ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (287)
  • Saccharomyces cerevisiae  (283)
  • Atomic, Molecular and Optical Physics
  • Immunocytochemistry
  • Wiley-Blackwell  (287)
  • 1995-1999  (287)
  • Biology  (287)
  • Medicine  (3)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 139-148 
    ISSN: 0006-3592
    Keywords: metabolic engineering ; pathway analysis ; metabolic and energetic model ; physiological state ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this work, an integrated modeling approach based on a metabolic signal flow diagram and cellular energetics was used to model the metabolic pathway analysis for the cultivation of yeast on glucose. This approach enables us to make a clear analysis of the flow direction of the carbon fluxes in the metabolic pathways as well as of the degree of activation of a particular pathway for the synthesis of biomaterials for cell growth. The analyses demonstrate that the main metabolic pathways of Saccharomyces cerevisiae change significantly during batch culture. Carbon flow direction is toward glycolysis to satisfy the increase of requirement for precursors and energy. The enzymatic activation of TCA cycle seems to always be at normal level, which may result in the overflow of ethanol due to its limited capacity. The advantage of this approach is that it adopts both virtues of the metabolic signal flow diagram and the simple network analysis method, focusing on the investigation of the flow directions of carbon fluxes and the degree of activation of a particular pathway or reaction loop. All of the variables used in the model equations were determined on-line; the information obtained from the calculated metabolic coefficients may result in a better understanding of cell physiology and help to evaluate the state of the cell culture process. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:139-148, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 631-638 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; fermentation ; on-line simulation ; state estimation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In order to study and control fermentation processes, indirect on-tine measurements and mathematical models can be used. In this article we present a mathematical on-line model for fermentation processes. The model is based on atom and partial mass balances as well as on equations describing the acid-base system. The model is brought into an adaptive form by including transport equations for mass transfer and unstructured expressions for the fermentation kinetics. The state of the process, i.e., the concentrations of biomass, substrate, and products, can be estimated on-line using the balance part of the model completed with measurement equations for the input and output flows of the process. Adaptivity is realized by means of on-line estimation of parameters in the transport and kinetic expressions using recursive regression analysis. These expressions can thus be used in the model as valid equations enabling prediction of the process. This makes model-based automation of the process and testing of the validity of the measurement variables possible. The model and the on-line principles are applied to a 3.5-L laboratory tormentor in which Saccharomyces cerevisiae is cultivated. The experimental results show that the model-based estimation of the state and the predictions of the process correlate closely with high-performance liquid chromatography (HPLC) analyses. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 592-608 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; metabolic modeling ; sensitivity analysis ; glycolysis ; compartmentation ; transient response ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model of glycolysis in Saccharomyces cerevisiae is presented. The model is based on rate equations for the individual reactions and aims to predict changes in the levels of intra- and extracellular metabolites after a glucose pulse, as described in part I of this study. Kinetic analysis focuses on a time scale of seconds, thereby neglecting biosynthesis of new enzymes. The model structure and experimental observations are related to the aerobic growth of the yeast. The model is based on material balance equations of the key metabolites in the extracellular environment, the cytoplasm and the mitochondria, and includes mechanistically based, experimentally matched rate equations for the individual enzymes. The model includes removal of metabolites from glycolysis and TCC for biosynthesis, and also compartmentation and translocation of adenine nucleotides. The model was verified by in vivo diagnosis of intracellular enzymes, which includes the decomposition of the network of reactions to reduce the number of parameters to be estimated simultaneously. Additionally, sensitivity analysis guarantees that only those parameters are estimated that contribute to systems trajectory with reasonable sensitivity. The model predictions and experimental observations agree reasonably well for most of the metabolites, except for pyruvate and adenine nucleotides. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 592-608, 1997.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 610-619 
    ISSN: 0006-3592
    Keywords: dynamic model ; Saccharomyces cerevisiae ; oxidative capacity ; feedback control ; calorimetry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objective of this study was to characterize the dynamic adaptation of the oxidative capacity of Saccharomyces cerevisiae to an increase in the glucose supply rate and its implications for the control of a continuous culture designed to produce biomass without allowing glucose to be diverted into the reductive metabolism. Continuous cultures subjected to a sudden shift-up in the dilution rate showed that the glucose uptake rate increased immediately to the new feeding rate but that the oxygen consumption could not follow fast enough to ensure a completely oxidative metabolism. Thus, part of the glucose assimilated was degraded by the reductive metabolism, resulting in a temporary decrease of biomass concentration, even if the final dilution rate was below Dcrit. The dynamic increase of the specific oxygen consumption