ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (636)
  • Wiley-Blackwell  (636)
  • 1995-1999  (636)
  • 1940-1944
  • Computer Science  (636)
Collection
  • Books
  • Articles  (636)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 311-327 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A modified derivation of the free energy perturbation (FEP) equation leads to a more general interpretation of the procedures for generating the geometry of a perturbed molecule from the reference one in FEP simulations of flexible systems. Using this form of the equation, it is possible to implement a wide variety of procedures which heretofore would have been considered impossible. A new method, generalized alteration of structure and parameters (GASP), has been implemented in the BOSS program and has been found to be more efficient for perturbations of harmonic degrees of freedom than the commonly adopted procedure. Additionally, an extreme example for which the new procedure proves less satisfactory is presented, and a more efficient method which is also derived from the new form of the FEP equation is devised and tested. It is concluded that the key to a convergent FEP method is efficient sampling of low-energy configurations of the perturbed state; the new form of the equation suggests ways of generating such configurations. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 337-364 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present a robust and efficient numerical method for solution of the nonlinear Poisson-Boltzmann equation arising in molecular biophysics. The equation is discretized with the box method, and solution of the discrete equations is accomplished with a global inexact-Newton method, combined with linear multilevel techniques we have described in an article appearing previously in this journal. A detailed analysis of the resulting method is presented, with comparisons to other methods that have been proposed in the literature, including the classical nonlinear multigrid method, the nonlinear conjugate gradient method, and nonlinear relaxation methods such as successive overrelaxation. Both theoretical and numerical evidence suggests that this method will converge in the case of molecules for which many of the existing methods will not. In addition, for problems which the other methods are able to solve, numerical experiments show that the new method is substantially more efficient, and the superiority of this method grows with the problem size. The method is easy to implement once a linear multilevel solver is available and can also easily be used in conjunction with linear methods other than multigrid. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 405-413 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The mechanism of the photoreaction of tetramethylene sulfone (TMSO2) was investigated by the semiempirical molecular orbital (MO) method SINDO1. The relevant low-lying potential energy surfaces, which were calculated with limited configuration interaction (CI), were studied by optimizing intermediates and transition structures and by introducing linear interpolations between these stationary points. The main initial reaction step for all important products is an α cleavage of one C—S bond. This leads to an intermediate that can be classified as an excited singlet diradical. Its electronic structure is described with a two-electron, three-orbital model. Starting from this initially generated intermediate, the reaction branches into several pathways leading to various products. Feasible reaction pathways were established for all important products consistent with experiments. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 449-453 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We used the comparative molecular field analysis (CoMFA) method to correlate the rate constant (log k) for the SN2 reaction of benzyl benzenesulfonates and p-methoxybenzylamines. Molecular fields calculated with a C+ probe produced a good correlation with a small standard deviation and a high correlation coefficient with cross validation. This study demonstrated that CoMFA is an excellent method in predicting the physicochemical properties of the molecule such as LUMO energy and rate constants. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 486-500 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In the search for new drugs, it often occurs that the binding affinities of several compounds to a common receptor macromolecule are known experimentally, but the structure of the receptor is not known. This article describes an extraordinarily objective computer algorithm for deducing the important geometric and energetic features of the common binding site, starting only from the chemical structures of the ligands and their observed binding. The user does not have to propose a pharmacophore, guess the bioactive conformations of the ligands, or suggest ways to superimpose the active compounds. The method takes into account conformational flexibility of the ligands, stereospecific binding, diverse or unrelated chemical structures, inaccurate or qualitative binding data, and the possibility that chemically similar ligands may or may not bind to the receptor in similar orientations. The resulting model can be viewed graphically and interpreted in terms of one or more binding regions of the receptor, each preferring to be occupied by various sorts of chemical groups. The model always fits the given data completely and can predict the binding of any other ligand, regardless of chemical structure. The method is an outgrowth of distance geometry and Voronoi polyhedra site modeling but incorporates several novel features. The geometry of the ligand molecules and the site is described in terms of intervals of internal distances. Determining the site model consists of reducing the uncertainty in the interregion distance intervals, and this uncertainty is described as intervals of intervals. Similarly, the given binding affinities and their experimental uncertainties are treated as intervals in the affinity scale. The final site model specifies an entire region of interaction energy parameters that satisfy the training set rather than a single set of parameters. Predicted binding for test compounds results in an interval which, when compared to the experimental interval, may be correct, incorrect, or vague. There is a pervasive ternary logic involved in the assessment of predictions, in the search for a satisfactory model, and in judging whether a given molecule may bind in a particular orientation: true, false, or maybe. The approach is illustrated on an extremely simple artificial example and on a real data set of cocaine analogues binding to a nerve membrane receptor in vitro. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 723-728 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The problem of representing a diatomic (true) Rydberg-Klein-Rees potential Ut by an analytical function Ua is discussed. The perturbed Morse function is in the form Ua = UM + ∑bnyn, where the Morse potential is UM = Dy2, y = 1 -exp(-;a(r - re)). The problem is reduced to determination of the coefficients bn so Ua(r) = Ut(r). A standard least-squares method is used, where the number N of bn is given and the average discrepancy ΔU = |(Ut - Ua)/Ut| is observed over the useful range of r. N is varied until ΔU is stable. A numerical application to the carbon monoxide X1∑ state is presented and compared to the results of Huffaker1 using the same function with N = 9. The comparison shows that the accuracy obtained by Huffaker is reached in one model with N = 5 only and that the best ΔU is obtained for N = 7 with a gain in accuracy. Computation of the vibrational energy Ev and the rotational constant Bv, for both potentials, shows that the present method gives values of ΔE and ΔB that are smaller than those found by Huffaker. The dissociation energy obtained here is 2.3% from the experimental value, which is an improvement over Huffaker's results. Applications to other molecules and other states show similar results. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 768-776 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The theoretical framework developed and tested in our previous study of weakly bound systems is applied to a sequence of bimolecular cations: (NeX)+ and (ArX)+, where X = HF, H2O, and HCl. The equilibrium structure, binding energies, and vibrational frequencies for this sequence of bimolecular cations are computed using several post-Hartree-Fock methods and triple zeta basis sets. In all cases, the absolute minima in the potential energy surface involves a hydrogen bond. The existence and stability of the aforementioned systems are established with binding energies ranging from 0.1 eV to 1.0 eV. The stability for the systems is explained in terms of the possible dissociative channels and changes in the electron density of the constituent monomers. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 817-842 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An algorithm for the analytical computation of solvent-excluded volume is presented as part of our efforts to develop an improved computational model for a solvent effect term, in which the work required to create a cavity in the solvent is expressed as a function of the solvent-excluded volume. In this article we describe mathematical developments in the analytical integration of solvent-accessible surface (SAS) area, the singularities in SAS area and volume functions, and the procedures required to detect and treat singularities. Techniques to increase algorithm performance are presented, which improve computational speed by about five times, on the average. The accuracy of the analytical method for volume computation is compared with the accuracy of two numerical methods: the numerical integration of SAS area and the point-by-point scanning method. This algorithm calculates the volume of the spheres confined among their intersection planes and resembles a numerical integration of surface area by summing up volume layers. These characteristics make the algorithm useful in analytically calculating the work required to create a convex cavity in a solvent and the work (pΔV) associated with a change in the solvent-excluded volume of the solute due to solvent pressure. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 154-170 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A general methodology for deriving geometry-dependent atomic charges is presented. The main ingredient of the method is a model that describes the molecular dipole moment in terms of geometry-dependent point charges. The parameters of the model are determined from ab initio calculations of molecular dipole moments and their Cartesian derivatives at various molecular geometries. Transferability of the parameters is built into the model by fitting ab initio calculations for various molecules simultaneously. The results show that charge flux along the bonds is a major contributing factor to the geometry dependence of the atomic charges, with additional contributions from fluxes along valence angles and adjacent bonds. Torsion flux is found to be smaller in magnitude than the bond and valence angle fluxes but is not always unimportant. A set of electrostatic parameters is presented for alkanes, aldehydes, ketones, and amides. Transferability of these parameters for a host of molecules is established to within 3 -5% error in the predicted dipole moments. A possible extension of the method to include atomic dipoles is outlined. With the inclusion of such atomic dipoles and with the set of transferable point charges and charge flux parameters, it is demonstrated that molecular electrostatic potentials as well as electrostatic forces on nuclei can be reproduced much better than is possible with other models (such as potential derived charges). © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 200-206 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Electrostatic interactions are among the key factors in determining the structure and function of biomolecules. Simulating such interactions involves solving the Poisson equation and the Poisson-Boltzmann (P-B) equation in the molecular interior and exterior region, respectively. The P-B equation is a nonlinear partial differential equation. The central processing unit (CPU) time for solving the full nonlinear P-B equation has been severalfold greater than the equivalent linear case. Here a simple method is proposed to solve the full nonlinear P-B equation under a linear approach, which has been tested both on a spherical case and on small molecules. Results show that our method converges rapidly even under highly charged cases. With this method, the CPU time for solving the full nonlinear P-B equation is somewhat less than the equivalent linear case in our calculations. