ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (235,115)
  • 1995-1999  (186,108)
  • 1965-1969  (49,007)
  • Geosciences  (235,115)
Collection
  • Books  (122)
  • Articles  (235,115)
Years
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In the W Hoggar (Algeria), the major transcurrent N–S East Ouzzal shear zone (EOSZ) hosts several world-class gold deposits over a 100-km length. The late Pan-African EOSZ separates two contrasting Precambrian domains: the Archaean In Ouzzal block to the west (orthogneisses with subordinate metasediments, reworked and granulitized in the c. 2 Ga Eburnean event) and a Middle Proterozoic block to the east (again orthogneisses and metasediments, involved in the c. 600 Ma Pan-African event).The EOSZ is a mylonite belt, 1–3 km wide, with a 50-m-wide ultramylonite belt hosting numerous quartz veins and lenses (giant hydrothermal quartz system) associated with a quartz-sericite-pyrite-carbonate (beresite) alteration. These hydrothermal events occurred under ductile (evolving towards brittle) conditions, between 500 and 300 MPa, at 500–300°C, with aqueous-carbonic fluids derived both from underlying devolatilized metamorphic rocks and a mantle source, as recorded by stable (C, O) isotope data. No gold mineralization was associated with these typical mesothermal events.Following a pressure drop (to 130 MPa), related to the inception of extensional tectonics, the EOSZ was later percolated by a new set of hydrothermal fluids, evolved from basinal waters that deeply penetrated into the In Ouzzal basement. These fluids were Ca-bearing brines (up to 25% wt. eq. NaCl), characterized by high δD (-9 to + 18‰ range), mobilized by the thermal energy released by the late Pan-African granite magmatism (Taourirt granites).As demonstrated by Pb isotope data, the brines leached Au from the In Ouzzal granulites (which contain 3 ppb Au). Fluid inclusion studies indicate that gold was deposited from these brines in the EOSZ at a depth of c. 5 km, due to mixing and cooling with descending diluted fluids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd.
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Migmatitic, granulite-grade mafic gneisses make up a significant part of the Kapuskasing Structural Zone (KSZ), Ontario. Although they contain a common mineral assemblage [hornblende (Hbl)+plagioclase (Pl)+diopside (Di)±garnet (Grt)+quartz (Qtz)±titanite (Ttn)], the mafic gneisses show wide variations in modal mineralogy from hornblende-rich to diopside+garnet-rich varieties and all gradations between. Up to 25 vol.% segregated plagioclase+quartz-rich (trondhjemitic) leucosome (Tdh) is intimately associated with the mafic gneiss, occurring in a continuum of patches, veins and transecting dykes at scales ranging from decimetres to micrometres. The texture and composition of the leucosome, combined with P-T  estimates for the host rocks above the solidus, suggest it represents crystallized trondhjemitic melt. Quartz is mainly restricted to the segregated leucosomes but more rarely occurs in a variety of interstitial textures in the mafic gneiss, suggesting that it crystallized from a melt phase rather than having been present as a solid phase at peak metamorphic conditions. Modal and textural data indicate a reaction relationship of the form: Hbl+Pl(+Qtz?)=Grt+Di+Ttn+leucosome (Tdh), implying that the granulite-forming process involved dehydration melting of an amphibolite protolith. Pressure-temperature estimates from Grt+Di+Pl+Qtz geothermobarometry are 9 kbar and 685-735 °C; however, based on experimental studies of dehydration melting of amphibolite, we estimate that peak conditions were closer to 11 kbar, 850 °C. Mass balance analysis, using the technique of singular value decomposition, and reaction space analysis were used to quantify the reaction and to determine the controls on reaction progress. The following mass balance provides a model for the natural reaction:1.00 Hbl+0.92 Pl+3.76 Qtz=1.14 Grt+1.54 Di+0.21 Ttn+1.49 Tdh+0.14 ‘pg’+0.39 Fe−1Mg+0.33 NaSiCa−1Al−1where ‘pg’ is a pargasite-like exchange. In all model mass balances tested, quartz is a reactant with a large coefficient. We argue that the abundance of quartz in the amphibolite protolith was the primary control on the differing extents of reaction observed. Mineral compositional variation exerted a secondary control on reaction progress, with Fe-richer layers containing An-richer plagioclase and more actinolitic amphibole reacting earliest (i.e. at lowest temperatures). Comparison of the calculated amount of melt produced in the gneisses with that now observed implies expulsion of 5–30% of the melt. These volumes are similar to those predicted from REE modelling of Archaean tonalities and trondhjemites from a garnet amphibolite source, suggesting that the KSZ mafic gneisses may be representative of partially depleted source rocks for trondhjemite-tonalite generation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd.
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Empirical data on quartz subgrain patterns from various metamorphic rocks show that, at least up to 10 kbar in the stability field of low-quartz, prismatic subgrain boundaries are dominant whereas basal subgrain boundaries are not developed. In the high-quartz stability field, both prismatic and basal subgrain boundaries occur and form typical rectangular (‘chessboard’) patterns. The likely reason behind the different occurrence of these subgrain patterns is that in high-quartz prismatic glide becomes as easy as, or probably even easier than, basal glide. The two types of subgrain patterns can be clearly distinguished by optical microscopy. Consequently, the occurrence of chessboard subgrain patterns in quartz represents a practicable geothermobarometer. The possibilities of its application are far reaching and include the specification of deformation conditions at high-grade metamorphism, the recognition of syntectonic intrusions and the distinction between pluton emplacement at lower and at higher crustal levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd.
