harzianum T39 application at sites spatially separated from the B. cinerea inoculation resulted in a 25–100%percnt; reduction of grey mould symptoms, caused by a delay or suppression of spreading lesion formation. Given the spatial separation of both micro-organisms, this effect was attributed to the induction of systemic resistance by T. harzianum T39. The observation that in bean the effect of T. harzianum T39 was similar to that of the rhizobacterium Pseudomonas aeruginosa KMPCH, a reference strain for the induction of systemic resistance, confirmed this hypothesis. Since B. cinerea control on tobacco leaves sprayed with T. harzianum T39 was similar to the control on leaves from T. harzianum T39 soil-treated plants, induction of plant defence might also participate in biocontrol on treated leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 102 (1996), S. 127-132 
    ISSN: 1573-8469
    Keywords: cell suspension culture ; ion leakage ; Lycopersicon esculentum ; tomato ; toxicity ; fusaric acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cell suspension cultures were set up from two tomato cultivars, one resistant, (‘Rio grande’) and one susceptible (‘63.5’) toFusarium oxysporum f. sp.lycopersici. Growth rates of the two cell cultures were comparable. Toxicity of fusaric acid, expressed as the fresh weight loss, was analyzed: It was significant in both cases after 10 h, but toxicity was twice as high for ‘63.5’ suspension cells. In the same way, electrolyte leakage caused by fusaric acid was three times more important for ‘63.5’ suspension cells. Moreover, fusaric acid treatment resulted in an acidification of the extracellular medium for ‘63.5’ suspension cells (0.4 pH unit), whereas an alkalization was observed for ‘Rio grande’ suspension cells (0.2 pH unit). Preliminary experiments suggest that fusaric acid was partially metabolized by ‘Rio grande’ suspension cells, however, no detoxified forms of fusaric acid were detected either in cells or in culture filtrates. For these two tomato cultivars, the differences in sensitivity to fusaric acid of cultivated cells correspond to the differences in plant susceptibility toFusarium oxysporum f. sp.lycopersici.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 102 (1996), S. 635-643 
    ISSN: 1573-8469
    Keywords: biological control ; grey mould ; Trichoderma harzianum ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effectiveness ofTrichoderma harzianum in suppression of tomato stem rot caused byBotrytis cinerea was examined on tomato stem pieces and on whole plants. Ten days after simultanous inoculation withB. cinerea andT. harzianum, the incidence of infected stem pieces was reduced by 62–84%, the severity of infection by 68–71% and the intensity of sporulation by 87%. Seventeen days after inoculation of wounds on whole plants, the incidence of stem rot was reduced by 50 and 33% at 15 and 26 °C, respectively, and the incidence of rot at leaf scar sites on the main stem was reduced by 60 and 50%, respectively. Simultanous inoculation and pre-inoculation withT. harzianum gave good control ofB. cinerea (50 and 90% disease reduction, 10 days after inoculation). The rate of rotting was not reduced by the biocontrol agent once infection was established. However, sporulation byB. cinerea was specifically reduced on these rotting stem pieces. Temperature had a greater effect than vapour pressure deficit (VPD) on the efficacy of biocontrol. Suppression ofB. cinerea incidence byT. harzianum on stem pieces was significant at 10 °C and higher temperatures up to 26 °C. Control of infection was significantly lower at a VPD of 1.3 kPa (60% reduction), than at VPD〈1.06 kPa (90–100% control). Reductions in the severity of stem rotting and the sporulation intensity of grey mould were generally not affected by VPD in the range 0.59–1.06 kPa. Survival ofT. harzianum on stems was affected by both temperature and VPD and was greatest at 10 °C at a low VPD and at 26 ° C at a high VPD.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-8469
    Keywords: Bemisia tabaci ; geminivirus ; primers ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract DNA of tomato yellow leaf curl virus (TYLCV), a geminivirus transmitted by the whitefly Bemisia tabaci, was amplified from squashes of infected tomato plants and of viruliferous vectors using the polymerase chain reaction (PCR). Samples of infected tissues as small as 1 mm2 were squashed onto a nylon membrane. A 1 × 2 mm strip containing the squash was introduced into a 25 µl PCR reaction mix. The reaction products were subjected to gel electrophoresis, blotted and hybridized with a radiolabeled virus-specific DNA probe. TYLCV DNA was amplified from squashes of leaves, roots, and stem of infected tomato and from individual viruliferous whiteflies. The same squash could be used several times to amplify different virus DNA fragments with various sets of primers. Thus plant and insect squashes can be used as templates for the amplification of geminiviral DNA with no need to prepare tissue extracts or purify nucleic acids. The squash-PCR procedure was applied to study whitefly transmission of TYLCV. Tomato plants were inoculated by placing a single viruliferous insect in the center of a young leaflet. In some plants TYLCV DNA was detected at the site of inoculation as early as 5 min after the beginning of the access feeding and in all plants after 30 min. The squash-PCR procedure also was applied to the study of TYLCV acquisition by the insect vector. TYLCV DNA was detected in the head of whiteflies as early as 5 min after the beginning of the access feeding on infected tomato plants. Viral DNA was detected in the thorax after 10 min and in the abdomen after 25 min.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-8469