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 207-225 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Large basis set ab initio calculations at correlated levels, including MP2, single reference, as well as multireference configuration interaction, carried out on the methane potential energy surface, have located and characterized a transition structure for stereomutation (one imaginary frequency). This structure is best described as a pyramidal complex between singlet methylene and a side-on hydrogen molecule with Cs symmetry. At the single reference CI level, it lies 105 kcal/mol above the methane Td-ground state but is stable relative to dissociation into CH2(1A1) and H2 by 13 kcal/mol at 0 K (with harmonic zero point energy (ZPE) corrections for all structures). Dissociation of the transition state into triplet methylene and hydrogen also is endothermic (by 4 kcal/mol), but single bond rupture to give CH3. and H. is 3 kcal/mol exothermic. Thus, it does not appear likely that methane can undergo stereomutation classically beneath the dissociation limit. Confirming earlier conclusions, side-on insertion of 1A1 CH2 into H2 in a perpendicular geometry occurs without activation energy. Planar (D4h) methane (130.5 kcal/mol) has four imaginary frequencies. Two of these are degenerate and lead to equivalent planar C2v structures with one three-center, two-electron bond and two two-electron bonds and two imaginary frequencies. The remaining imaginary frequencies of the D4h form lead to tetrahedral (Td) and pyramidal (C4v) methane. The latter has three negative eigenvalues in the force-constant matrix; one of these leads to the Td global minimum and the other to the Cs (parallel) stereomutation transition structure. Multireference CI calculations with a large atomic natural orbitals basis set produce similar results, with the electronic energy of the Cs stereomutation transition state 0.7 ± 0.5 kcal/mol higher than that of CH3. + H. dissociation products, and a ZPE-corrected energy which is 5 ± 1 kcal/mol higher. Also considered are photochemical pathways for stereomutation and the possible effects of nuclear spin, inversion tunneling, and the parity-violating weak nuclear interaction on the possibility of an experimental detection of stereomutation in methane. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 226-234 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We describe the implementation of the mesh-based first-principles density functional code DMol on nCUBE 2 parallel computers. The numerical mesh nature of DMol makes it naturally suited for a massively parallel computational environment. Our parallelization strategy consists of a domain decomposition of mesh points. This evenly distributes mesh points to all available processors and leads to a substantial computational speedup with limited communication overhead and good node balancing. To achieve better performance and circumvent memory storage limitations, the torus wrap method is used to distribute both the Hamiltonian and overlap matrices, and a parallel matrix diagonalization routine is employed to calculate eigenvalues and eigenvectors. Benchmark calculations on a 128-node nCUBE 2 are presented. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 586-594 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: It is shown that with the use of published one-center INDO parameters for transition metals M, it is not possible to reproduce experimental relative energies of the electronic states of M, M+, and M2+ accurately enough. Two new sets of INDO parameters for the elements of the I and II transition rows are developed. These parameters are obtained by the method which ensures that the calculated energy differences between atomic electron states are in agreement with the experimental data. The results of some molecular test calculations are presented. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 628-647 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We describe a method for minimizing the lattice energy of molecular crystal structures, using a realistic anisotropic atom-atom model for the intermolecular forces. Molecules are assumed to be rigid, and the structure is described by the center of mass positions and orientational parameters for each molecule in the unit cell, as well as external strain parameters used to optimize the cell geometry. The resulting program uses a distributed multipole description of the electrostatic forces, which consists of sets of atomic multipoles (charge, dipole, quadrupole, etc.) to represent the lone pair, π electron density, and other nonspherical features in the atomic charge distribution. Such ab initio based, electrostatic models are essential for describing the orientation dependence of the intermolecular forces, including hydrogen bonding, between polar molecules. Studies on a range of organic crystals containing hydrogen bonds are used to illustrate the use of this new crystal structure relaxation program, DMAREL, and show that it provides a promising new approach to studying the crystal packing of polar molecules. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 648-653 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The use of computer simulations in all areas of chemistry is growing rapidly because of the powerful insights that they have provided into many interesting phenomena. As investigators continuously examine more sophisticated problems, they need increasingly more powerful tools. Hence, much effort has gone into the development of algorithms which might extend the scope and power of standard dynamic and Monte Carlo techniques. In the Monte Carlo regime, the most common area subject to improvement is the choice of a trial move. In the ordinary case, trial moves are generated uniformly at random. In the extended and hopefully improved case, trial moves are generated randomly but not uniformly. In this article we present a new and totally general method of biased sampling which is applicable to any flexible molecule. In our method, multiple simulated annealing runs are performed to reveal populated and unpopulated regions of the multidimensional conformation space. The second phase of the simulation is done at a fixed temperature with sampling only from populated regions found in the first phase. Because the simulated annealing runs quickly reveal unpopulated regions of the conformation space, the volume of conformation space that needs to be sampled in the second phase of the algorithm is reduced by many orders of magnitude. Additionally, because no energy minimization is used, these populations represent a canonical ensemble which may be used to estimate conformational free energies. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 681-689 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A simple yet accurate method for calculating electrostatic potentials using the boundary element continuum dielectric method is presented. It is shown that the limiting factor in accuracy is not the evaluation of integrals involving the interaction between boundary elements but rather a proper estimation of the self-polarization of a patch upon itself. We derive a sum rule that allows us to calculate this important self-polarization term in a self-consistent and simple way. Intricate integration schemes used in previous treatments are consequently rendered unnecessary while concurrently achieving at least comparable accuracy over earlier methods. In some model systems for which analytic solutions are available, the computed surface polarization charge and reaction field energy are correct to better than six significant figures. An application of the method to the calculation of hydration free energies is presented. Good agreement with experimental values is obtained.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996) 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 289-297 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In spite of much work on path-following methods, a solid mathematical foundation (especially convergence conditions and their practical measures) are lacking in most cases. In our previous articles the general theory of a new global searching procedure, the dynamically defined reaction path (DDRP) method, its rigorous mathematical formulation, the algorithm, a practical computation program, and some applications to abstract mathematical functions and simple chemical examples have been presented. In this article we give a short theoretical description and some practical criteria and measures for the convergence of the method and illustrate the principles and uses by numerical mathematical and chemical examples. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 298-305 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Transition states for the Diels-Alder reactions of 2,3-diaza-1,3-butadiene with ethylene, formaldehyde, formaldimine, cis- and trans- diazene, and nitrosyl hydride were located by ab initio molecular orbital calculations. The bond orders of the new forming bonds have been used to determine the asynchronicity of the reactions. Ab initio calculations show that the energy barrier for the hetero-Diels-Alder reactions is relatively high. The highest energy barrier of 34.76 kcal/mol calculated at the MP4/6-31G*//MP2/6-31G* level was found for the exo-cis-diazene addition to 2,3-diaza-1,3-butadiene. In all cases, when two diastereomeric transition structures are possible, the one with the endo hydrogen, exo lone pair was predicted to have a lower activation barrier. This behavior can be explained by the n-π and n-n loan pair repulsion interaction between the dienophile and diene heteroatoms in the corresponding transition state. The barrier is higher for those reactions which in the transition state have more lone electron pairs. Also, the barrier is higher when the lone pairs are endo oriented than when they are exo oriented in the transition state. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 338-349 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: More than a dozen stationary points on the potential energy surface for the 1:1 glycine zwitterion - water complex have been investigated at Hartree-Fock or MP2 levels of theory with basis sets ranging from split valence (4-31G) to split valence plus polarization and diffuse function (6-31 + + G**) quality. Only one true minimum (GLYZWM, C1 symmetry) could be located on the potential energy surface. GLYZWM features a bridged water molecule acting as both a hydrogen bond acceptor and donor with the NH3- and CO2- units of the glycine zwitterion. The total hydrogen bond energy in GLYZWM is computed as 16 kcal/mol (MP2/6-31 ++ G** // 6-31 ++ G**, including corrections for basis set superpositions errors). The computed vibrational frequencies and normal mode forms of the GLYZWM complex resemble in many cases experimental assignments made for the glycine zwitterion in bulk water on the basis of Raman spectroscopy. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 386-395 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A combined ab initio quantum mechanical and molecular mechanical (AI-QM/MM) potential for use in molecular modeling and simulation has been described. In this article, we summarize a procedure for deriving the empirical parameters embedded in a combined QM/MM model and suggest a set of Lennard-Jones parameters for the combined ab initio 3-21G and MM OPLS-TIP3P (AI-3/MM) potential. Interaction energies and geometrical parameters predicted with the AI-3/MM model for over 80 hydrogen-bonded complexes of organic compounds with water were found to be in good accord with ab initio 6-31G(d) results. We anticipate that the AI-3/MM potential should be reasonable for use in condensed phase simulations. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1449-1458 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present a formal and numerical comparison between the iterative and matrix-inversion approaches of the polarizable continuum model. The formal analysis shows completely the equivalence of the two approaches. Numerical equivalence is also recovered, introducing in both methods the proper boundary conditions on the apparent charge distribution. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The shape group method (SGM) and the associated (a,b)-parameter maps provide a detailed shape characterization of molecular charge distributions. This method is applied to the study of the variations of shape and conjugation of conformers of 2-phenyl pyrimidine in their electronic ground state. Within the SGM framework, the method of (a,b)-parameter maps provides a concise, nonvisual, algorithmic technique for shape characterization of molecules with fixed nuclear geometries. Moreover, shape codes derived from the (a,b)-parameter maps afford a practical means for efficiently storing the shape properties of molecules in an electronic database. The shape codes of two or more charge distributions can be compared directly, and numerical measures of molecular shape similarity can be computed using a technique that is simple, fast, and inexpensive, especially in relation to direct, pairwise comparisons of electronic charge densities. The quantitative and automated nature of the method suggests applications in the field of computer-aided molecular design. In this study, the method is used for the first time to determine detailed numerical shape codes and shape similarity measures for a nontrivial conformational problem involving changes in energy and in conjugation. Numerical shape similarity measures of eight conformers of 2-phenyl pyrimidine are determined and correlated with variations in conformational energy and conjugation. The competing effects of steric repulsion and conjugation lead to important correlations between conformational energy and shape. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Density functional theory is tested on a large ensemble of model compounds containing a wide variety of functional groups to understand better its ability to reproduce experimental molecular geometries, relative conformational energies, and dipole moments. We find that gradient-corrected density functional methods with triple-ζ plus polarization basis sets reproduce geometries well. Most bonds tend to be approximately 0.015 Å longer than the experimental results. Bond angles are very well reproduced and most often fall within a degree of experiment. Torsions are, on average, within 4 degrees of the experimental values. For relative conformational energies, comparisons with Hartree-Fock calculations and correlated conventional ab initio methods indicate that gradient-corrected density functionals easily surpass the Hartree-Fock approximation and give results which are nearly as accurate as MP2 calculations. For the 35 comparisons of conformational energies for which experimental data was available, the root mean square (rms) deviation for gradient-corrected functionals was approximately 0.5 kcal mol-1. Without gradient corrections, the rms deviation is 0.8 kcal mol-1, which is even less accurate than the Hartree-Fock calculations. Calculations with extended basis sets and with gradient corrections incorporated into the self-consistent procedure generate dipole moments with an rms deviation of 5%. Dipole moments from local density functional calculations, with more modest basis sets, can be scaled down to achieve roughly the same accuracy. In this study, all density functional geometries were generated by local density functional self-consistent calculations with gradient corrections added in a perturbative fashion. Such an approach generates results that are almost identical to the self-consistent gradient-corrected calculations, which require significantly more computer time. Timings on scalar and vector architectures indicate that, for moderately sized systems, our density functional implementation requires only slightly less computer resources than established Hartree-Fock programs. However, our density functional calculations scale much better and are significantly faster than their MP2 counterparts, whose results they approach. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 1-18 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Potential derived (PD) atomic charges, obtained by fitting to molecular electrostatic potentials, are widely used in molecular modeling and simulation calculations. These charges are known to depend on the sample of points chosen for the fit, on the particular point selection algorithm, on molecular translations and rotations in many instances, and even on molecular conformation. Following a critique of currently available methods, a novel point selection scheme is described which results in a highly isotropic array of points located on a series of fused-sphere van der Waals surfaces. The pattern of points is based on tesselations of the icosahedron, and these are discussed in some detail along with their connection with virus morphology, geodesic domes, and symmetric fullerene structures. Using methanol as a test case, it is shown that the new method leads to PD charges which are independent of translation and display minimal rotational dependence, and are hence far better suited to the determination of PD charges from electrostatic potentials obtained from both theory and experimental X-ray diffraction data. The conformation dependence of the newly derived PD charges for alanyl dipeptide is found to be substantially less than obtained earlier by Williams [Biopolymers 29, 1367 (1990)]. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1067-1080 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Density functional calculations on several classes of organolithium compounds are described. The compounds studied include lithium bonds to carbon, oxygen, and nitrogen and are representative of most types of organolithium compounds that have appeared in the recent literature. The computational results are compared to those using MNDO, which has been shown to have some serious deficiencies in compounds involving carbon-lithium bonds, and to PM3 results, which offer some improvement over MNDO for many organolithium compounds. Most of the density functional calculations with a large basis set are in good agreement with available ab initio and experimental data. Calculated carbon-lithium bond lengths were slightly shorter than those calculated by other ab initio methods and were substantially longer than those calculated by MNDO, which is known to underestimate carbon-lithium bond lengths severely. Dimerization energies of methyllithium, calculated by DMol, were also in good agreement with those of other ab initio calculations. Lithium-nitrogen bonds in lithium amides were calculated to be slightly shorter by DMol than by MNDO, although the two methods were in qualitative agreement for this type of compound. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 24 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Special-purpose parallel machines that are plugged into a workstation to accelerate molecular dynamics (MD) simulations are attracting a considerable amount of interest. These machines comprise scalable homogeneous multiprocessors for calculating nonbonded forces (Coulombic and van der Waals forces), which consume more than 99% of the central processing unit (CPU) time in standard MD simulations. Each processor element in the machine has a pipeline architecture to calculate the total nonbonded force exerted on a particle by all of the other particles using information regarding the coordinates, the electric charge, and the species of each particle broadcast by the host computer. The processor then sends the calculated force back to the host computer. This article addresses the precision of the calculated nonbonded forces in the design of a processor LSI with minimal complexity. The precision of the arithmetic inside the processor that is required to calculate forces for MD simulations using Verlet's procedure was critically evaluated. Forward and backward error analysis, coupled with numerical MD experiments on one-dimensional systems, was performed, and the following results were obtained: (1) Each element of the position vector which the processor receives from the host computer should have a precision of at least 25 bits; and (2) the pairwise forces should be calculated using floating point numbers with at least 29 bits of mantissa in the processor. Calculation of a pairwise force, which involves second-order polynomial interpolation using a table-driven algorithm, requires a key which contains a duplicate of at least 11 most significant bits of mantissa of the squared pairwise distance. The final result was that (3) the total force that acts on a particle, which is obtained by summing the forces exerted by all of the other particles, should be calculated using an accumulator that has a mantissa of at least 48 bits. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In this article the adaptation of the Empirical Conformational Energy Program for Peptides (ECEPP/3) and two conformational search methods [viz., the Monte Carlo minimization (MCM) method and the electrostatically driven Monte Carlo (EDMC) method] to the Kendall Square Research KSR1 computer is described. The MCM and EDMC methods were developed to surmount the multiple-minima problem in protein folding. Parallelization of these codes led to substantial speedups (expressed as the ratio between the mean time per energy evaluation in one processor and the mean time per energy evaluation in a set of processors) over the serial versions of these codes. A comparison of the performance of these algorithms on the KSR1 and on the IBM ES9000 computers is presented. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1170-1179 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new computational scheme integrating ab initio and molecular mechanics descriptions in different parts of the same molecule is presented. In contrast with previous approaches, this method is especially designed to allow the introduction of molecular mechanics corrections in full geometry optimizations concerning problems usually studied through ab initio calculations on model systems. The scheme proposed in this article intends to solve some of the systematic error associated with modeling through the use of molecular mechanics corrections. This method, which does not require any new parameter, evaluates explicitly the energy derivatives with respect to geometrical parameters and therefore has a straightforward application to geometry optimization. Examples of its performance on two simple cases are provided: the equilibrium geometry of cyclopropene and the energy barriers on SN2 reactions of alkyl chloride systems. Results are in satisfactory agreement with those of full ab initio calculations in both cases. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1210-1226 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Understanding molecular recognition is one of the fundamental problems in molecular biology. Computationally, molecular recognition is formulated as a docking problem. Ideally, a molecular docking algorithm should be computationally efficient, provide reasonably thorough search of conformational space, obtain solutions with reasonable consistency, and not require parameter adjustments. With these goals in mind, we developed DIVALI (Docking wIth eVolutionary AlgorIthms), a program which efficiently and reliably searches for the possible binding modes of a ligand within a fixed receptor. We use an AMBER-type potential function and search for good ligand conformations using a genetic algorithm (GA). We apply our system to study the docking of both rigid and flexible ligands in four different complexes. Our results indicate that it is possible to find diverse binding modes, including structures like the crystal structure, all with comparable potential function values. To achieve this, certain modifications to the standard GA recipe are essential. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1261-1270 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An equation been derived to calculate, ab initio, the frequencies and intensities of a resonant Raman spectrum from the transform theory of resonance Raman scattering. This equation has been used to calculate the intensities of the ultraviolet resonance Raman spectra from the first π-π* excited state of uracil and 1,3-dideuterouracil. The protocol for this calculation is as follows: (1) The force constant matrix elements in Cartesian coordinate space, the vibrational frequencies, and the minimum energy ground and excited state geometries of the molecule are calculated ab initio using the molecular orbital program Gaussian 92, (2) the force constants in Cartesian coordinates are transformed into force constants in the space of a set of 3N - 6 nonredundant symmetrized internal coordinates, (3) the G matrix is constructed from the energy minimized ground state Cartesian coordinates and the GFL = LΛ eigenvalue equation is solved in internal coordinate space, (4) the elements of the L and L-1 matrices are calculated, (5) the changes in all of the internal coordinates in going from the ground to the excited state are calculated, and (6) these results are used in combination with the transform theory of resonance Raman scattering to calculate the relative intensities of each of the 3N - 6 vibrations as a function of the exciting laser frequency. There are no adjustable parameters in this calculation, which reproduces the experimental frequencies and intensities with remarkable fidelity. This indicates that the Dushinsky rotation of the modes in the excited state of these molecules is not important and that the simplest form of the transform theory is adequate. