ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elasticity
  • Fracture
  • American Association for the Advancement of Science (AAAS)  (14)
  • Am. Soc. Mech. Eng.
  • Institute of Physics
  • 1995-1999  (14)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engel, J -- New York, N.Y. -- Science. 1997 Sep 19;277(5333):1785-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biphysical Chemistry, Biozentrum of the University, CH 4056 Basel, Switzerland. engel@ubaclu.unibas.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9324767" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Annelida/chemistry ; Bivalvia/chemistry ; Collagen/*chemistry/*physiology ; Elasticity ; Glycine/chemistry ; Glycosylation ; Hydra/chemistry ; Invertebrates/*chemistry/physiology ; Proline/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Tensile Strength
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-09-20
    Description: To adhere to solid surfaces, marine mussels produce byssal threads, each of which is a stiff tether at one end and a shock absorber with 160 percent extensibility at the other end. The elastic extensibility of proximal byssus is extraordinary given its construction of collagen and the limited extension (less than 10 percent) of most collagenous materials. From the complementary DNA, we deduced that the primary structure of a collagenous protein (preCol-P) predominating in the extensible proximal portion of the threads encodes an unprecedented natural block copolymer with three major domain types: a central collagen domain, flanking elastic domains, and histidine-rich terminal domains. The elastic domains have sequence motifs that strongly resemble those of elastin and the amorphous glycine-rich regions of spider silk fibroins. Byssal thread extensibility may be imparted by the elastic domains of preCol-P.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coyne, K J -- Qin, X X -- Waite, J H -- New York, N.Y. -- Science. 1997 Sep 19;277(5333):1830-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Marine Studies and Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9295275" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/chemistry ; Amino Acid Sequence ; Animals ; Base Sequence ; Biopolymers/chemistry ; Bivalvia/*chemistry/genetics ; Collagen/*chemistry/genetics ; DNA, Complementary ; Elasticity ; Elastin/chemistry/genetics ; Fibroins/chemistry ; Glycine/chemistry ; Histidine/chemistry ; Molecular Sequence Data ; Proline/chemistry ; Protein Conformation ; Protein Precursors/*chemistry/genetics ; Protein Structure, Secondary ; Sequence Alignment ; Serine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-06-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Potera, C -- New York, N.Y. -- Science. 1997 Jun 6;276(5318):1499-500.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9190686" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*cytology/genetics ; *Biomechanical Phenomena ; Elasticity ; Hydrogels ; Magnetics ; Materials Testing ; Models, Theoretical ; Mutation ; Polyhydroxyethyl Methacrylate/analogs & derivatives/chemistry ; Silicon Dioxide/chemistry ; Solar System
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, H P -- New York, N.Y. -- Science. 1997 May 16;276(5315):1090-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, UDA. H.Erickson@cellbio.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9173540" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Connectin ; Elasticity ; Entropy ; Immunoglobulins/chemistry ; Muscle Proteins/*chemistry/physiology ; Muscle Relaxation ; Muscle, Skeletal/chemistry/physiology ; *Protein Folding ; Protein Kinases/*chemistry/physiology ; Sarcomeres/chemistry ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-05-16
    Description: Titin, a giant filamentous polypeptide, is believed to play a fundamental role in maintaining sarcomeric structural integrity and developing what is known as passive force in muscle. Measurements of the force required to stretch a single molecule revealed that titin behaves as a highly nonlinear entropic spring. The molecule unfolds in a high-force transition beginning at 20 to 30 piconewtons and refolds in a low-force transition at approximately 2.5 piconewtons. A fraction of the molecule (5 to 40 percent) remains permanently unfolded, behaving as a wormlike chain with a persistence length (a measure of the chain's bending rigidity) of 20 angstroms. Force hysteresis arises from a difference between the unfolding and refolding kinetics of the molecule relative to the stretch and release rates in the experiments, respectively. Scaling the molecular data up to sarcomeric dimensions reproduced many features of the passive force versus extension curve of muscle fibers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kellermayer, M S -- Smith, S B -- Granzier, H L -- Bustamante, C -- AR-42652/AR/NIAMS NIH HHS/ -- GM-32543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 16;276(5315):1112-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164-6520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9148805" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Connectin ; Elasticity ; Entropy ; Immunoglobulins/chemistry ; Lasers ; Models, Chemical ; Muscle Contraction ; Muscle Proteins/*chemistry ; Muscle Relaxation ; Muscle, Skeletal/chemistry/physiology ; Protein Denaturation ; *Protein Folding ; Protein Kinases/*chemistry ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-05-16