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Granitic magmas migrated through Early Proterozoic middle–lower crust at Mt Hay, central Australia, via a diverse network of narrow structurally controlled channelways, during a period of progressive W–SW-directed thrusting (D1a–D1d). They utilized existing folds, boudins and shear zones, or created new channels by magmatic fracture either parallel to layering or, rarely, in irregular arrays. The magmas rose obliquely, parallel to the plunging (50–60°) regional elongation direction, which was defined by coaxial folds, boudin necks and a strong mineral-elongation lineation. Megacrystic charnockitic magmas migrated through metre-scale conduits during D1a–D1b, but leucosomes were generally restricted to smaller (centimetre-scale) structures that existed throughout the entire deformation history. Thus, D1a/D1b leucosomes were potential feeders of in situ partial melts to the adjacent larger conduits of charnockite magma, thereby providing a pervasive interconnected network that allowed efficient migration of all magma types during the early stages of thrusting.The upper–middle crust of the Anmatjira–Reynolds Range area contains abundant megacrystic granitoid sheets that are of similar age and geochemistry to those at Mt Hay. They are considered to have formed as syntectonic intrusions emplaced during W–SW-directed thrusting, as at Mt Hay, suggesting that granitic magmas formed near the base of the continental crust passed through the mid-lower crustal level (25–30 km) exposed at Mt Hay and accumulated, in batholithic proportions, at shallower crustal levels (12–20 km) such as the Anmatjira–Reynolds Range area.The observations imply that granitoid magmas in the deep crust are capable of pervasive migration through the crust during major compressive, noncoaxial shear deformation. Localization of magmas by sequentially developed, narrow, compressive structures suggests that dilatancy followed successive foliation-forming events, a situation that can occur during steady-state deformation if the effective confining pressures are low, which would be a result of high and possibly variable rates of magma influx. The inferred rapid melt segregation and migration during deformation suggest that large chambers do not form until magma reaches neutral buoyancy in the middle to upper continental crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Calcsilicate xenoliths occur in large numbers in some lavas and pyroclastic flows of Lascar Volcano. Their whole-rock major element and REE compositions indicate that the protolith was the Upper Cretaceous Yacoraite Formation, which crops out extensively in NW Argentina. The whole-rock major element compositions of the xenoliths fall into specific groups suggesting a strong geochemical zonation in the skarn zone. Three geochemical zones have been identified; (1) an outer metamorphic zone rich in wollastonite; (2) a middle zone rich in pyroxene and garnet; (3) an inner zone rich in pyroxene and magnetite. The two innermost zones have developed from the wollastonite zone by infiltration of metasomatic fluids rich in Fe, Mn, Mg, Ti and Al. Whole-rock REE patterns have not changed significantly during prograde metamorphism and metasomatism, indicating REE immobility in the altering fluids. Retrograde alteration by acid-sulphate fluids produced anhydrite skarns and secondary calcite and wilkeite veins in the wollastonite zone. The carbon and oxygen isotopic compositions of this calcite indicate that it formed by Rayleigh crystallization from a low-temperature (〈200 °C) fluid containing dissolved H2CO3. The calculated δ18O of the water in this fluid suggests a magmatic origin whereas the calculated δ13C of the dissolved carbonate is consistent with derivation from rocks of the Yacoraite Formation at 350 °C. It is suggested that the magmatic acid-sulphate fluid was responsible for leaching carbonate from the surrounding carbonate rocks and redepositing it in the skarn zone. REEs were mobilized during the retrograde acid-sulphate and acid-carbonate alteration. A negative Ce anomaly associated with this carbonate and sulphate indicates high oxygen fugacities in the mineralizing fluids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In progressing from a granitoid mylonite to an ultramylonite in the Brevard shear zone in North Carolina, Ca and LOI (H2O) increase, Si, Mg, K, Na, Ba, Sr, Ta, Cs and Th decrease, while changes in Al, Ti, Fe, P, Sc, Rb, REE, Hf, Cr and U are relatively small. A volume loss of 44% is calculated for the Brevard ultramylonite relative to an Al–Ti–Fe isocon. The increase in Ca and LOI is related to a large increase in retrograde epidote and muscovite in the ultramylonite, the decreases in K, Na, Si, Ba and Sr reflect the destruction of feldspars, and the decrease in Mg is related to the destruction of biotite during mylonitization. In an amphibolite facies fault zone separating grey and pink granitic gneisses in the Hope Valley shear zone in New England, compositional similarity suggests the ultramylonite is composed chiefly of the pink gneisses. Utilizing an Al–Ti–Fe isocon for the pink gneisses, Sc, Cr, Hf, Ta, U, Th and M-HREE are relatively unchanged, Si, LOI, K, Mg, Rb, Cs and Ba are enriched, and Ca, Na, P, Sr and LREE are lost during deformation. In contrast to the Brevard mylonite, the Hope Valley mylonite appears to have increased in volume by about 70%, chiefly in response to an introduction of quartz.Chondrite-normalized REE patterns of granitoids from both shear zones are LREE-enriched and have prominent negative Eu anomalies. Although REE increase in abundance in the Brevard ultramylonites (reflecting the volume loss), the shape of the REE pattern remains unchanged. In contrast, REE and especially LREE decrease in abundance with increasing deformation of the Hope Valley gneisses. Mass balance calculations indicate that ≥95% of the REE in the Brevard rocks reside in titanite. In contrast, in the Hope Valley rocks only 15–40% of the REE can be accounted for collectively by titanite, apatite and zircon. Possible sites for the remaining REE are allanite, fluorite or grain boundaries. Loss of LREE from the pink gneisses during deformation may have resulted from decreases in allanite and perhaps apatite or by leaching ofy REE from grain boundaries by fluids moving through the shear zone.Among the element ratios most resistant to change during mylonitization in the Brevard shear zone are La/Yb, Eu/Eu*, Sm/Nd, La/Sc, Th/Sc, Th/Yb, Cr/Th, Th/U and Hf/Ta, whereas the most stable ratios in the Hope Valley shear zone are K/Rb, Rb/Cs, Th/U, Eu/Eu*, Th/Sc, Th/Yb, Sm/Nd, Th/Ta, Hf/Ta and Hf/Yb. However, until more trace element data are available from other shear zones, these ratios should not be used alone to identify protoliths of deformed rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Oppositely concave microfolds (OCMs) in and adjacent to porphyroblasts can be classified into five nongenetic types. Type 1 OCMs are found in sections through porphyroblasts with spiral-shaped inclusion trails cut parallel to the spiral axes, and commonly show closed foliation loops. Type 2 OCMs, commonly referred to as ‘millipede’ microstructure, are highly symmetrical, the foliation folded into OCMs being approximately perpendicular to the overprinting foliation. Type 3 OCMs are similar to Type 2, but are asymmetrical, the foliation folded into OCMs being variably oblique to the overprinting foliation. Type 4 OCMs are highly asymmetrical, only one foliation is present, and this foliation is parallel to the local shear plane. Type 5 OCMs result from porphyroblast growth over a microfold interference pattern.Types 1 and 2 are commonly interpreted as indicating highly noncoaxial and highly coaxial bulk deformation paths, respectively, during porphyroblast growth. However, theoretically they can form by any deformation path intermediate between bulk coaxial shortening and bulk simple shearing. Given particular initial foliation orientation and timing of porphyroblast growth, Type 3 OCMs can also form during these intermediate deformation paths, and are commonly found in the same rocks as Type 2 OCMs. Type 4 OCMs may indicate highly noncoaxial deformation during porphyroblast growth, but may be difficult to distinguish from Type 3 OCMs. Thus, Types 1–3 (and possibly 4) reflect the finite strain state, giving no information about the rotational component of the deformation(s) responsible for their formation. Furthermore, there is a lack of unequivocal independent evidence for the degree of noncoaxiality of deformation (s) during the growth of porphyroblasts containing OCMs. Type 2 OCMs that occur independently of porphyroblasts or other rigid objects might indicate highly coaxial bulk shortening, but there is a lack of supporting physical or computer modelling.It is possible that microstructures in the matrix around OCMs formed during highly noncoaxial and highly coaxial deformation histories might have specific characteristics that allow them to be distinguished from one another. However, determining degrees of noncoaxiality from rock fabrics is a