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1315-1325 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Density functional theory (DFT) methods, including nonlocal density gradient terms in the exchange and correlation energy functionals, were applied to various types of molecular clusters: H-bonded, ionic, electrostatic, and London. Reliable results on the structure and stabilization energy were obtained for the first two types of cluster as long as Becke3LYP and Becke3P86 functionals and basis sets of at least DZ + P quality were used. DFT methods with currently available functionals failed completely, however, for London-type clusters, for which no minimum was found on the potential energy surfaces. DFT interaction energy exhibits the same basis set extension dependence as the Hartree-Fock (HF) interaction energy. Therefore, the Boys-Bernardi function counterpoise procedure should be employed for elimination of the DFT basis set superposition error. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1394-1404 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new robust method for variational determination of atomic zero-flux surfaces is presented. The zero-flux surface sheets are expressed in terms of variational trial functions in prolate spheroidal coordinates. The trial functions are optimized with a Newton procedure to satisfy the zero-flux condition on a grid. The data required for radial integrations are generated by an adaptive quadrature procedure that employs model electron densities and utilizes an original third-order algorithm for linear search. Results of test calculations involving variational determination of atomic surfaces are presented for a representative set of 20 molecules. The new approach is both less time consuming and substantially more accurate than the previously published algorithms. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1405-1419 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A genetic algorithm (GA) conformation search method is used to dock a series of flexible molecules into one of three proteins. The proteins examined are thermolysin (tmn), carboxypeptidase A (cpa), and dihydrofolate reductase (dfr). In the latter two proteins, the crystal ligand was redocked. For thermolysin, we docked eight ligands into a protein conformation derived from a single crystal structure. The bound conformations of the other ligands in tmn are known. In the cpa and dfr cases, and in seven of the eight tmn ligands, the GA docking method found conformations within 1.6 Å root mean square (rms) of the relaxed crystal conformation. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1445-1446 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996) 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 757-766 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio molecular orbital theory and density functional theory calculations have been carried out on dimethoxymethane as a model for the anomeric effect. We optimized various conformations of dimethoxymethane using Gaussian 92 at the MP2/6-311 + + G**, MP2/DZP + Diffuse, MP2/6-31G**, and Becke3LYP/6-31G** levels of theory. These methods were evaluated based on their performance in reproducing structures and energies of dimethoxymethane when compared to experiment. This study also examined the structure and energy of dimethoxymethane as a function of dihedral angles for examining the anomeric effect at the MP2/6-31G** and Becke3LYP/6-31G** levels of theory. These calculations are qualitatively consistent with the anomeric effect observations in carbohydrates and with earlier calculations. Quantitative comparisons with earlier results reveal that dimethoxymethane has lower total energies, smaller rotational barriers, and shorter bond lengths than was previously determined. The Becke3LYP calculations were also compared to the MP2 results. The density functional theory findings show that the minimum energy structures correspond well with experimental and MP2 data. The total and relative energies from molecular orbital theory and density functional theory vary to some extent. Contour plots of the relative energies of dimethoxymethane were evaluated and compared to a relative energy contour plot determined by MM3. The contour plots were similar, showing slightly larger changes in energies for the MP2 results than for the Becke3LYP results, which in turn were slightly larger than the MM3 results. Density functional theory calculations are an excellent alternative method of calculation due to increased speed and reliable accuracy of the density functional calculations. These results will serve as a benchmark for modelling the anomeric effect in carbohydrates. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 767-780 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The molecular geometries of the 1-chloro-, 1-fluoro-, 1-methyl-, and 1-hydrogenosilatranes were fully optimized by the restricted Hartree-Fock (HF) method supplemented with 3-21G, 3-21G(d), 6-31G(d), and CEP-31G(d) basis sets; by MP2 calculations using 6-31G(d) and CEP-31G(d) basis sets; and by GGA-DFT calculations using 6-31G(d5) basis set with the aim of locating the positions of the local minima on the energy hypersurface. The HF/6-31G(d) calculations predict long (〉254 pm) and the MP2/CEP calculations predicted short (∼225 pm) equilibrium Si(SINGLE BOND)N distances. The present GGA-DFT calculations reproduce the available gas phase experimental Si(SINGLE BOND)N distances correctly. The solid phase experimental results predict that the Si(SINGLE BOND)N distance is shorter in 1-chlorosilatrane than in 1-fluorosilatrane. In this respect the HF results show a strong basis set dependence, the MP2/CEP results contradict the experiment, and the GGA-DFT results in electrolytic medium agree with the experiment. The latter calculations predict that 1-chlorosilatrane is more polarizable than 1-fluorosilatrane and also support a general Si(SINGLE BOND)N distance shortening trend for silatranes during the transition from gas phase to polar liquid or solid phase. The calculations predict that the ethoxy links of the silatrane skeleton are flexible. Consequently, it is difficult to measure experimentally the related bond lengths and bond and torsion angles. This is the probable origin of the surprisingly large differences for the experimental structural parameters. On the basis of experimental analogies, ab initio calculations, and density functional theory (DFT) calculations, a gas phase equilibrium (re) geometry is predicted for 1-chlorosilatrane. The semiempirical methods predict a so-called exo minimum (at above 310 pm Si(SINGLE BOND)N distance); however, the ab initio and GGA-DFT calculations suggest that this form is nonexistent. The GGA-DFT geometry optima were characterized by frequency analysis. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 835-840 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The structures of two isomers, difluorodisulfane (FSSF) and thiothionylfluoride(SSF2), and the corresponding transition structure were generated with density functional theory (DFT) methods. Three groups of DFT methods were used: local(Local Spin Density Approximation, LSDA), nonlocal (local with gradient corrections; BLYP and BP86), and hybrid methods that include a mixture of Hartree-Fock (HF) exchange with nonlocal correlation (Becke3BLYP, Becke3P86). An extended basis set [6-311 + + G(3df)] was used for all calculations, although satisfactory results can be obtained with the 6-311G(d) basis set. The geometries obtained were compared with both restricted Hartree-Fock (RHF) calculated and experimentally obtained values. The energy outcome and the activation barrier for the isomerization were evaluated. It was determined that excellent geometries can be obtained with the Becke3B86 hybrid method, whereas for reasonable energies MP2 single-point calculations on these geometries are necessary. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 851-863 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The concepts of symmetry-matrix and symmetry-supermatrix introduced in article I[J. Comput. Chem., 10, 957 (1989)] can be generalized to the Dirac-Fock method. By using the semidirect product decomposition of Oh and the linear vector space theory, the irreducible representation basis of Oh for any molecular system (Oh or its subgroups) can be deduced analytically in the nonorthonormal Cartesian Gaussian basis. This method is extended to discuss the double-valued representations of Oh* in the complex Cartesian Gaussian spinor basis. In the double-valued irreducible representation basis of D2*, the matrix of kinetic operator c(OVERLINE)σ(/OVERLINE)·(OVERLINE)p(/OVELINE) in the Dirac-Fock equation can be reduced into a real symmetric and can be grouped into classes under the operations in D3d. Therefore, the symmetry-matrix and symmetry-supermatrix can also be used in the Dirac-Fock method to reduce the storage of two electron integrals and calculations of Fock matrix during iterations by a factor of ca. g2 (g is the order of the molecular symmetry group). In addition, a method to deal with the nonorthonormal space is presented. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 7 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 888-904 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A comparison is made between geometry optimization in Cartesian coordinates, in Z-matrix coordinates, and in natural internal coordinates for the location of transition states. In contrast to the situation with minima, where all three coordinate systems are of comparable efficiency if a reliable estimate of the Hessian matrix is available at the starting geometry, results for 25 different transition states covering a wide range of structural types demonstrate that in practice Z-matrix coordinates are generally superior. For Cartesian coordinates, the commonly used Hessian update schemes are unable to guarantee preservation of the necessary transition state eigenvalue structure, while current algorithms for generating natural internal coordinates may have difficulty handling the distorted geometries associated with transition states. The widely used Eigenvector Following (EF) algorithm is shown to be extremely efficient for optimizing transition states. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 905-909 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio molecular orbital theory has been used to study the mechanism of the formation of C3H3+ from the reaction of CH3+ with acetylene. The highest level geometry optimizations and frequencies were computed at MP2-FC/6-31G**; single point energies of all the critical structures were computed to the MP4-FC/6-31G**//MP2-FC/6-31G** theory level. One of the three alternative transition structures leading to the formation of C3H3+ gives the cyclopropenyl cation and the other two the propargyl cation. The proportions of C3H2D+ and C3HD2+ obtained when CD3+ reacts with acetylene, and the composite nature of the metastable peak observed for the[C3H5]+→[C3H3]++ H2 fragmentation are explained by assuming a different degree of deuterium scrambling depending on the energy of the system. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 954-961 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The density or sum of states for a collection of independent oscillators, free rotors, and one-dimensional hindered rotors is obtained with good accuracy by numerical inversion of the corresponding total partition function by the method of steepest descents. The hindered-rotor partition functions are used in both classical and quantum forms, the latter in the approximation proposed by Truhlar [J. Comput. Chem., 12, 266 (1991)]. The numerical inversion compares well with analytical results obtained in a simple artificial case and also with an exact count of states in a large ethane-like system. Inversion of the hindered-rotor classical partition function is shown to lead to a somewhat different energy dependence of the sum or density of states, relative to the quantum counterpart, which is considered to be a more realistic representation. The routines presented are simple and fast enough to be of use in microcanonical rate calculations. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 1520-1531 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We report theoretical calculations of ion extraction selectivity by ionophores, based on molecular dynamics simulations coupled with the free energy perturbation technique. This method is applied to the Calix[4]-bis-crown6 (L) ionophore, which displays remarkable selectivity for Cs+ over Na+ extraction from an aqueous to a chloroform phase. Using a thermodynamic cycle, we model the cation extraction selectivity of L from water to chloroform and calculate a peak for Cs+, in agreement with the experiment. This high Cs+ ionophoricity is accounted for mostly by differential solvation effects, with standard 1-6-12 pairwise potentials without need of “special π interactions” with the ionophore. The effect of a picrate (Pic-) counterion on structures and selectivities is investigated. Finally, we report simulations on the L ionophore free and on the LCs+ and LCs+Pic- complexes at the water/chloroform interface. We find that all these species are “adsorbed” at the interface like surfactants instead of diffusing spontaneously to the organic phase. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 1559-1563 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Scattering matrices in an adiabatic basis were calculated for a model two-state atomic collision using a simple modification (normalization of the wave function) of the Fox - Goodwin three-point recurrence relation. Unlike the previous application of this method to scattering the present algorithm was able to precisely calculate the scattering matrix not only at low collision energies (eV), but also at high energies (keV). An analysis of the convergence of the modified Fox - Goodwin algorithm is also discussed for several angular momenta and for several energies where the results were compared to the renormalized Numerov method. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 517-526 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We consider rigorous evaluation of conjugated-circuit resonance energies for families of structurally related benzenoid hydrocarbons of increasing size. Local and global aromatic properties of such molecules are investigated with particular interest in modeling high polymers. Using the algebra of large numbers, exact formulas for contributions from individual benzene rings of polymers with up to 25,000 repeating units (close to half a million carbon atoms) were derived. All arithmetic procedures were carried out in terms of whole numbers retaining all digits, of which there were sometimes more than 105. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 8 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 545-562 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The polarizability and hyperpolarizabilities of nitrophenols as model compounds for studying nonlinear optics have been investigated at the Hartree-Fock level of approximation by means of the Dalgarno Uncoupled Hartree-Fock (DUHF) or Sum Over Orbitals (SOO) method. The additive character and the charge transfer effects in α, β, and γ have been analyzed in terms of the σ and π molecular orbital contributions, the contribution of the individual π molecular orbitals, and the contribution of the highest occupied and the lowest unoccupied molecular orbitals. Within the SOO approach, the reliability of the Two-Level Model has been tested and the influence of the rotation of the nitro group and of the presence of the intramolecular hydrogen bonding in ortho-nitrophenol have been studied. The results show that the present method is a reliable and efficient tool for the prediction of trends in the molecular polarizability and hyperpolarizabilities of large molecules. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 595-609 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new empirical force field for saturated hydrocarbons is presented. It is applicable to gaseous and crystalline alkanes that do not contain four- or three-membered rings. The force field allows the calculation of structural, thermodynamic, and vibrational properties of both simple and highly strained molecules to an accuracy comparable to experiment. Vibrational frequencies are improved considerably as compared to MM3. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The conformational preferences of oxymethylpyridines have been investigated by ab initio calculations and compared to similar calculations for oxymethylbenzene. The C—O bond in the pyridine compounds was found to prefer eclipsing with a C—C bond in the ring, in agreement with previous observations but in disaccord with tentative MM2 calculations. The effect was most pronounced in the 2-substituted pyridine. The benzene compound, on the other hand, showed good agreement between the energies from MM2, MM3, and ab initio calculations. The conformational preferences are discussed in terms of stereoelectronic interactions. New MM2 and MM3 parameters were determined from ab initio calculations on nonstationary points on the energy hypersurface. The parameterization method is discussed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 667-680 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Internal coordinates can be very helpful in modeling large biomacromolecules because freezing stiffer degrees of freedom, such as bond lengths, strongly reduces the number of variables describing the system. This, however, leads to difficulties in treating flexible rings such as the furanose sugars of nucleic acids or the proline residues of proteins, for which internal coordinates are an overcomplete description. We present here a new, internal coordinate furanose model based on the pseudorotational variables phase and amplitude which avoids having to solve a ring closure problem. The choice of a two- rather than a four-variable description is justified by a detailed analysis of molecular dynamic simulations. The efficiency and accuracy of the method are also demonstrated using extensive Monte Carlo simulations. This method of ring treatment is fast and well adapted to macromolecular simulations. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 133-145 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A procedure to represent Hartree-Fock electron densities in atoms [L. Fernandez Pacios, J. Comp. Chem., 14, 410 (1993)] defines ρ(r) as a reduced expansion of exponential functions. These analytically modeled densities (AMDs) are used in this article to develop a simple computational procedure for analyzing different atomic radii scales implemented in the commercial software system MATHEMATICA. The analysis is focused on the physical information associated to a given atomic radius as deduced from calculations depending on ρ(r). The amount of electron charge contained in the sphere of the given radius as well as the distinct contributions to the potential energy integrated up to that radius are obtained within the AMD formulation for main-group atoms H - Kr. The ASCII file needed to run the procedure within MATHEMATICA is also presented. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 146-153 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Results from ab initio self-consistent field (SCF) calculations with a 3-21G and a double-zeta-plus polarization (DZP) basis set on four low-energy conformations of cyclohexaglycine are reported. In agreement with results from semiempirical and molecular mechanics force field calculations, the lowest-energy conformation found at the DZP level is a conformation forming six C7 turns. However, the energy difference to the β-turn conformers is significantly smaller at the ab initio DZP level than calculated by the other methods. In contrast to the results obtained with some of the other methods, the present ab initio calculations show that both the double-type-I β turn and the double-type-II β-turn conformer of cyclohexaglycine are stable low-energy structures. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 898-913 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We propose a fast implementation of the boundary element method for solving the Poisson equation, which approximately determines the electrostatic field around solvated molecules of arbitrary shape. The method presented uses computational resources of order O(N) only, where N is the number of elements representing the dielectric boundary at the molecular surface. The method is based on the Fast Multipole Algorithm by Rokhlin and Greengard, which is used to calculate the Coulombic interaction between surface elements in linear time. We calculate the solvation energies of a sphere, a small polar molecule, and a moderately sized protein. The values obtained by the boundary element method agree well with results from finite difference calculations and show a higher degree of consistency due to the absence of grid dependencies. The boundary element method can be taken to a much higher accuracy than is possible with finite difference methods and can therefore be used to verify their validity. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 914-922 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An improved method for the calculation of enantioselectivity by molecular mechanics is presented. This method does not use any a priori assumption on the conformation of the molecules in the complex and is equally applicable to weak as well as very strong complexes. High-temperature molecular dynamics is used for the creation of a large number (5000-20,000) of random conformations and configurations of a 1:1 (or 1:2) complex of chiral molecules with a chiral selector. All configurations are energy minimized. The data set is only accepted if all lowest-energy complexes occur at least five times in the minimized data set. The enantioselectivity is then calculated from the free energies of the diasteromeric complexes (chiral chromatography) or from the ratio of the sum of the Boltzmann weights (distribution of enantiomers over a chiral organic phase and a nonchiral water phase). This approach has been successfully applied to a range of chiral compounds. These include a weakly bonded Pirkle chiral stationary phase (CSP) system, a strong complex of diprotonated 1,2-diphenyl-1,2-diamino-ethane with two molecules of R,R-tartrate, and the intermediate-strength complexes of protonated and of neutral norephedrine with R,R-tartrate. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The molecular structures of the H-chromophore of the indigoid dyes and five other isomers are studied by ab initio MP2/6-31 + G*//HF/6-31 + G* method. The bond angles are affected by the π-electron conjugation. The molecular structures of the H-chromophores and indigoid dyes indicate that the benzene rings and the five-membered rings are structurally important. The absorption maxima of the H-chromophores are successfully calculated by CI-singles-MP2/6-31 + G* theory for the first time and correspond to the HOMO, LUMO transition. All these transitions are the π-π* transitions. Like the indigoid dyes, trans isomers have the bathochromic shifts of the absorption maxima, and the bathochromic shifts are found with the best donor group of —NH. From these calculations, the absorption maxima of some indigoid dyes can be explained by their H-chromophores qualitatively. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 984-1010 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio molecular orbital calculations have been carried out on over 50 model organic molecules and ions to provide the data necessary in the determination of torsional parameters for a force field involving polypeptides. The rotational energy profiles were obtained at the HF/6-31G*//HF/6-31G* level. The results were supported, in many cases, by full geometry optimizations and with consideration of correlation corrections at the MP2 level. With the exception of the dihedral angle being studied, all of the molecules were fully optimized with C1 symmetry. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 576-585 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The equilibrium bond distances, harmonic frequencies, and bond dissociation energies of the 21 homonuclear diatomics Li2 - F2, Na2 - Cl2, and K2 - Br2 have been determined using approximate density functional theory (DFT) employing various widely used functionals and basis sets ranging from single zeta to triple zeta plus polarization quality. The results are in general much less sensitive to the size of the basis set as in conventional ab initio molecular orbital (MO) theory, while the choice of the functional is of much more significance. For one basis set (6-311G*), the performance of the DFT-based calculations has been compared and found to be superior to Hartree-Fock (HF) Møller Plesset second order perturbation theory (MP2), or configuration interaction with single and double excitations (CISD) calculations. Particularly, no pathological cases, such as the group 2 dimers (Be2, Mg2, Ca2), are observed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 9 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 263-272 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio calculations on the structure of pyrazole have been carried out at different levels of accuracy. At the Hartree-Fock (HF) level, the performance of several basis sets, namely 3-21G, 6-31G, 6-31G**, and 6-311G** was investigated. The influence of electron correlation effects also was studied by carrying out geometry optimizations at the MP2, MP4, and QCISD levels. The performance of a density functional method also was evaluated. We have also investigated the possible influence of the frozen core approximation on the final optimized geometry. Three different statistical analyses were considered in determining which geometry is closest to the experimental microwave geometry - namely Paul Curtin's diagrams, cluster analysis, and multidimensional scaling. From these analyses, we conclude that there is no asymptotic approach to the experimental geometry by increasing the quality of the theoretical model, although, as expected, the more reliable structures are those obtained at the MP2, MP4, and QCISD levels, as well as those obtained by the B3LYP density functional method. We have also found that the values of the rotational constants are a tight criterion to define the quality of a molecular geometry. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 243-261 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present molecular mechanics calculations on the conformational energies of several 2,2-dimethyl-trans-4,6-disubstituted-1,3-dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist-boat forms of these 1,3-dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high-level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic-potential-based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6-31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6-31G* relative conformational energies of the unsubstituted compound 2,2,4-trimethyl-1,3-dioxane, the absolute energy differences calculated with this new model between the chair and twist-boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6-31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(—O—C—O—C—) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1-dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3-dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower-level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1238-1249 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new method is proposed for the evaluation of numerical similarity measures for large molecules, defined in terms of their electron density (ED) distributions. The technique is based on the Molecular Electron Density Lego Assembler (MEDLA) approach, proposed earlier for the generation of ab initio quality electron densities for proteins and other macromolecules. The reliability of the approach is tested using a family of 13 substituted aromatic systems for which both standard ab initio electron density computations and the MEDLA technique are applicable. These tests also provide additional examples for evaluating the accuracy of the MEDLA technique. Electron densities for a series of 13 substituted benzenes were calculated using the standard ab initio method with STO-3G, 3-21G, and 6-31G** basis sets as well as the MEDLA approach with a 6-31G** database of electron density fragments. For each type of calculation, pairwise similarity measures of these compounds were calculated using a point-by-point numerical comparison of the EDs. From these results, 2D similarity maps were constructed, serving as an aid for quick visual comparisons for the entire molecular family. The MEDLA approach is shown to give virtually equivalent numerical similarity measures and similarity maps as the standard ab initio method using a 6-31G** basis set. By contrast, significant differences are found between the standard ab initio 6-31G** results and the standard ab initio results obtained with smaller STO-3G and 3-21G basis sets. These tests indicate that the MEDLA-based similarity measures faithfully mimic the actual, standard ab initio 6-31G** similarity measures, suggesting the MEDLA method as a reliable technique to assess the shape similarities of proteins and other macromolecules. The speed of the MEDLA computations allows rapid, pairwise comparisons of the actual EDs for a series of molecules, requiring no more computer time than other simplified, less detailed representations of molecular shape. The MEDLA method also reduces the need to store large volumes of numerical density data on disk, as these densities can be quickly recomputed when needed. For these reasons, the proposed MEDLA similarity analysis technique is likely to become a useful tool in computational drug design. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1291-1300 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The availability of massively parallel computers with high computation rates but limited memory and input/output bandwidth prompts the reevaluation of appropriate solution schemes for the self-consistent field (SCF) equations. Several algorithms are considered which exhibit between linear and quadratic convergence using various approximations to the orbital Hessian. A prototype is developed to understand the computational expense of each approach. The optimal choice is found to be a conjugate-gradient method preconditioned with a level-shifted approximation to the orbital Hessian. This is a compromise between efficiency, stability, and low memory usage. Sample benchmarks on two parallel supercomputers are also reported. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 296-310 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The potential energy hypersurfaces (PES) of several carbohydrate molecules were studied with a new algorithm for conformational searches, CICADA (Channels in Conformational Space Analyzed by Driver Approach) interfaced with the molecular mechanics program MM3(92). The method requires (1) one or a few low-energy conformations as starting points; and (2) designation of the torsion angles important for understanding the conformational behavior of the molecule. The PES is explored by driving separately each selected torsion angle (in both directions) with a concomitant full-geometry optimization at each increment (except for the driven angle). When a minimum has been detected, the molecule is freely optimized, and the minima so detected are then stored if not encountered previously. The new minima serve as starting structures for further explorations. The results from CICADA permit prediction of relative and absolute flexibility and conformational softness for both the entire molecule as well as for individual group rotations and local minima. The carbohydrates analyzed were Me-α-D-glucopyranoside, β-D-GlcNAc(1-2)α-D-Man, and α-D-GalNAc(1-3)[α-L-Fuc(1-2)]Gal-O-Me. All the low-energy conformers along with the transition states and flexibilities features were characterized. CICADA found all minima and low-energy conversion pathways for the disaccharide that were found by a traditional grid search. In contrast to the grid search method, CICADA concentrates mostly on the exploration of the low-energy regions of the PES, thereby saving a significant amount of computational time. The performance of the method opens new routes for exploring conformational space of larger molecules, such as oligosaccharides. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 365-369 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In this article we observe that generally symplectic integrators conserve angular momentum exactly, whereas nonsymplectic integrators do not. We show that this observation extends to multiple timesteps and to constrained dynamics. Both of these devices are important for efficient molecular dynamics simulations. © 1995 by John Wiley & Sons, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: To model the physical properties of sterols and related species, an all-atom Class II force field has been derived based on the recently reported CFF93 force field for hydrocarbons. It has been tested using both energy minimization and molecular dynamics (MD) simulations of the low-temperature neutron-diffraction structure of cholesteryl acetate crystals and the X-ray diffraction crystal structure of cholesterol. Thus these studies test the techniques and limitations of high-accuracy crystal simulations as well. Employing energy minimization, all cell vectors and volumes were reproduced to within 2.4% of experimental values. For cholesteryl acetate, the root mean square (rms) deviations between the calculated and experimental bond lengths, angles, and torsions of nonhydrogen atoms are 0.013 Å, 1.2°, and 2.4°, respectively. The corresponding maximum deviations are also very small: 0.027 Å for bond length, 3.2° for angle, and 7.6° for torsion. For cholesterol, good agreement between the calculated and experimental structures was found only when the comparison was limited to atoms with relatively small thermal factors (Beq 〈 15 Å2). It was found that for both systems, the MD averaged structures were in better agreement with the experimental ones than the energy minimized structures, since the rms deviations in atom positions are smaller for the MD-averaged structures (0.064 Å for cholesteryl acetate and 0.152 Å for cholesterol) than those for the minimized structures (0.178 Å for cholesteryl acetate and 0.189 Å for cholesterol). The force field was then applied to isolated molecules focusing on the rigidity of the cholesteryl ring and cholesterol-cholesterol interaction energies. It is concluded that the cholesteryl ring is fairly rigid since no major conformational change was observed during an MD simulation of a single cholesterol molecule in vacuo at 500 K, in agreement with condensed phase experiments. Calculations of cholesterol-cholesterol pairs suggest that there are only four low-energy configurations and that it is more useful to describe each molecule as having a plane (flat face) and two grooves rather than as having two (one flat and one rough) faces. This provides some insight into the equilibrium crystal structures. Limited results from a modified Class I (CVFF) force field are presented for comparison. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 937-944 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Atomic multipole moments, calculated from ab initio wave functions, offer an attractive way toward an improvement of the description of electrostatic interactions in force-field programs. Accordingly, we have implemented the formulas for calculation of energies, forces, and torques resulting from the interactions of multipoles up to quadrupole-quadrupole interactions in our force-field program MOMO. The method was successfully applied to various problems, including conformational analysis, hydrogen bonding, and π-π interactions. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 441-444 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A direct inversion procedure is used to obtain the pair interaction potentials for He and Ne from the extended law of corresponding states over the temperature range from absolute zero to the onset of ionization. We have used the experimentally reduced viscosity collision integrals obtained from the corresponding states correlation and performed an INVERT to determine the reduced potential energy curve corresponding to the collision integral. This directly determined potential is in excellent agreement with the potential independently obtained from molecular beam scattering measurements. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 478-485 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The three-dimensional structure of the carboxyl-terminal region of the human ras oncogenic protein (called p21) has been determined using the HDMC (High-directional Monte Carlo) method combined with MD (molecular dynamics) simulation. A truncated p21 containing residues 1-171 without the carboxyl-terminal end was analyzed using X-ray crystallography by Kim et al. It has been well documented that the carboxyl-terminal region of p21 is flexible and plays an important role in transmitting a signal from the membrane-attached domain. We have carried out the theoretical calculation for 18 undefined residues, which correspond to residues 172-189 of intact p21, in addition to seven residues (165-171) from X-ray coordinates of the C-terminal end of human C—Ha—ras protein. In this calculation, the main-chain atoms of residues 165-169 have been fitted to X-ray structure, and the remaining region has been allowed to move during the conformational analysis. We have confirmed that revised HDMC can easily alter the local minima of the polypeptide chains as the internal vibrations of molecules are allowed by MD simulation. Throughout this study, we suggest that the C-terminal end of human C—Ha—ras p21 protein has structures in the forms of an α helix for 165-172, a loop for 173-180, and an α helix for 181-187 regions, like the helical hairpin. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1045-1054 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio molecular orbital (MO) calculations are carried out on the nonidentity allyl transfer processes, X- + CH2CHCH2Y ⇌ CH2CHCH2 X + Y-, with X- = H, F, and Cl and Y = H, NH2, OH, F, PH2, SH, and Cl. The Marcus equation applies well to the allyl transfer reactions. The transition state (TS) position along the reaction coordinate and the TS structure are strongly influenced by the thermodynamic driving force, whereas the TS looseness is originated from the intrinsic barrier. The intrinsic barrier, ΔE0