    Description: Single-molecule atomic force microscopy (AFM) was used to investigate the mechanical properties of titin, the giant sarcomeric protein of striated muscle. Individual titin molecules were repeatedly stretched, and the applied force was recorded as a function of the elongation. At large extensions, the restoring force exhibited a sawtoothlike pattern, with a periodicity that varied between 25 and 28 nanometers. Measurements of recombinant titin immunoglobulin segments of two different lengths exhibited the same pattern and allowed attribution of the discontinuities to the unfolding of individual immunoglobulin domains. The forces required to unfold individual domains ranged from 150 to 300 piconewtons and depended on the pulling speed. Upon relaxation, refolding of immunoglobulin domains was observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rief, M -- Gautel, M -- Oesterhelt, F -- Fernandez, J M -- Gaub, H E -- New York, N.Y. -- Science. 1997 May 16;276(5315):1109-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl fur Angewandte Physik, Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9148804" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Connectin ; Elasticity ; Entropy ; Immunoglobulins/*chemistry ; Microscopy, Atomic Force ; Monte Carlo Method ; Muscle Proteins/*chemistry ; *Protein Folding ; Protein Kinases/*chemistry ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry ; Stress, Mechanical ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-03-29
    Description: Single linear DNA molecules were bound at multiple sites at one extremity to a treated glass cover slip and at the other to a magnetic bead. The DNA was therefore torsionally constrained. A magnetic field was used to rotate the beads and thus to coil and pull the DNA. The stretching force was determined by analysis of the Brownian fluctuations of the bead. Here the elastic behavior of individual lambda DNA molecules over- and underwound by up to 500 turns was studied. A sharp transition was discovered from a low to a high extension state at a force of approximately 0.45 piconewtons for underwound molecules and at a force of approximately 3 piconewtons for overwound ones. These transitions, probably reflecting the formation of alternative structures in stretched coiled DNA molecules, might be relevant for DNA transcription and replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strick, T R -- Allemand, J F -- Bensimon, D -- Bensimon, A -- Croquette, V -- New York, N.Y. -- Science. 1996 Mar 29;271(5257):1835-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Physique Statistique de l'ENS, associe aux universites Paris VI et VII, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596951" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda/genetics ; DNA, Superhelical/*chemistry ; DNA, Viral/chemistry ; Elasticity ; Magnetics ; *Nucleic Acid Conformation ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-02-09
    Description: Single molecules of double-stranded DNA (dsDNA) were stretched with force-measuring laser tweezers. Under a longitudinal stress of approximately 65 piconewtons (pN), dsDNA molecules in aqueous buffer undergo a highly cooperative transition into a stable form with 5.8 angstroms rise per base pair, that is, 70% longer than B form dsDNA. When the stress was relaxed below 65 pN, the molecules rapidly and reversibly contracted to their normal contour lengths. This transition was affected by changes in the ionic strength of the medium and the water activity or by cross-linking of the two strands of dsDNA. Individual molecules of single-stranded DNA were also stretched giving a persistence length of 7.5 angstroms and a stretch modulus of 800 pN. The overstretched form may play a significant role in the energetics of DNA recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, S B -- Cui, Y -- Bustamante, C -- GM-32543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Feb 9;271(5250):795-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8628994" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Chemistry, Physical ; DNA/*chemistry ; DNA, Single-Stranded/*chemistry ; Elasticity ; *Nucleic Acid Conformation ; Osmolar Concentration ; Physicochemical Phenomena ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-10-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1995 Oct 13;270(5234):236.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569971" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/chemistry/physiology ; Amino Acid Sequence ; Connectin ; Elasticity ; Humans ; Molecular Sequence Data ; Molecular Weight ; Muscle Contraction ; Muscle Proteins/*chemistry/physiology ; Protein Kinases/*chemistry/physiology ; Sarcomeres/chemistry/physiology/ultrastructure ; *Sequence Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-10-13
    Description: In addition to thick and thin filaments, vertebrate striated muscle contains a third filament system formed by the giant protein titin. Single titin molecules extend from Z discs to M lines and are longer than 1 micrometer. The titin filament contributes to muscle assembly and resting tension, but more details are not known because of the large size of the protein. The complete complementary DNA sequence of human cardiac titin was determined. The 82-kilobase complementary DNA predicts a 3-megadalton protein composed of 244 copies of immunoglobulin and fibronectin type III (FN3) domains. The architecture of sequences in the A band region of titin suggests why thick filament structure is conserved among vertebrates. In the I band region, comparison of titin sequences from muscles of different passive tension identifies two elements that correlate with tissue stiffness. This suggests that titin may act as two springs in series. The differential expression of the springs provides a molecular explanation for the diversity of sarcomere length and resting tension in vertebrate striated muscles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Labeit, S -- Kolmerer, B -- New York, N.Y. -- Science. 1995 Oct 13;270(5234):293-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569978" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/chemistry/*ultrastructure ; Amino Acid Sequence ; Animals ; Connectin ; DNA, Complementary ; Elasticity ; Fibronectins/chemistry ; Humans ; Immunoglobulins/chemistry ; Molecular Sequence Data ; Muscle Contraction ; Muscle Proteins/*chemistry/physiology ; Muscle, Skeletal/*chemistry/ultrastructure ; Myocardium/*chemistry/ultrastructure ; Protein Kinases/*chemistry/physiology ; Rabbits ; Repetitive Sequences, Nucleic Acid ; Sarcomeres/chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1995-09-29