major, longstanding problem in structural geology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Ion probe traverses across garnets from peridotites of the Caledonides of Norway and the Variscides of Poland show zoning patterns for Y, V, Zr, Cr, Ti and the REE. The complexly zoned patterns of garnets from the Bystrzyca Górna peridotite, Poland, are interpreted in terms of a changing P–T history (isobaric cooling followed by decompression and cooling). Weak rimward gradients in REE concentrations in garnets from the Almklovdalen and Sandvika peridotites, Norway, may be relicts of the original growth history of the garnets, but the nearly flat Y, V, Zr, Cr and Ti profiles from the same garnets imply a later period of near-homogenization at uniform P–T. Crushed garnet separates from each body were separated into three or more fractions on the assumption that density and magnetic susceptibility vary with Fe/Mg ratio, and Fe/Mg ratios change from garnet core to rim. Sm-Nd garnet–clinopyroxene ‘ages’ were determined for each fraction to determine whether they are also zoned. Four garnet fractions from the Góry Sowie peridotite give nearly the same ages (397–412 Ma) that are believed to span the interval of garnet growth. Garnet fractions from the Norwegian peridotites define scattered ages (816–1350 Ma) that are suspect, but hint at a Sveconorwegian equilibration event. The data indicate the Variscan and Norwegian peridotites had different histories, despite superficial mineralogical and tectonic similarities. Norwegian garnet peridotites had a long pre-Caledonian history and were extracted from a relatively cold mantle whereas the Variscan garnet peridotites had a comparatively short pre- or Eo-Variscan history and were extracted from a hot mantle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Paragonite-bearing amphibolites occur interbedded with a garbenschist-micaschist sequence in the Austroalpine Schneeberg Complex, southern Tyrol. The mineral assemblage mainly comprises paragonite + Mg-hornblende/tschermakite + quartz + plagioclase + biotite + ankerite + Ti-phase + garnet ± muscovite. Equilibrium P–T conditions for this assemblage are 550–600°C and 8–10 kbar estimated from garnet–amphibole–plagioclase–ilmenite–rutile and Si contents of phengitic muscovites. In the vicinity of amphibole, paragonite is replaced by symplectitic chlorite + plagioclase + margarite +± biotite assemblages. Muscovite in the vicinity of amphibole reacts to form plagioclase + biotite + margarite symplectites. The reaction of white mica + hornblende is the result of decompression during uplift of the Schneeberg Complex. The breakdown of paragonite + hornblende is a water-consuming reaction and therefore it is controlled by the availability of fluid on the retrogressive P–T path. Paragonite + hornblende is a high-temperature equivalent of the common blueschist-assemblage paragonite + glaucophane in Ca-bearing systems and represents restricted P–T conditions just below omphacite stability in a mafic bulk system. While paragonite + glaucophane breakdown to chlorite + albite marks the blueschist/greenschist transition, the paragonite + hornblende breakdown observed in Schneeberg Complex rocks is indicative of a transition from epidote-amphibolite facies to greenschist facies conditions at a flatter P–T gradient of the metamorphic path compared to subduction-zone environments. Ar/Ar dating of paragonite yields an age of 84.5 ± 1 Ma, corroborating an Eoalpine high-pressure metamorphic event within the Austroalpine unit west of the Tauern Window. Eclogites that occur in the Ötztal Crystalline Basement south of the Schneeberg Complex are thought to be associated with this Eoalpine metamorphic event.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Microprobe analyses of feldspars in granite mylonites containing flame perthite give compositions that invariably plot as three distinct clusters on a ternary feldspar diagram: orthoclase (Or92–97), albite and oligoclase-andesine. The albite occurs as grains in the matrix, as flame-shaped lamellae in orthoclase, and in patches within plagioclase grains.We present a metamorphic model for albite flame growth in the K-feldspar in these rocks that is related to reactions in plagioclase, rather than alkali feldspar exsolution. Flame growth is attributed to replacement and results from a combination of two retrograde reactions and one exchange reaction under greenschist facies conditions. Reaction 1 is a continuous or discontinuous (across the peristerite solvus) reaction in plagioclase, in which the An component forms epidote or zoisite. Most of the albite component liberated by Reaction 1 stays to form albite in the host plagioclase, but some Na migrates to form the flames within the K-feldspar. Reaction 2 is the exchange of K for Na in K-feldspar. Reaction 3 is the retrograde formation of muscovite (as ‘sericite’) and has all of the chemical components of a hydration reaction of K-feldspar. The Si and Al made available in the plagioclase from Reaction 1 are combined with the K liberated from the K-feldspar, to produce muscovite in Reaction 3. The muscovite forms in the plagioclase, rather than the K-feldspar, as a result of the greater mobility of K relative to Al. The composition of the albite flames is controlled by both the peristerite and the alkali feldspar miscibility gaps and depends on the position of these solvi at the pressure and temperature that existed during the reaction. Using an initial plagioclase composition of An20, the total reaction can be summarized as:20 oligoclase + 1 K-feldspar + 2 H2O = 2 zoisite + muscovite + 2 quartz + 15 albiteplagioclase+ 1 albiteflame.This model does not require that any additional feldspar framework be accreted at replacement sites: Na and K are the only components that must migrate a significant distance (e.g. from one grain to the next), allowing Al to remain within the altering plagioclase grain. The resulting saussuritization is isovolumetric.The temperature and extent of replacement depends on when, and how much, water infiltrates the rock. The fugacity of the water, and therefore the pressure of the fluid, may have been significantly lower than lithostatic during flame growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract In metapelitic schists of the north-eastern Weekeroo Inliers, Olary Block, Willyama Supergroup, South Australia, syn-S1 and syn-S2 assemblages involving staurolite, garnet, biotite and another mineral, most probably cordierite, were overgrown by large syn-S3 andalusite porphyroblasts, owing to isobaric heating from metamorphic conditions that existed during the development of S2. Conditions during the development of S3 probably just reached the andalusite—sillimanite transition. During the development of S4, at somewhat lower temperatures than those that accompanied the development of S3, the following reaction occurred:staurolite + chlorite + muscovite ± biotite + andalusite + quartz + H2O.The amount of retrogression is controlled primarily by the amount of H2O added by infiltration. As the syn-S3 matrix assemblage was stable during the development of S4, but the andalusite porphyroblasts were no longer stable with the matrix when H2O was added, the retrogression is focused in and around the porphyroblasts. With enough H2O available, and if quartz was consumed before biotite in a porphyroblast, then the following reaction occurred:staurolite + chlorite + muscovite + corundum ± biotite + andalusite + H2O.This reaction allowed corundum inclusions in the andalusite to grow, regardless of the presence of quartz in the matrix assemblage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Effects of post-entrapment fluid-inclusion modification are examined with reference to retrogression-related quartz veins from the Caledonian, Øse Thrust, northern Norway. The inclusions occur in secondary trails, and contain high-density hypersaline aqueous fluids. On morphological characteristics, they are subdivided into, Type A: elongate, ellipsoidal and/or irregular inclusions, and Type B: more equant, regular, and/or negative crystal form. With reference to previous research on post-entrapment modification of inclusions in quartz it is proposed that Type A inclusions experienced little or no post-entrapment modification, whereas Type B inclusions show features characteristic of post-entrapment permanent inelastic stretching and/or leakage. This produces increased homogenization temperatures (Th), associated with increased inclusion volume and lowering of density, whilst maintaining constant salinity. The similarity of data for degree of fill and salinity between Type A and Type B inclusions indicates that Type B inclusions have primarily modified by stretch rather than leakage. However, the spread towards slightly larger volume of vapour in Type B inclusions suggests that some leakage has also occurred. Because stretched and/or partially leaked inclusions have increased Th, isochore projections significantly underestimate trapping pressure (Pt) relative to unmodified inclusions. Therefore, recognition of post-entrapment inclusion modification due to overpressure is crucial to avoid misinterpretation of data, but has considerable potential for constraining the detail of P-T trajectories of individual rocks. On this basis, rocks from the Øse Thrust zone, north Norway, are shown to have experienced rapid uplift on a ‘clockwise’P-T-t path during the final stages of Caledonian (Scandian) orogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Erzgebirge Crystalline Complex (ECC) is a rare example where both‘crustal’eclogites and mantle-derived garnet-bearing ultramafic rocks (GBUs) occur in the same tectonic unit. Thus, the ECC represents a key complex for studying tectonic processes such as crustal thickening or incorporation of mantle-derived material into the continental crust. This study provides the first evidence that high-pressure metamorphism in the ECC is of Variscan age. Sm-Nd isochrons define ages of 333 ± 6 (Grt-WR), 337± 5 (Grt-WR), 360± 7 (Grt-Cpx-WR) (eclogites) and 353 ± 7 Ma (Grt-WR) (garnet-pyroxenite). 