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1081-1095 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The accuracy and simplicity of the Poisson-Boltzmann electrostatics model has led to the suggestion that it might offer an efficient solvent model for use in molecular mechanics calculations on biomolecules. We report a successful merger of the Poisson-Boltzmann and molecular dynamics approaches, with illustrative calculations on the small solutes dichloroethane and alanine dipeptide. The algorithm is implemented within the program UHBD. Computational efficiency is achieved by the use of rather coarse finite difference grids to solve the Poisson-Boltzmann equation. Nonetheless, the conformational distributions generated by the new method agree well with reference distributions obtained as Boltzmann distributions from energies computed with fine finite difference grids. The conformational distributions also agree well with the results of experimental measurements and conformational analyses using more detailed solvent models. We project that when multigrid methods are used to solve the finite difference problem and the algorithm is implemented on a vector supercomputer, the computation of solvent electrostatic forces for a protein of modest size will add only about 0.1 s computer time per simulation step relative to a vacuum calculation. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1131-1140 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A parallel version of the popular molecular mechanics package AMBER suitable for execution on workstation clusters has been developed. Computer-intensive portions of molecular dynamics or free-energy perturbation computations, such as nonbonded pair list generation or calculation of nonbonded energies and forces, are distributed across a collection of Unix workstations linked by Ethernet or FDDI connections. This parallel implementation utilizes the message-passing software PVM (Parallel Virtual Machine) from Oak Ridge National Laboratory to coordinate data exchange and processor synchronization. Test simulations performed for solvated peptide, protein, and lipid bilayer systems indicate that reasonable parallel efficiency (70-90%) and computational speedup (2-5 × serial computer runtimes) can be achieved with small workstation clusters (typically six to eight machines) for typical biomolecular simulation problems. PVM-AMBER is also easily and rapidly portable to different hardware platforms due to the availability of PVM for numerous computers. The current version of PVM-AMBER has been tested successfully on Silicon Graphics, IBM RS6000, DEC ALPHA, and HP 735 workstation clusters and heterogeneous clusters of these machines, as well as on CRAY T3D and Kendall Square KSR2 parallel supercomputers. Thus, PVM-AMBER provides a simple and cost-effective mechanism for parallel molecular dynamics simulations on readily available hardware platforms. Factors that affect the efficiency of this approach are discussed. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1141-1152 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The efficient evaluation of polarizable molecular mechanics potentials on distributed memory parallel computers is discussed. The program executes at 7-10 Mflops/node on a 32-node CM-5 partition and is 19 times faster than comparable code running on a single-processor HP 9000/735. On the parallel computer, matrix inversion becomes a practical alternative to the commonly used iterative method for the calculation of induced dipole moments. The former method is useful in cases such as free-energy perturbation (FEP) simulations, which require highly accurate induced dipole moments. Matrix inversion is performed 110 times faster on the CM-5 than on the HP. We show that the accuracy which is needed for FEP calculations with polarization can be obtained by either matrix inversion or by performing a large number of iteration cycles to satisfy convergence tolerances that are less than 10-6 D. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1164-1169 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In the process of studying the solvation of simple hydrocarbons, we found that the nonbond van der Waals (vdw) parameters for the TIP3P water model could be adjusted without significantly changing its liquid water properties. By increasing the van der Waals well depth ∊ from 0.152 kcal/mol for the TIP3P model to 0.190 kcal/mol (model TIP3P_MOD), the solvation free energy of all-atom methane changed from 2.5 kcal/mol to 2.1 kcal/mol, much closer to the experimental value of 2.0 kcal/mol. This change of van der Waals parameters does not change hydrophilic solvation, since calculations using either water model lead to the same relative solvation free energy between ethane and methanol. The solvation free-energy differences between methane and ethane and between ethane and propane have also been calculated with both models, and results found with the two water models are similar. For the united-atom hydrocarbon model, however, the solvation free energy of methane changed from 2.1 kcal/mol with TIP3P to 1.8 kcal/mol with TIP3P_MOD. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1192-1209 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In molecular dynamics simulations, the fastest components of the potential field impose severe restrictions on the stability and hence the speed of computational methods. One possibility for treating this problem is to replace the fastest components with algebraic length constraints. In this article the resulting systems of mixed differential and algebraic equations are studied. Commonly used discretization schemes for constrained Hamiltonian systems are discussed. The form of the nonlinear equations is examined in detail and used to give convergence results for the traditional nonlinear solution technique SHAKE iteration and for a modification based on successive overrelaxation (SOR). A simple adaptive algorithm for finding the optimal relaxation parameter is presented. Alternative direct methods using sparse matrix techniques are discussed. Numerical results are given for the new techniques, which have been implemented in the molecular modeling software package CHARMM and show as much as twofold improvement over SHAKE iteration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1250-1260 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: High-level ab initio calculations have been performed on N-methyl-N-methyleneammonium and related compounds to obtain accurate rotational barriers, structures, and vibrational frequencies. The 6-31G** basis set has been utilized at the Hartree-Fock level of theory for these calculations because little experimental data are available. The MM2(91) and MM3(94) force fields have been parameterized to include these nonconjugated charged nitrogen-containing compounds. Molecular mechanics geometries and vibrational frequencies compare well with the ab initio results. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1271-1290 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article describes an extension to previously developed constraint techniques. These enhanced constraint methods will enable the study of large computational chemistry problems that cannot be easily handled with current constrained molecular dynamics (MD) methods. These methods are based on an O(N) solution to the constrained equations of motion. The benefits of this approach are that (1) the system constraints are solved exactly at each time step, (2) the solution algorithm is noniterative, (3) the algorithm is recursive and scales as O(N), (4) the algorithm is numerically stable, (5) the algorithm is highly amenable to parallel processing, and (6) potentially greater integration step sizes are possible. It is anticipated that application of this methodology will provide a 10- to 100-improvement in the speed of a large molecular trajectory as compared with the time required to run a conventional atomistic unconstrained simulation. It is, therefore, anticipated that this methodology will provide an enabling capacity for pursuing the drug discovery process for large molecular systems. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1301-1313 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Two algorithms are presented for parallel direct computation of energies with second-order perturbation theory. Closed-shell MP2 theory as well as the open-shell perturbation theories OPT2(2) and ZAPT2 have been implemented. The algorithms are designed for distributed memory parallel computers. The first algorithm exhibits an excellent load balance and scales well when relatively few processors are used, but a large communication overhead reduces the efficiency for larger numbers of processors. The other algorithm employs very little interprocessor communication and scales well for large systems. In both implementations the memory requirement has been reduced by allowing the two-electron integral transformation to be performed in multiple passes and by distributing the (partially) transformed integrals between processors. Results are presented for systems with up to 327 basis functions. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1339-1350 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The recently formulated weighted histogram analysis method (WHAM)1 is an extension of Ferrenberg and Swendsen's multiple histogram technique for free-energy and potential of mean force calculations. As an illustration of the method, we have calculated the two-dimensional potential of mean force surface of the dihedrals gamma and chi in deoxyadenosine with Monte Carlo simulations using the all-atom and united-atom representation of the AMBER force fields. This also demonstrates one of the major advantages of WHAM over umbrella sampling techniques. The method also provides an analysis of the statistical accuracy of the potential of mean force as well as a guide to the most efficient use of additional simulations to minimize errors. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1357-1377 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present the derivation of charges of ribo- and deoxynucleosides, nucleotides, and peptide fragments using electrostatic potentials obtained from ab initio calculations with the 6-31G* basis set. For the nucleic acid fragments, we used electrostatic potentials of the four deoxyribonucleosides (A, G, C, T) and four ribonucleosides (A, G, C, U) and dimethylphosphate. The charges for the deoxyribose nucleosides and nucleotides are derived using multiple-molecule fitting and restrained electrostatic potential (RESP) fits,1,2 with Lagrangian multipliers ensuring a net charge of 0 or ± 1. We suggest that the preferred approach for deriving charges for nucleosides and nucleotides involves allowing only C1′ and H1′ of the sugar to vary as the nucleic acid base, with the remainder of sugar and backbone atoms forced to be equivalent. For peptide fragments, we have combined multiple conformation fitting, previously employed by Williams3 and Reynolds et al.,4 with the RESP approach1,2 to derive charges for blocked dipeptides appropriate for each of the 20 naturally occuring amino acids. Based on our results for propyl amine,1,2 we suggest that two conformations for each peptide suffice to give charges that represent well the conformationally dependent electrostatic properties of molecules, provided that these two conformations contain different values of the dihedral angles that terminate in heteroatoms or hydrogens attached to heteroatoms. In these blocked dipeptide models, it is useful to require equivalent N - H and C=O charges for all amino acids with a given net charge (except proline), and this is accomplished in a straightforward fashion with multiple-molecule fitting. Finally, the application of multiple Lagrangian constraints allows for the derivation of monomeric residues with the appropriate net charge from a chemically blocked version of the residue. The multiple Lagrange constraints also enable charges from two or more molecules to be spliced together in a well-defined fashion. Thus, the combined use of multiple molecules, multiple conformations, multiple Lagrangian constraints, and RESP fitting is shown to be a powerful approach to deriving electrostatic charges for biopolymers. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1420-1427 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We have implemented a portable parallel version of the macromolecular modeling package AMBER4. The message passing paradigm was used. All message passing constructs are compliant with the Message Passing Interface (MPI) standard. The molecular dynamics/minimization module MINMD and the free-energy perturbation module Gibbs have been implemented in parallel on a number of machines, including a Cray T3D, an IBM SP1/SP2, and a collection of networked workstations. In addition, the code has been tested with an MPI implementation from Argonne National Laboratories/Mississippi State University which runs on many parallel machines. The goal of this work is to decrease the amount of time required to perform molecular dynamics simulations. Performance results for a lipid bilayer molecular dynamics simulation on a Cray T3D, an IBM SP1/SP2, and a Cray C90 are compared. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1434-1444 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A genetic algorithm is used to minimize the energy of peptide analogues in the dihedral angle space. It is interfaced to MOPAC, which computes the energy employing the AM1 Hamiltonian. The genetic algorithm identified the global energy minimum of glycine dipeptide analogue, alanine dipeptide analogue, diglycine, and dialanine. It identified three low-energy conformations of tetraalanine, including the reported global minimum, all of which contained three hydrogen bonds. A structure with a lower energy than the reported global minimum has been generated in which one hydrogen bond is replaced by another one. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 418-428 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An extended dynamic programming algorithm is presented that is applicable to the fragment assembly phase of the site mapping fragment assembly approach to peptide docking. After constructing a free energy map of the receptor using each of the amino acids in the peptides to be docked, we apply the algorithm to two systems: HIV-1 protease complexed with a synthetic hexameric inhibitor, and MHC HLA-A2 complexed with a nonameric peptide. The all atom root mean square deviation between the predicted and crystal structures was 1.7 and 2.0 Å, respectively. While these results are reasonable considering the relatively coarse level of mapping, the more important result is that the structures are probably very close to the best obtainable by an exhaustive search through the entire data map, and yet are obtained with a reduction of 3-5 orders of magnitude in the number of computations. We also outline a prescription for an iterative procedure which finds the global minimum with increasing confidence. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 469-475 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Parallel computing seems to be the solution for molecular dynamics of large atomic systems, such as proteins in water environments, but the simulation time critically depends on the processor allocation strategy. A study of the optimal processor allocation based on a space decomposition algorithm for single instruction multiple data flow mesh computers is presented. A particular effort has been made to identify the best criterion according to which the atoms can be allocated to the processors using a spatial decomposition approach. The computing time depends on the granularity of the space decomposition among processing elements and on the ratio between the computation power of processing elements and the communication speed of the interprocessor network. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995) 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 923-936 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An artificial neural network (ANN) method for the prediction of force constants of chemical bonds in large, polyatomic molecules was developed. The force constant information evaluated is to be used for generating accurate estimates of the Hessian used in Newton-Raphson-type ab initio molecular structure optimization schemes. Different network topologies as well as a training procedure based on simulated annealing are evaluated. The results show that an ANN can be designed and trained to provide force constant information within a 1.5 to 5% error band even if the range of the force constants evaluated is very large (from triple bonds to hydrogen bridges). © 1995 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 951-972 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An empirical modified boundary potential has been derived to correct the structural perturbations arising from the presence of the vacuum boundary in the simulation of spherical TIP4P water systems. The potential is parameterized for a 12.0-Å sphere of TIP4P water and gives improved number density and orientational sampling behavior. It is also transferable to both larger and smaller simulation systems with only a moderate degradation in performance. Free-energy calculations have been conducted for the perturbation of a TIP4P water molecule to methane under aqueous conditions, and the modified boundary potential gives results consistent with those from simulations using periodic boundary conditions. However, simple half-harmonic boundary potentials give unsatisfactory number density, orientational sampling, and free-energy results. Moreover, use of the modified boundary potential results in a negligible increase in simulation time. It is envisaged that the modified boundary potential will find use in free-energy perturbation calculations on proteins with a solvent sphere centered on the active site. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 30-41 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Quantum chemical calculations of potentially superacidic neutral Brönsted acids were carried out using the PM3 method. It was shown that the PM3 method can be used to predict the gas phase acidities of acidic compounds only if empirical corrections are made. A strong acidifying effect is predicted for a new family of compounds in which an sp2 oxygen is substituted by an (DOUBLE BOND) NSO2CF3 group. So, for example, such replacement is expected to result in acid strengthening by 47.5 kcal/mol in the case of CH3CHO and by 22.7 kcal/mol in the case of CF3SO2OH. The acidities of such compounds are predicted to be increased further (nonadditively) by stepwise replacements of (DOUBLE BOND) O by (DOUBLE BOND) NSO2CF3. The geometries of known superacidic systems were reproduced quite well by PM3 method. The geometries of several superacidic systems were analyzed. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 87-108 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A semiempirical treatment of electrostatic potentials and partial charges is presented. These are the basic components needed for the evaluation of electrostatic interaction energies in combined quantum mechanical and molecular mechanical approaches. The procedure to compute electrostatic potentials uses AM1 and MNDO wave functions and is based on one previously suggested by Ford and Wang. It retains the NDDO approximation and is thus both easy to implement and computationally efficient. Partial atomic charges are derived from a semiempirical charge equilibration model, which is based on the principle of electronegativity equalization. Large sets of ab initio restricted Hartee-Fock (RHF/6-31G*) reference data have been used to calibrate the semiempirical models. Applying the final parameters (C, H, N, O), the ab initio electrostatic potentials are reproduced with an average accuracy of 20% (AM1) and 25% (MNDO), respectively, and the ab initio potential derived charges normally to within 0.1 e. In most cases our parameterized models are more accurate than the much more expensive quasi ab initio techniques, which employ deorthogonalized semiempirical wave functions and have generally been preferred in previous applications. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 133-147 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The conformational space of 1,2-ethanediol is studied on the basis of ab initio and semiempirical calculations. All possible conformers are treated. The relative energies of the conformers are systematically studied using various basis sets up to 6-311 + G(3df, 3pd) in order to perform calculations as accurate as possible within a reasonable amount of computer time. Electron correlation is included using Møller-Plesset perturbation theory. We propose two methods to evaluate the basis set superposition error associated with the intramolecular hydrogen bond appearing in some of the conformers. The results of semiempirical calculations are compared with these ab initio calculations. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 178-184 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A configuration interaction (CI) method in restricted CI (RCI) space obtained by imposing inequality-type restrictions on the occupancies of groups of molecular orbitals (MOs) was studied. The direct CI approach in such space was analyzed, and some recommendations concerning practical implementation of the RCI method are given. The corresponding program has been written in FORTRAN 77 for an IBM 486 DX personal computer and has been used for electronic structure calculations on transition metal complexes using a valence MO basis with the INDO approximation. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 185-190 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new ab initio reaction field model has been applied to the calculation of the change in free energy of ionization on going from the gas phase to dimethylsulfoxide solution for a series of weak organic acids. In most cases, the observed change in free energy is reproduced within the experimental uncertainty of the gas phase experimental data. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 191-203 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The rotational symmetry boundary condition proposed by Cagin et al. [J. Comp. Chem., 12, 627 (1991)] is implemented in the molecular dynamics simulation program, APRICOT, to make simulations of icosahedrally symmetrical capsids practical. The principle of the rotational symmetry boundary condition is strictly formulated with a new algorithm to track each atom by protomer and cell number. Further, the 60 cells and the 60 protomers of a capsid are treated as elements of the point group I. This treatment is necessary to determine the protomer numbers of atoms and to define indicators of atom pairs named relative protomer numbers. A method designated border residue flags is also introduced to further accelerate neighbor atom pair list generation. The method as we have implemented it is so fast that it was possible, using inexpensive workstations, to perform a 60-ps molecular dynamics simulation on an entire structure of a rhinoviral capsid including a 71-Å-thick shell of water molecules. This work is the first molecular dynamics simulation of an entire capsid under rotational symmetry boundary conditions. The structure of the capsid is well conserved during the simulation. Because conventional periodic boundary conditions are not applicable to rotational symmetries, it has been difficult, until this study, to perform calculations on macromolecules in crystallographic or noncrystallographic symmetries that are composed of rotational symmetries and linear translation. Therefore, our development is expected to provide a powerful tool for studies of macromolecules in such symmetries. The merits, limitations, and possibilities for further elaboration of this development are discussed. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 273-288 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Free energies of solvation of phenylimidazole inhibitors of cytochrome P450cam were determined using (1) free energy simulation, (2) AMSOL-SM2 semiempirical methods, and (3) Poisson-Boltzmann methods. The goals of this study were threefold: (1) to compare the results obtained from the three different methods, (2) to investigate the effect of inclusion of intraperturbed group interactions on free energy simulation estimates of solvation free energy differences, and (3) to investigate to what extent differences in free energies of solvation among three of these inhibitors could account for observed differences in their enzyme binding free energies. In general, relative solvation free energies obtained from the free energy simulations and AMSOL-SM2 methods give comparable results (i.e., the same rank ordering and similar quantitative results, differing significantly from results obtained using Poisson-Boltzmann methods). The free energy simulation studies suggest that the neglect of intraperturbed group interactions had little effect on rank order of free energies of solvation of the polar phenylimidazoles. The relative desolvation free energies of the three inhibitors of P450cam - 1-phenylimidazole (1-PI), 2-phenylimidazole (2-PI), and 4-phenylimidazole (4-PI) - with known enzyme bound X-ray structures parallel that of their known binding affinities and could account for most of the differences in the free energies of binding of these three inhibitors to P450cam. The origin of the difference of the free energies of solution of these three inhibitors is primarily the additional interaction between solvent and N(SINGLE BOND)H group in the imidazole ring of 2- and 4-phenylimidazole that is absent in the 1-phenylimidazole isomer. This hypothesis is substantiated by a second comparison of the relative solvation free energies of 4-phenylimidazole with its methylated derivative, 3-methyl-4-phenylimidazole, also lacking an N(SINGLE BOND)H group. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...