rate, qO2, was characterized by an initial immediate jump followed by a first-order increase to the maximum value. It could be modeled using three parameters denoted qjumpO2, qmaxO2, and a time constant τ. The values for the first two of the parameters varied considerably from one shift to another, even when they were performed under identical conditions. On the basis of this model, a time-dependent feed flow rate function was derived that should permit an increase in the dilution rate from one value to another without provoking the appearance of reductive metabolism. The idea was to increase the glucose supply in parallel with the dynamic increase of the oxidative capacity of the culture, so that all of the assimilated glucose could always be oxidized. Nevertheless, corresponding feed-profile experiments showed that deviations in the reductive metabolism could not be completely suppressed due to variability in the model parameters. Therefore, a proportional feedback controller using heat evolution rate measurements was implemented. Calorimetry provides an excellent and rapid estimate of the metabolic activity. Satisfactory control was achieved and led to constant biomass yields. Ethanol accumulated only up to 0.49 g L-1 as compared to an accumulation of 1.82 g L-1 without on-line control in the shift-up experiment to the same final dilution rate. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 610-619, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 135-143 
    ISSN: 0006-3592
    Keywords: baker's yeast; ; knowledge-based system ; fuzzy logic ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A real-time fuzzy-knowledge-based system for fault diagnosis and control of bioprocesses was constructed using the object-oriented programming environment Small-talk/V Mac. The basic system was implemented in a Macintosh Quadra 900 computer and built to function connected on line to the process computer. Fuzzy logic was employed in handling uncertainties both in the knowledge and in measurements. The fuzzy sets defined for the process variables could be changed on-line according to process dynamics. Process knowledge was implemented in a graphical two-level hierachical knowledge base. In on-line process control the system first recognizes the current process phase on the basis of top-level rules in the knowledge-base. Then, according to the results of process diagnosis based on measurement data, the appropriate control strategy is subsequently inferred making use of the lower level rules describing the process during the phase in question. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 386-400 
    ISSN: 0006-3592
    Keywords: microfiltration ; yeast ; filtration ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To develop a highly efficient cell harvest step under time constraint, a novel rotating disk dynamic filtration system was studied on the laboratory scale (0.147-ft.2 nylon membrane) for concentrating recombinant yeast cells containing an intracellular product. The existing cross-flow microfiltration method yielded pseudo-steady state flux values below 25 LMH (L/m2. h) even at low membrane loadings (10 L/ft.2). By creating high shear rates (up to 120,000-1) on the membrane surface using a rotating solid disk, this dynamic filter has demonstrated dramatically improved performance, presumably due to minimal cake buildup and reduced membrane fouling. Among the many factors investigated, disk rotating speed, which determines shear rates and flow patterns, was found to be the most important adjustable parameter. Our experimental results have shown that the flux increases with disk rotating speed, increases with transmembrane pressure at higher cell concentrations, and can be sustained at high levels under constant flux mode. At a certain membrane loading level, there was a critical speed below which it behaved similarly to a flat sheet system with equivalent shear. Average flux greater than 200 LMH has been demonstrated at 37-L/ft.2 loading at maximum speed to complete sixfold concentration and 15-volume diafiltration for less than 100 min. An order of magnitude improvement over the crossflow microfiltration control was projected for large scale production. This superior performance, however, would be achieved at the expense of additional power input and heat dissipation, especially when cell concentration reaches above 80 g dry cell weight (DCW)/L. Although a positive linear relationship between power input and dynamic flux at a certain concentration factor has been established, high cell density associated with high viscosity impacted adversely on effective average shear rates and, eventually, severe membrane fouling, rather than cake formation, would limit the performance of this novel system. © 1995 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 193-208 
    ISSN: 0006-3592
    Keywords: yeast intermediary metabolism ; carbon and phosphorylation fluxes ; amphibolic pathways ; NADH oxidation ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the present work we develop a method for estimating anabolic fluxes when yeast are growing on various carbon substrates (glucose, glycerol, lactate, pyruvate, acetate, or ethanol) in minimal medium. Fluxes through the central amphibolic pathways were calculated from the product of the total required amount of a specified carbon intermediate times the growth rate. The required amount of each carbon intermediate was estimated from the experimentally determined macromolecular composition of cells grown in each carbon source and the monomer composition of macromolecules.Substrates sharing most metabolic pathways such as ethanol and acetate, despite changes in the macromolecular composition, namely carbohydrate content (34% ± 1 and 21% ± 3, respectively), did not show large variations in the overall fluxes through the main amphibolic pathways. For instance, in order to supply anabolic precursors to sustain growth rates in the range of 0.16/h to 0.205/h, similar large fluxes through Acetyl CoA synthase were required by acetate (4.2 mmol/hr g dw) or ethanol (5.2 mmol/h g dw).The Vmax activities of key enzymes of the main amphibolic pathways measured in permeabilized yeast cells allowed to confirm, qualitatively, the