40Ar/39Ar spectra of phengite from two eclogite samples give plateau ages of 348 ± 2 and 355 ± 2 Ma. The overlap of ages from isotopic systems with blocking temperatures that differ by about 300 ° C indicates extremely fast tectonic uplift rates. Minimum cooling rates were about 50° C Myr-1. As a consequence, the closure temperature of the specific isotopic system is of minor importance, and the ages correspond to the time of high-pressure metamorphism. Despite textural equilibrium and metamorphic temperatures in excess of 800° C, clinopyroxene, garnet and whole rock do not define a three-point isochron in three of four samples. The metamorphic clinopyroxenes seem to have inherited their isotopic signature from magmatic precursors. Rapid tectonic burial and uplift within only a few million years might be the reason for the observed Sm-Nd disequilibrium. The εNd values of the eclogites (+4.4 to +6.9) suggest the protoliths were derived from a long-term depleted mantle, probably a MORB source, whereas the isotopically enriched garnet-pyroxenite (εNd–2.9) might represent subcontinental mantle material, emplaced into the crust prior to or during collision. The similarity of ages of the two different rock types suggests a shared metamorphic history.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The crystalline core of the Himalayan orogen in the Langtang area of Nepal, located between the Annapurna-Manaslu region and the Everest region, contains middle to upper amphibolite grade pelitic gneisses and schists. These rocks are intimately associated with the Main Central Thrust (MCT), one of the major compressional structures in the northern Indian plate, which forms a 3.7-km-wide zone containing rocks of both footwall and hangingwall affinity. An inverted metamorphic gradient is noticeable from upper footwall through hangingwall rocks, where metamorphic conditions increase from garnet grade near the MCT zone to sillimanite + K-feldspar grade in the upper hangingwall. Petrographic data distinguish two metamorphic episodes that have affected the area: a high-pressure, moderate-temperature episode (M1) and a moderate-pressure, high-temperature episode (M2). Comparison with appropriate reaction boundaries suggests that conditions for M1 in the hangingwall were approximately 900–1200 MPa and 425–525°C. Thermobarometric results for 24 samples from the footwall, MCT zone and hangingwall reflect P-T conditions during the M2 phase of 400–1200 MPa and 490–660° C. The decrease in estimated palaeopressures from footwall to hangingwall approximate a lithostatic gradient of 27 MPa km-1, with slight fluctuations in the MCT zone reflecting structural discontinuities. In contrast to the palaeopressures, palaeotemperatures are indistinguishable across the entire area sampled. Although field evidence suggests the presence of the inverted palaeothermal gradient well known in the Himalaya, quantitative thermobarometry indicates that temperatures of final equilibration were all within error of each other across 17 km of section. At Langtang, change in pressure is responsible for the presence of the sequence of index minerals through the section. I interpret these data to reflect diachronous attainment of equilibrium temperature conditions in a lithostatic palaeopressure profile after ductile faulting of the sequence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract High-pressure-temperature metapelites that occur in close proximity to eclogitized mafic rocks in the southern part of the Gagnon terrane (Parautochthonous Belt, eastern Grenville Province) were investigated in order to constrain depths of burial and P-T paths. Mineral assemblages and partial melting relationships in these metapelites are consistent with peak temperatures in the range between 700 and 800° C. However, growth zoning is apparently well preserved in garnets and only narrow rims (width = 100–500 μm) are obviously affected by diffusional retrograde resetting. Despite uncertainties regarding mineral assemblages and compositions of matrix minerals at early stages of garnet growth, it can be shown that the observed growth zoning profiles of garnets imply increase of both pressure and temperature up to a common maximum at pressures between 1300 and 1600 MPa, and that thermal relaxation did not occur during the initial stages of unloading. On the other hand, calculated retrograde P-T conditions are consistent with steep decompression paths. The inferred ‘hair-pin’-shaped P-T path is consistent with independent evidence of rapid, tectonically driven exhumation, resulting in the preservation of growth zoning in garnets from such a high-temperature regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract A petrogenetic grid and related diagrams derived from KFMASH-system experiments demonstrate that osumilite is stable in relatively magnesian bulk rock compositions (XMg 〉 0.6) at temperatures in excess of 875° C and pressures less than 11 kbar. The experiments, involving the dehydration melting of biotite in synthetic metapelites, were conducted in the range 850–1000° C. Both the mineral assemblages and phase compositions reported from well-documented natural examples of osumilite-bearing rocks are reproduced by the experiments at P-T conditions similar to those previously estimated for these occurrences. Peak metamorphic P-T conditions can be reliably inferred from distinctive osumilite-bearing assemblages identified in the phase diagrams, thereby avoiding the problems of diffusional re-equilibration that often prohibits conventional geothermobarometry from recovering peak conditions. Integration of the experimental data with recent independent experiments, after correcting the latter for an underestimated friction correction, allows extension of the petrogenetic grid to higher temperatures. The extended grid is applied to assess and refine the metamorphic history of the Napier Complex, East Antarctica: the high-P stability limit for osumilite in the Napier Complex is 9–10 kbar, the prograde P-T-t path is not necessarily anticlockwise and isobaric cooling in the Scott and Tula mountains occurred, respectively, at pressures greater and less than reactions in the range 8–9 kbar. The stability range for osumilite predicted by the KFMASH-system petrogenetic grid overlaps many more metamorphic terranes than osumilite is found in. Whilst osumilite is not distinctive in thin section and is prone to retrogression, it is possible that carbon dioxide present in the natural system stabilizes cordierite at the expense of osumilite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Paragonite in textural equilibrium with garnet, omphacite and kyanite is found in two eclogites in the ultrahigh-pressure metamorphic terrane in Dabie Shan, China. Equilibrium reactions between paragonite, omphacite and kyanite indicate a pressure of about 19 kbar at c. 700° C. However, one of the paragonite eclogites also contains clear quartz pseudomorphs after coesite as inclusions in garnet, suggesting minimum pressures of 27 kbar at the same temperature. The disparate pressure estimates from the same rock suggest that the matrix minerals in the ultrahigh-pressure eclogites have recrystallized at lower pressures and do not represent the peak ultrahigh-pressure assemblages. This hypothesis is tested by calibrating a garnet + zoisite/clinozoisite + kyanite + quartz/coesite geobarometer and applying it to the appropriate eclogite facies rocks from ultrahigh- and high-pressure terranes. These four minerals coexist from 10 to 60 kbar and in this wide pressure range the grossular content of garnet reflects the equilibrium pressure on the basis of the reaction zoisite/clinozoisite = grossular + kyanite + quartz/coesite + H2O. The results of the geobarometer agree well with independent pressure estimates from eclogites from other orogenic belts. For the paragonite eclogites in Dabie Shan the geobarometer indicates pressures in the quartz stability field, confirming that the former coesite-bearing paragonite-eclogite has re-equilibrated at lower pressures. On the other hand, garnets from other coesite-bearing but paragonite-free kyanite-zoisite eclogites show a very wide