    Keywords: Fusarium ; Pythium ; Pseudomonas ; tomato ; cucumber ; 2,4-diacetylphloroglucinol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fluorescent pseudomonads producing the antimicrobial compound 2,4-diacetylphloroglucinol (Phl) are being studied extensively for use as biocontrol agents of soil-borne fungal diseases. Some of them can produce pyoluteorin (Plt) in addition to Phl, whereas others synthesise only Phl. Here, a collection of seven Phl+ Plt- pseudomonads, seven Phl+ Plt+ pseudomonads and seven Phl- biocontrol pseudomonads were compared for protection of plant roots against fungal pathogens. The seven Phl+ Plt+ pseudomonads were identical by restriction analysis of amplified spacer ribosomal DNA (spacer ARDRA), whereas the Phl+ Plt- pseudomonads and especially the Phl- biocontrol pseudomonads were quite diverse by spacer ARDRA. Collectively, the Phl+ Plt- pseudomonads proved superior to the Phl+ Plt+ pseudomonads and the Phl- biocontrol pseudomonads for protection of tomato against Fusarium crown and root rot (in rockwool microcosms) or cucumber against Pythium damping-off (in non-sterile soil microcosms). There was no correlation between protection in vivo and inhibition of the corresponding fungal pathogen on plates. However, there was a significant correlation between the amount of Phl produced on plates and protection of tomato against Fusarium crown and root rot, but not with protection of cucumber against Pythium damping-off. Interestingly, the minority of strains unable to produce HCN, an extracellular protease, or both, were among those unable to protect plants in both pathosystems. A seedling assay was developed to compare pseudomonads for suppression of Fusarium crown and root rot in vitro, and a significant correlation was found between disease severity in vitro and in vivo. Overall, results suggest that promising biocontrol pseudomonads may be identified based on the ability to produce Phl and/or specific ARDRA-based fingerprints.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-0654
    Keywords: cotton ; drainage ; irrigation ; salinity ; shallow groundwater ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In situ use of ground water by plants is one optionbeing considered to reduce discharge of subsurfacedrainage water from irrigated agriculture. Laboratory, lysimeter, and field studies havedemonstrated that crops can use significant quantitiesof water from shallow ground water. However, moststudies lack the data needed to include the crop wateruse into an integrated irrigation and drainage watermanagement system. This paper describes previousstudies which demonstrated the potential use of groundwater to support plant growth and the associatedlimitations. Included are results from three fieldstudies which demonstrated some of the managementtechniques needed to develop an integrated system. The field studies demonstrated that approximately 40to 45% of the water requirement for cotton can bederived from shallow saline ground water. Thatregulation of the outflow will result in increasinguse. Implementation of integrated management ofirrigation and subsurface drainage systems is a viableand sustainable alternative in the management ofsubsurface drainage water from arid and semi-aridareas only if soil salinity can be managed and if thesystem is profitable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 52 (1998), S. 37-44 
    ISSN: 1573-0867
    Keywords: crop growth ; metam-sodium ; methyl bromide ; nitrification ; soil fumigation ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil fumigation, commonly used in vegetable production, may alter the rate of nitrification, affecting availability of N for crop use. The objective of this research was to examine effects of soil fumigation and N fertilizer source on tomato growth and soil NO3–N and NH4–N in field production. Experiments 1 and 2 included application of methyl bromide at 420 kg ha-1 to a Norfolk sandy loam (fine loamy siliceous thermic Typic Kandiudult) in combination with preplant applications of calcium nitrate, ammonium nitrate, and ammonium sulfate at 144 kg N ha-1. An additional fumigant, metam-sodium, was included in the second experiment at 703 L ha-1 (268 kg sodium methyldithiocarbamate ha-1). Experiment 3 included methyl bromide and metam-sodium, with ammonium sulfate as the sole source of N applied at 144 kg N ha-1. In the first two studies, fumigants had little or no effect on soil NH4–N or NO3–N concentration. Tomato plants were larger and fruit yield was greater in fumigated plots, but there were few growth or yield responses to N source. In the third experiment, fumigants increased concentration of soil NO3–N and NH4–N at 16 days after fumigation (DAF), however, there was no effect on nitrification owing to fumigants. It appears that N source selection to overcome inhibition of nitrification is not necessary in plant production systems that involve fumigation
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5036
    Keywords: biocontrol ; G. mosseae ; immunocytochemistry ; P. nicotianae var.parasitica ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: Lycopersicon esculentum ; nitrogen ; plant growth ; plant nutrition ; soil solarization ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil solarization is a non-chemical disinfestation technique that frequently promotes plant growth in the absence of known major pathogens, a phenomenon termed increased growth response (IGR). The effect of solarization on plant nutrients and their role in the IGR was studied with tomato plants grown in solarized or non-solarized (control) sandy soil, under controlled conditions. Solarization considerably increased the soil concentrations of water extractable N, K, Ca, Mg and Na at most sites, whereas Cl and DTPA extractable Mn, Zn, Fe and Cu were decreased by the treatment. Plant growth and specific leaf area were enhanced in solarized as well as in N-supplemented control soil. In tomato plants grown in solarized soil, concentrations of most nutrients in the xylem sap, including N, were increased compared to the control, whereas Cl and SO4 levels decreased. The most significant increase in leaf nutrient concentration caused by soil solarization was recorded for N. Furthermore, leaf N concentration was highly and positively correlated with shoot growth. The concentration of Cu increased in leaves from the solarization vs. the control treatment, whereas that of SO4 and Cl decreased, the latter presumably below the critical toxicity level. The correlation between shoot growth and leaf concentration was positive for Cu and inverse for Cl and SO4. In conclusion, we found that soil solarization significantly affects nutrient composition in tomato plants, and provided strong evidence that N, and eventually also Cl, play a major role in IGR.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...