operation of those pathways for all substrates and were consistent on most substrates with the estimated fluxes required to sustain growth.When ATP produced from oxidation of the NADH synthesized along with the key intermediary metabolites was taken into account, higher YATPmax values (36 with respect to 24 g dw/mol ATP) were obtained for glucose. The same result was obtained for glycerol, ethanol, and acetate. A yield index (YI) was defined as the ratio of the theoretically estimated substrate flux required to sustain a given growth rate over the experimentally measured flux of substrate consumption. Comparison of Yl between growth on various carbon sources led us to conclude that ethanol (Yl = 0.84), acetate (Yl = 0.77), and lactate (Yl = 0.77) displayed the most efficient use of substrate for biomass production. For the other substrates, the Yl decayed in the following order: pyruvate 〉 glycerol 〉 glucose.An improvement of the quantitative understanding of yeast metabolism, energetics, and physiology is provided by the present analysis. The methodology proposed can be applied to other eukaryotic organisms of known chemical composition. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0730-2312
    Keywords: vitamin D receptor ; retinoid X receptor ; transactivation systems ; vitamin D regulation ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The transcription factors of the nuclear hormone receptor familiy regulate gene expression via a complex network of macromolecular interactions. The ligand dependent activity of the vitamin D receptor is of particular interest because it modulates gene expression by the heterodimeric interaction with retinoid X receptors. We report here that individual functions of the vitamin D receptor including DNA-binding, homo- and heterodimerization and transactivation can be reconstituted in the yeast Saccharomyces cerevisiae. Interestingly, the simultaneous expression of the native vitamin D receptor and the retinoid X receptor β resulted in a ligand independent transactivation of the lacZ reporter gene coupled to a mouse osteopontin vitamin D response element. However, homodimerization of the vitamin D receptor and heterodimerization were strongly enhanced upon ligand binding, when the receptors were expressed as fusion proteins with the Gal4 transcription factor in a yeast two-hybrid system. Furthermore, transactivating activity of a Gal4-fused vitamin D receptor was induced by vitamin D in a one-hybrid system devoid of retinoid X receptors. In addition, both Gal4-based systems behaved similar with regard to their dose-dependent response to vitamin D and related compounds when compared to the transcriptional activity of the vitamin D receptor in transiently transfected MCF-7 cells. Our results point out that specific ligands strongly enhanced receptor dimerization and induced transactivation in yeast and in MCF-7 cells. The constitutive transactivation by vitamin D receptor-retinoid X receptor heterodimers in yeast, depending on DNA binding of the receptors, strongly argues for the existence of cofactors, which are absent in yeast, but play a fundamental role in gene regulation in higher eukaryotic organisms. J. Cell. Biochem. 66:184-196, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 371-374 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; cell mass sensor ; optical density probe ; fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the highly competitive market of commercial bakers' yeast, fermentations are operated for maximum efficiency and minimum production cost. In order to maintain competitiveness, the fermentations must be highly consistent with minimum variation in yeast performance, maximum yield on raw materials, and minimum production of undesirable side products. The use of advanced instrumentation is of critical importance to achieving these goals by the production engineer. An in situ optical density probe was used to determine the yeast cell density in full-scale commercial bakers' yeast fermentations. The optical density probe results were compared with oxygen uptake rate analyses, packed cell volume, and off-line measured cell dry weights. The most accurate measurement of cell density was found to be the optical density probe. This instrument allowed the on-line determination of cell density with highly consistent results from fermentation batch to batch and with out the need for intermittent recalibration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 681-698 
    ISSN: 0006-3592
    Keywords: stoichiometry ; biomass yield ; product yield ; metabolic fluxes ; Saccharomyces cerevisiae ; Candida utilis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Using available biochemical information, metabolic networks have been constructed to describe the biochemistry of growth of Saccharomyces cerevisiae and Candida utilis on a wide variety of carbon substrates. All networks contained only two fitted parameters, the P/O ratio and a maintenance coefficient. It is shown that with a growth-associated maintenance coefficient, K, of 1.37 mol ATP/ C-mol protein for both yeasts and P/O ratios of 1.20 and 1.53 for S. cerevisiae and C. utilis, respectively, measured biomass yields could be described accurately. A metabolic flux analysis of aerobic growth of S. cerevisiae on glucose/ethanol mixtures predicted five different metabolic flux regimes upon transition from 100% glucose to 100% ethanol. The metabolic network constructed for growth of S. cerevisiae on glucose was applied to perform a theoretical exercise on the overproduction of amino acids. It is shown that theoretical operational product yield values can be substantially lower than calculated maximum product yields. A practical case of lysine production was analyzed with respect to theoretical bottlenecks limiting product formation. Predictions of network-derived irreversibility limits for Ysp (μ) functions were compared with literature data. The comparisons show that in real systems such irreversibility constraints may be of relevance. It is concluded that analysis of metabolic network stoichiometry is a useful tool to detect metabolic limits and to guide process intensification studies. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...