variation in grossular content, corresponding to a pressure variation from coesite into the quartz field. This wide variation, partly due to a rimward decrease in grossular component in garnet, is caused by partial equilibration of the mineral assemblage during the exhumation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The hydrothermal metamorphism of a sequence of Pliocene-aged seamount extrusive and volcanoclastic rocks on La Palma includes a relatively complete low-P-T facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200–300° C km-1.The transition from smectite to chlorite in the La Palma seamount series is characterized by discontinuous steps between discrete smectite, corrensite and chlorite, which occur ubiquitously as vesicles and, to a much lesser extent, vein in-fillings. Trioctahedral smectites [(Mg/(Fe + Mg) = 0.4–0.75] occur with palagonite and Na-Ca zeolites such as analcime and a thompsonite/natrolite solid solution. Corrensite [(Mg/(Fe + Mg) = 0.5–0.65] first appears at stratigraphic depths closely corresponding to the disappearance of analcime and first appearance of pumpellyite. Discrete chlorite [(Mg/(Fe + Mg) = 0.4–0.6] becomes the dominant layer silicate mineral coincident with the appearance of epidote and andraditic garnet.Within the stratigraphic section there is some overlap in the distribution of the three discrete layer silicate phases, although random interstratifications of these phases have not been observed. Although smectite occurs as both low- and high-charge forms, the La Palma corrensite is a compositionally restricted, 1:1 mixture of low-charge, trioctahedral smectite and chlorite. Electron microprobe analyses of coarse-grained corrensite yield structural formulae close to ideal values based on 50 negative charge recalculations. Calcium (average 0.20 cations/formula unit) is the dominant interlayer cation, with lesser Mg, K and Na.The absence of randomly interlayered chlorite/smectite in the La Palma seamount series may reflect high, time-integrated fluid fluxes through the seamount sequence. This is consistent with the ubiquity of high-variance metamorphic mineral assemblages and the general absence of relict igneous minerals in these samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Quartz-hosted, synthetic CO2-H2O fluid inclusions behave as open systems with respect to diffusional transfer of hydrogen during laboratory-simulated metamorphic re-equilibration at 650, 750 and 825°C and 1.5 kbar total pressure with fO2 defined by the C-CH4 buffer. Microthermometry and Raman spectroscopy show that the initial CO2-H2O inclusions become CO2-CH4-H2-H2Oinclusions after diffusive influx of hydrogen from the reducing confining medium. Measurable changes are observed in inclusion compositions after only 15 days of re-equilibration, implying significant hydrogen mobility at still lower temperatures over geological time spans. Results of synthetic inclusion re-equilibrium experiments have profound implications for the interpretation of natural fluid-inclusion data; failure to account for potential hydrogen migration in inclusions from high-temperature geological environments may lead to erroneous estimates of P-T, and/or the compositions of metamorphic fluids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Fe-Mg carpholite occurs in metasediments of tectonically disrupted basement, shelf and foreland basin units that structurally underlie the Semail ophiolite in NE Oman. In the lower grade, structurally higher units, Fe-rich carpholite coexists with paragonite, quartz, illite, kaolinite and chlorite, whereas in deeper units, Fe-Mg carpholite occurs with pyrophyllite, sudoite, phengite and/or chloritoid. Mineral compositions in these units indicate that chlorite is more magnesian than coexisting Fe-Mg carpholite at low temperatures and pressures but, at higher metamorphic grades, XMg decreases in the order sudoite 〉 carpholite 〉 chlorite 〉 chloritoid. This suggests a reversal in Fe-Mg partitioning between Fe-Mg carpholite and chlorite at temperatures below or close to those of the breakdown of kaolinite + quartz to pyrophyllite and at XMg= 0.35.Phase relations and mineral equilibria indicate that the P-T conditions of formation of the Fe-Mg-carpholite-bearing rocks of NE Oman range from 280–315° C, 3–6 kbar for the structurally highest units to 325–440° C, 6–9.5 kbar for the deepest units, indicating a systematic down-section increase in metamorphic grade. Textural relations in these rocks, interpreted in the context of pertinent equilibria, are consistent with the clockwise P-T paths previously constrained for these units from petrological studies of interlayered isofacial mafic rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Metamorphic Petrology. By Akiho Miyashiro. UCL Press Ltd, London, 1994. ISBN 1-85728-037-7 (HB), 1-85728-038-7 (PB)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Santiago Schists are located in the Basal Unit of the Ordenes Complex, one of the allochthonous complexes outcropping in the inner part of the Hercynian Belt in the north-west of the Iberian Peninsula. Their tectonothermal evolution is characterized by the development of an eo-Hercynian metamorphic episode (c. 374 Ma) of high-P, low- to intermediate-T. The mineral assemblage of the high-P episode is preserved as a very thin Si= S1 foliation included in albite porphyroblasts, being composed of: albite + garnet-I + white mica-1 + chlorite-1 + epidote + quartz + rutile ± ilmenite. The equilibrium conditions for this mineral assemblage have been estimated by means of different thermobarometers at 495 ± 10 °C and 14.7 ± 0.7 kbar (probably minimum pressure). The later evolution (syn-D2) of the schists defines a decompressive and slightly prograde P-T path which reached its thermal peak at c. 525 ± 10 °C and 7 kbar. Decompression of the unit occurred contemporaneously with an inversion of the metamorphic gradient, so that the zones of garnet-II, biotite (with an upper subzone with chloritoid) and staurolite developed from bottom to top of the formation.The estimated P-T path for the Santiago Schists suggests that the Basal Unit, probably a fragment of the Gondwana continental margin, was uplifted immediately after its subduction at the beginning of the Hercynian Orogeny. It also suggests that the greater part of the unroofing history of the unit took place in a context of ductile extension, probably related to the continued subduction of the Gondwana continental margin and the contemporaneous development of compensatory extension above it. The inverted metamorphic gradient seems related to conductive heat transferred from a zone of the mantle wedge above the subducted continental margin, when it came into contact with the upper parts of the schists along a detachment, probably of extensional character.The general metamorphic evolution of the Santiago Schists, with the development of high-P assemblages with garnet prior to decompressive and prograde parageneses with biotite, is unusual in the context of the European Hercynian Belt, and shows a close similarity to the tectonothermal evolution of several high-P, low- to intermediate-T circum-Pacific belts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Low-pressure/high-temperature (low-P/high-T) metamorphic rocks of the Cooma Complex, southeastern Australia, show evidence of an anticlockwise pressure-temperature-time-deformation (P-T-t-D) path, similar to those of some other low-P/high-T metamorphic areas of Australia. Prograde paths are reasonably well constrained in cordierite-andalusite schists, cordierite-K-feldspar gneisses and andalusite-K-feldspar gneisses. These paths are inferred to be convex to the temperature axis, involving increase in pressure with increase in temperature. Evidence of the retrograde path is inconclusive, but is consistent with approximately isobaric cooling, as are available isotopic data on the Cooma Granodiorite, which indicate initially rapid cooling following attainment of peak temperatures. The retrograde path is inconsistent with either a clockwise P-T-t-D path involving rapid or even moderate decompression immediately post-dating the peak of metamorphism, or a path in which the retrograde component simply reverses the prograde component, because both these paths should cross reactions forming cordierite from aluminosilicate, for which no evidence has been observed.Determination of the deformational-metamorphic history of the complex is not straightfoward and depends on careful examination of critical samples. Evidence necessary for successful elucidation of the prograde, and part of the retrograde, deformational-metamorphic history in the Cooma Complex includes: (1) sequentially grown porphyroblasts that can be timed relative to surrounding foliations; (2) partial replacement microstructures providing relative timing of metamorphic reactions that cannot be timed relative to foliation development; (3) a tectonic marker foliation (S4 at Cooma) that allows correlation of foliations from one location to another; and (4) single samples containing all of the foliations and all generations of porphyroblast growth within a