    Description: A nuclear magnetic resonance imaging (MRI) method is presented for quantitatively mapping the physical response of a material to harmonic mechanical excitation. The resulting images allow calculation of regional mechanical properties. Measurements of shear modulus obtained with the MRI technique in gel materials correlate with independent measurements of static shear modulus. The results indicate that displacement patterns corresponding to cyclic displacements smaller than 200 nanometers can be measured. The findings suggest the feasibility of a medical imaging technique for delineating elasticity and other mechanical properties of tissue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muthupillai, R -- Lomas, D J -- Rossman, P J -- Greenleaf, J F -- Manduca, A -- Ehman, R L -- CA51124/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 29;269(5232):1854-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mayo Clinic and Foundation, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569924" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Biomechanical Phenomena ; Elasticity ; Gels ; Kidney/*anatomy & histology/physiology ; Kidney Cortex/anatomy & histology/physiology ; Kidney Medulla/anatomy & histology/physiology ; Magnetic Resonance Imaging/*methods ; Magnetic Resonance Spectroscopy ; Mathematics ; Mice ; Sepharose ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-04-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alexander, R M -- New York, N.Y. -- Science. 1995 Apr 7;268(5207):50-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pure and Applied Biology, University of Leeds, England.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701341" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila/physiology ; Elasticity ; Flight, Animal/*physiology ; Insects/*physiology ; Models, Biological ; Wings, Animal/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-04-07
    Description: Insects could minimize the high energetic costs of flight in two ways: by employing high-efficiency muscles and by using elastic elements within the thorax to recover energy expended accelerating the wings. However, because muscle efficiency and elastic storage have proven difficult variables to measure, it is not known which of these strategies is actually used. By comparison of mechanical power measurements based on gas exchange with simultaneously measured flight kinematics in Drosophila, a method was developed for determining both the mechanical efficiency and the minimum degree of elastic storage within the flight motor. Muscle efficiency values of 10 percent suggest that insects may minimize energy use in flight by employing an elastic flight motor rather than by using extraordinarily efficient muscles. Further, because of the trade-off between inertial and aerodynamic power throughout the wing stroke, an elastic storage capacity as low as 10 percent may be enough to minimize the energetic costs of flight.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickinson, M H -- Lighton, J R -- New York, N.Y. -- Science. 1995 Apr 7;268(5207):87-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismal Biology and Anatomy, University of Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701346" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila/*physiology ; Elasticity ; Energy Metabolism/physiology ; Female ; Flight, Animal/*physiology ; Models, Biological ; Muscles/physiology ; Wings, Animal/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-04-07
    Description: The stretching of single, tethered DNA molecules by a flow was directly visualized with fluorescence microscopy. Molecules ranging in length (L) from 22 to 84 micrometers were held stationary against the flow by the optical trapping of a latex microsphere attached to one end. The fractional extension x/L is a universal function of eta vL 0.54 +/- 0.05, where eta and v are the viscosity and velocity of the flow, respectively. This relation shows that the DNA is not "free-draining" (that is, hydrodynamic coupling within the chain is not negligible) even near full extension (approximately 80 percent). This function has the same form over a long range as the fractional extension versus force applied at the ends of a worm-like chain. For small deformations (〈 30 percent of full extension), the extension increases with velocity as x approximately v0.70 +/- 0.08. The relative size of fluctuations in extension decreases as sigma x/x approximately equal to 0.42 exp (-4.9 x/L). Video images of the fluctuating chain have a cone-like envelope and show a sharp increase in intensity at the free end.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perkins, T T -- Smith, D E -- Larson, R G -- Chu, S -- 33289/PHS HHS/ -- New York, N.Y. -- Science. 1995 Apr 7;268(5207):83-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Stanford University, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701345" target="_blank"〉PubMed〈/a〉
    Keywords: Biopolymers/chemistry ; DNA/chemistry/*ultrastructure ; Elasticity ; Microscopy, Fluorescence ; Models, Chemical ; Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...