single metamorphic zone. The latest two or three foliations involve low strain accumulation, allowing relative timing relationships between foliations and porphyroblasts to be more clearly determined.Sequential porphyroblast growth and foliation development in the cordierite-andalusite schists is examined for situations involving rotation and non-rotation of porphyroblasts relative to geographically fixed coordinates. Although the number of foliations developed varies in the rotational situation, depending on the deformation history proposed, the sequential order of porphyroblast growths does not differ from the non-rotational situation. Thus, whether or not porphyroblasts rotated in the Cooma rocks, the sequence of reactions, and therefore P-T-t paths inferred from the relative timing of porphyroblast growths, remain the same, for the deformational histories evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Observations and microthermometric data on fluid inclusions from a terrane that underwent deformation following peak metamorphic conditions show that grain-boundary migration recrystallization favours the entrapment of carbonic inclusions whereas microfracturing during brittle deformation favours the infiltration and eventual entrapment of aqueous fluids. Our results imply that pure CO2 fluid inclusions in metamorphic rocks are likely to be the residue of deformation-recrystallization process rather than representing a primary metamorphic fluid.Where the temperature of deformation can be deduced by other means, the densities of fluid inclusions trapped during recrystallization, which we call recrystallization-primary fluid inclusions, can be used to constrain the ambient pressure during deformation. Using these constraints, the data imply that the post-metamorphic Hercynian exhumation in Sardinia brought rocks at 300° C to within 3km of the surface. This conclusion is similar to that described for the rapidly uplifted Southern Alps in New Zealand.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Metapelitic and charnockitic granulites exposed around Chilka Lake in the northern sector of the Eastern Ghats, India, preserve a multi-stage P—T record. A high-T decompression from above 10 kbar to 8 kbar around 1100°C has been determined from Mg-rich metapelites (XMg〉0.60) with quartz-cordierite-orthopyroxene-sillimanite and cordierite—orthopyroxene—sapphirine—spinel assemblages. Between this and a second decompression to 6.0 kbar, isobaric cooling from 830 to 670°C at 8 kbar is evident. These changes are registered by the rim compositions of orthopyroxene and garnet in charnockites and metapelites with an orthopyroxene—quartz—garnet—plagioclase—cordierite assemblage, and are further supported by the garnet + quartz ± orthopyroxene + cordierite and biotite-producing reactions in sapphirine-bearing metapelites. Another indication of isobaric cooling from 800 to 650°C at 6.0 kbar is evident from rim compositions of orthopyroxene and garnet in patchy charnockites. Two sets of P—T values are obtained from metapelites with a quartz—plagioclase—garnet—sillimanite—cordierite assemblage: garnet and plagioclase cores yield 6.2 kbar, 700°C and the rims 5 kbar, 650°C, suggesting a third decompression.The earliest deformation (F1) structures are preserved in the larger charnockite bodies and the metapelites which retain the high P—T record. The effects of post-crystalline F2 deformation are observed in garnet megacrysts formed during or prior to F1 in some metapelites. Fold styles indicate a compressional regime during F1 and an extensional regime during F2. These lines of evidence and two phases of cooling at different pressures point to a discontinuity after the first cooling, and imply reworking.Two segments of the present P—T path replicate parts of the P—T paths suggested for four other granulite terranes in the Eastern Ghats, and the sense of all the paths is the same. This, plus the signature of three phases of deformation identified in the Eastern Ghats, suggests that the Chilka Lake granulites could epitomize the metamorphic evolution of the Eastern Ghats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Chuncheon amphibolite, part of the Gubongsan Group which overlies the Yongduri gneiss complex, is interlayered with calc-silicate rock, marble, quartzite, biotite schist and quartzofeldspathic gneiss in the central Gyeonggi massif, South Korea. Metamorphic pressures and temperatures estimated from the amphibolite are 5.5–10.6 kbar and 615–714°C. These P—T conditions are close to those defined by the reaction curve between kyanite and sillimanite, and suggest medium-pressure-type metamorphism of the Chuncheon amphibolite. For two metapelites intercalated with the amphibolite, temperatures are estimated to be 607–699° C, consistent with those obtained from the amphibolite. On the other hand, pressures estimated from these metapelites are significantly different, 4–6 kbar and 9–13 kbar, when rim and core compositions of garnet are, respectively, used. These P—T estimates obtained from the amphibolite and metapelite suggest a nearly isothermal decompression of 3–7 kbar during denudation. Rapid decompression is likely on the basis of the results of mineral chemistry, phase equilibria and geothermobarometer. Moreover, in conjunction with the occurrence of kyanite in the adjacent Gyeonggi gneiss complex, P—T estimates of the Chuncheon amphibolite and metapelite suggest a clockwise P—T—t path. This evolutionary path may be related to the amalgamation of continents during the late Proterozoic event which corresponds to the Jinningian orogeny in the Qinling belt of China.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Ruby terrane is an elongate fragment of continental crustal rocks that is structurally overlain by thrust slices of oceanic crust. Our results from the Kokrines Hills, in the south-central part of the Ruby terrane, demonstrate that the low-angle schistose fabric formed under high-P/low-T conditions, at peak conditions of 10.8-13.2 kbar and 425-550° C, consistent with the rare occurrence of glaucophane. White mica 40Ar/39Ar cooling ages from these blueschists indicate that the metamorphism occurred prior to 144 ± 1 Ma. The blueschist facies assemblages are partially replaced by greenschist facies assemblages in the eastern Kokrines Hills. In contrast, in the central and western Kokrines Hills, upper amphibolite to lower granulite facies metamorphism associated with extensive late Early Cretaceous plutonism has completely overprinted any evidence of an earlier high-P/T metamorphic history. Deformation accompanying the plutonism produced recumbent isoclinal folds in the plutonic rocks and pelitic gneisses of the wallrock; decompression reactions in the pelitic gneisses suggest that the deformation occurred during exhumation. Thermochronological data bracket the time of intrusion and cooling below 500° C between 118 ± 3 and 109 ± 1 Ma.Our data from the schists of the Ruby terrane support the general assumption of many authors that the Ruby terrane was subducted beneath an oceanic island arc. This tectonic history is similar to that described for other large continental crustal blocks in northern and central Alaska, in the Brooks Range, Seward Peninsula and Yukon-Tanana Upland. The current orientation of the Ruby terrane at an oblique angle to these other crustal blocks and to the Cordilleran trend is due to post-collisional tectonic processes that have greatly modified the original continental margin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Metagreywackes in the Eastern Belt of the Franciscan Complex contain the assemblage: Qtz + Ab + Lws + Chl + Ph + Pmp + Fgl + Hem ° Cal/Arg or compatible subassemblages. Blue amphibole first appears in the westernmost part of the belt and pumpellyite is absent in the eastern part. The compositions of the coexisting minerals and the nature of the continuous reactions in these low-grade blueschists suggest that the distribution of blue amphibole and pumpellyite in the Eastern Belt of the Franciscan Complex reflects differences of effective bulk composition rather than differences in physical conditions of metamorphism. In rocks lacking pumpellyite, white mica may be essential to the growth of blue amphibole, but carbonate plays only a limited role. The continuous reaction that limits the appearance of blue amphibole and the disappearance of coexisting pumpellyite has the general form: Pmp + Chl + Ab + Qtz + Hem + H2O + FeMg-1= Fgl + Lws. This reaction requires significant hydration as pressure increases in order to produce blue amphibole. Most of the Eastern Belt of the Franciscan Complex formed in limited ranges of temperature and pressure, which are estimated to be 240—280° C, 6.5-7.5 kbar. Pressures in the westernmost part of the area were about 1 kbar lower than in the east. Pressures of about 8.5-10 kbar are estimated for tectonic blocks that contain sodic clinopyroxene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Petrological study of highly strained carbonate and pelitic rocks within the contact aureole surrounding the western part of the Papoose Flat pluton yields thermal profiles (plots of metamorphic temperature versus distance) across the aureole that show temperature gradients which are relatively flat and narrow (〈100m). The gradients occur close to the contact and indicate a slight decrease in temperature from 500–550°C at the pluton/wall rock contact to 450–500°C at the outer margin of the aureole. One thermal profile across low-strain metasedimentary rocks located in the southern part of the aureole shows that thermal effects from emplacement extend no further than 600 m from the contact. Coexistence of andalusite and cordierite in pelitic rocks of the aureole constrain pressures to 〈4 kbar. Thermal modelling using an analytical solution of the conductive heat flow equation for a rectangular-shaped pluton reproduces the observed thermal maxima and profile shape. Conductive rather than convective cooling also is supported by isotopic and field evidence for limited fluid flow along the strongly deformed margin of the pluton. Simple thermal models coupled with observed high-temperature deformation features and a measured 90% attenuation of stratigraphic units in the plastically deformed western part of the pluton's aureole indicate that strain rates may have been of the order of 10-12s-1. Evidence for episodic heating, such as two distinct generations of andalusite growth in pelites from the aureole, alternatively may indicate a longer heating event and, therefore, slower strain rates. Thermal models also indicate that parts of the pluton still may have been above the solidus during deformation of the pluton margin and aureole.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Protogine Zone comprises a system of anastomosing deformation zones which approximately parallel the eastern boundary of the Sveconorwegian (1200–900 Ma) province in south-west Sweden. Ages of granulite facies metamorphism in the Sveconorwegian province require exhumation from c. 30 to 35 km crustal depths after 920–880 Ma. 40Ar/39 Ar cooling ages are presented for muscovite from high-alumina rocks formed by hydrothermal leaching associated with the Protogine Zone. Growth of fabric-defining minerals was associated with a ductile deformational event; muscovite from these rocks cooled below argon retention temperatures (c. 375 ± 25° C) at c. 965–955 Ma. Muscovite from granofels in zones of intense alteration indicates that temperatures 〉 375 ± 25° C were maintained until c. 940 Ma. Textural relations of Al2SiO5 polymorphs and chloritoid suggest that dated fabrics formed during exhumation. The process of exhumation, brittle overprint on ductile structures and hydrothermal activity along faults within the Protogine Zone tentatively are interpreted as the peripheral effects of initial Neoproterozoic exhumation of the granulite region of south-western Sweden.Muscovite in phyllonites associated with the ‘Sveconorwegian thrust system’cooled below argon retention temperatures at c. 927 Ma. Exhumation associated with this cooling could have been related to extension and onset of brittle-ductile deformation superimposed on Sveconorwegian contraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Orientated symplectites have been observed in deformed granulite facies metabasic rocks from the Ivrea-Verbano zone in northern Italy. The area underwent lower crustal extension, accommodated by movement on localized high-T shear zones. In areas of relatively low strain, such as at the margins of shear zones, symplectites of orthopyroxene, plagioclase and spinel have formed. The symplectites are vermiform and orientated parallel to the main foliation and in the regional stretching direction. The reaction was synkinematic with the deformation, and only developed in potentially dilatant grain boundaries in the rock. It was presumably inhibited in grain boundaries subjected to higher normal stress due to the relatively large volume increase involved in the reaction.The observations support the interpretation that the deformation was related to regional extension under high-T granulite facies conditions, the symplectites forming as a result of decreasing pressure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The E-W-trending Kohistan terrane in the NW Himalaya is a sandwich of a magmatic arc between the collided Karakoram (Asian) and Indian plates. The southern part of the Kohistan arc is principally made up of amphibolites derived from volcanic and plutonic rocks of Early Cretaceous age. Gabbroic relics in the amphibolites display calc-alkaline character, and their mineralogy is similar to low-P plutonic rocks reported from modern and ancient island arcs. The largest of these relics, occurring along the southern margin of the amphibolite belt near Khwaza Khela, is subcircular in outline and is about 1 km across. It consists of cumulate gabbros and related rocks displaying a record of cooling and crustal thickening. Primary olivine and anorthite reacted to produce coronas consisting of two pyroxenes +Mg-Fe2+-Al spinel ± tschermakitic hornblende at about 800° C, 5.5–7.5 kbar. This thermotectonic event is of regional extent and may be related to the overthrusting of the Karakoram plate onto the Kohistan arc some 85 Ma ago, or even earlier. Later the gabbros were locally traversed by veins containing high-P assemblages: garnet, kyanite, zoisite, paragonite, oligoclase, calcite, scapolite and quartz ° Chlorite ° Corundum ± diopside. Formed in the range 510–600° C, and 10–12 kbar, these suggest further thickening and cooling of the crust before its uplift during the Tertiary. This paper presents microprobe data on the minerals, and discusses the tectonic implications of the coronitic and vein assemblages in the gabbros.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Granulite facies marbles from the Upper Calcsilicate Unit of the Reynolds Range, central Australia, contain metre-scale wollastonite-bearing layers formed by infiltration of water-rich (XCO2= 0.1–0.3) fluids close to the peak of regional metamorphism at c. 700° C. Within the wollastonite marbles, zones that contain 〈10% wollastonite alternate on a millimetre scale with zones containing up to 66% wollastonite. Adjacent wollastonite-free marbles contain up to 11% quartz that is uniformly distributed. This suggests that, although some wollastonite formed by the reaction calcite + quartz = wollastonite + CO2, the wollastonite-rich zones also underwent silica metasomatism. Time-integrated fluid fluxes required to cause silica metasomatism are one to two orders of magnitude higher than those required to hydrate the rocks, implying that time-integrated fluid fluxes varied markedly on a millimetre scale. Interlayered millimetre -to centimetre-thick marls within the wollastonite marbles contain calcite + quartz without wollastonite. These marls were probably not infiltrated by significant volumes of water-rich fluids, providing further evidence of local fluid channelling. Zones dominated by grandite garnet at the margins of the marl layers and marbles in the wollastonite-bearing rocks probably formed by Fe metasomatism, and may record even higher fluid fluxes. The fluid flow also reset stable isotope ratios. The wollastonite marbles have average calcite (Cc) δ18O values of 15.4 ± 1.6% that are lower than the average δ18O(Cc) value of wollastonite-free marbles (c. 17.2 ± 1.2%). δ13C(Cc) values for the wollastonite marbles vary from 0.4% to as low as -5.3%, and correlations between δ18O(Cc) and δ13C(Cc) values probably result from the combination of fluid infiltration and devolatilization. Fluids were probably derived from aluminous pegmatites, and the pattern of mineralogical and stable isotope resetting implies that fluid flow was largely parallel to strike.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: With increasing temperature during prograde metamorphism reactions will occur first at the lithological contacts of mixed pelite and calcsilicate terranes. At these interfaces, a fluid of lower chemical potential of H2O and CO2 than that required to produce a fluid in either layer can be produced whether reaction is caused by fluid infiltration or is initially fluid absent. If the interface region does not allow fluid transport then as temperature increases, a fluid pressure greater than lithostatic can develop. At some degree of over-pressure relative to rock pressure, the fluid hydraulically fractures the rock and a gradient in fluid composition away from the contact can be produced. These phenomena occur at the compositional interfaces whenever univariant reactions in the differing layers cross on a temperature vs. mole fraction of CO2 diagram with slopes of opposite sign. The first occurrence of these reaction products at lithological contacts delineates an isograd that defines temperature as well as the mole fraction of CO2 at constant pressure in systems open to fluid transport. These isograds can be contrasted with fluid-producing isograds in closed systems. As an illustration of possible effects, the reactions quartz + clinozoisite + muscovite = anorthite + K-feldspar + H2O and phlogopite + quartz + calcite = tremolite + K-feldspar + H2O + CO2 at 4 kbar are analysed and equations for fluid production and transport are developed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The south-east Reynolds Range, central Australia, is cut by steep north-west-trending Alice Springs age (c. 334 Ma) shear zones that are up to hundreds of metres wide and several kilometres long with reverse senses of movement. Amphibolite facies (550–600 °C, 500–600 MPa) shear zones cut metapelites, while greenschist facies shear zones (420–535 °C, 400–650 MPa) cut metagranites. The sheared rocks commonly underwent metasomatism implying that the shear zones were the pathways of significant fluid flow. Altered granites within greenschist facies shear zones have gained Si and K but lost Ca and Na relative to their unsheared counterparts, suggesting that the fluid flowed down-temperature (and hence probably upward) through the shear zones. Time-integrated fluid fluxes calculated from silica addition are up to 2.1×1010 mol m−2 (c. 4.2×105 m3 m−2). Similar time-integrated fluid fluxes are also estimated from changes in K and Na. The sheared granitic rocks locally have δ18O values as low as 0 which is much lower than the δ18O values of the adjacent unsheared granites (7 to 9), implying that the fluid which flowed through these shear zones was derived from the surface. For the estimated time-integrated fluid fluxes, the fluids would be able to retain their isotopic signature for many tens to hundreds of kilometres. The flow of surface-derived fluids into the ductile middle crust, with subsequent expulsion upwards through the shear zones, may have been driven by seismic activity accompanying the Alice Springs deformation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The eclogite facies assemblage K-feldspar–jadeite–quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite+quartz=albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm63Prp26Grs10)–K-feldspar–plagioclase–biotite±sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm50Prp14Grs35)–jadeite (Jd80–97Di0–4Hd0–8Acm0–7)–zoisite–phengite. Plagioclase is replaced by jadeite–zoisite–kyanite–K-feldspar–quartz, and biotite is replaced by garnet–phengite or omphacite–kyanite–phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar–jadeite–quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar–jadeite–quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15–21 kbar (±1.6–1.9 kbar) at 550±50 °C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio PH2O/PT. The inferred limiting a(H2O) for the assemblage jadeite–kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Petrographic analysis is a useful, but underused tool to aid in distinguishing between subsolidus and anatetic-related textures in migmatites. This study focuses on assessing the relative contributions of these two processes in the development of migmatitic orthogneiss textures in the Velay Massif, French Massif Central. The results of this study show that subsolidus processes are more important in the development of migmatitic textures in the orthogneiss than anatectic leucosome development. Four textural stages are identified from the mylonitic non-anatectic orthogneiss, annealed, migmatitic orthogneiss to diatexite. The monomineralic K-feldspar and plagioclase–muscovite banding was transformed with increasing temperature to polymineralic plagioclase–quartz–muscovite and K-feldspar–quartz–muscovite layers by the wetting of feldspar boundaries during heterogeneous nucleation of quartz from a fluid phase at high surface energy triple points. A further increase of temperature led to the growth of K-feldspar probably related to production of small amounts of melt in plagioclase rich aggregates, controlled by muscovite abundance. Solid state annealing processes in conjunction with incipient anatexis resulted in the formation of apparent granitic-like textures in plagioclase dominated aggregates. By contrast, in K-feldspar dominated aggregates exclusively subsolidus processes prevail, leading to the development of coarse grained leucosome. With the onset of biotite dehydration melting the plagioclase-dominated aggregates are destroyed by the melt whereas the K-feldspar aggregates may be preserved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The 〉1800 km long Coast Mountains–North Cascades orogen of the Canadian Cordillera and north-western US developed as a continental magmatic arc. Metamorphic rocks in the orogen contain widespread evidence for burial of supracrustal rocks to depths of c. 40 km, followed by nearly isothermal decompression to depths of 〈10 km. Near many shallowly-emplaced, mid-Cretaceous plutons, low-pressure contact metamorphic effects were overprinted by high-pressure regional metamorphic minerals and textures, as evidenced by kyanite±staurolite pseudomorphs after andalusite in metapelitic rocks. Therefore, near-pluton rocks record the loading history of the orogen. Metapelitic rocks not associated with plutons only preserve evidence for high-pressure conditions and/or high-temperature decompression, as indicated, for example, by sillimanite and cordierite after kyanite and garnet, respectively. Petrological evidence for burial and decompression is therefore recorded in different rocks. Various regions of the orogen differ in timing of metamorphism, the overall shape of P–T  paths and the relative timing and regional extent of the high-pressure event, but most of these data and observations are consistent with thrusting and/or pure shear thickening as primary loading mechanisms throughout the orogen, as opposed to magma-dominated loading. This interpretation is further supported by comparison with thermal models, which demonstrate that the P–T  paths are consistent with simultaneous thrusting and folding at a high initial geothermal gradient (35–40 °C km−1) in much of the orogen. A high geothermal gradient supports tectonic models invoking intra-arc contraction and suggests that magmatism played an important role in regional temperature-time paths. This tectonic-thermal history may be typical of other contractional orogens and illustrates the importance of large vertical displacement of crust in magmatic arcs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Inclusion trails in garnet and albite porphyroblasts in the Fleur de Lys Supergroup preserve successive generations of microstructures, some of which correlate with equivalent microstructures in the matrix. Microstructure–porphyroblast relationships provide timing constraints on a succession of seven crenulation cleavages (S1–S7) and five stages of porphyroblast growth. Significant destruction and alteration of early fabrics has occurred during the microstructural development of the rock mass. Garnet porphyroblasts grew episodically through four growth stages (G1–G4) and preserve a succession of five fabrics (S1–S5) as inclusion trails. Garnet growth during each of the four growth phases did not occur on all pre-existing porphyroblasts, resulting in contrasting growth histories between individual garnet porphyroblasts from the same outcrop. Albite porphyroblasts grew during a single stage of growth and have overgrown microstructures continuous with the matrix. The garnet and albite porphyroblast inclusion trails record a succession of crenulation cleavages without any rotation of the porphyroblasts relative to other porphyroblasts in the population.Complex microstructural histories are best resolved by preparing multiple oriented thin sections from a large number of samples of different rock types within the area of study. The succession of matrix foliations must be understood, as it provides the most useful time-frame against which to measure the relative timing of phases of porphyroblast growth. Comparable microstructures must be identified in different porphyroblasts and in the rock matrix.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A second example of yoderite has been discovered in whiteschists from the Southern Chewore Hills of northern Zimbabwe. The mineral is pale green in colour and occurs in an equilibrium assemblage with talc+chlorite+kyanite+dravite+hematite. There is no quartz present. Recalculated microprobe analyses give a structural formula of Mg2Al5.7Fe0.3Si4O18(OH)2, similar to that obtained for the type locality at Mautia Hill, Tanzania, i.e. Mg2Al5.6Fe0.4Si4O18(OH)2. Textural relationships and relative proportions of minerals suggest that the yoderite was formed by reaction between talc, chlorite, kyanite and hematite. Experimental evidence suggests high-water-pressure metamorphic conditions at temperatures exceeding a reaction curve that extends between 13 kbar at 590 °C and 21 kbar at 650 °C. The yoderite-bearing whiteschist is associated with a 1.4 Ga dismembered ophiolite. It is proposed that this yoderite occurrence is associated with a relict subduction/suture zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Relict eclogites and associated high-pressure rocks are present in the Eastern Segment of the SW Swedish gneiss region (the tectonic counterpart of the Parautochthonous Belt of the Canadian Grenville). These rocks give evidence of Sveconorwegian eclogite facies metamorphism and subsequent pervasive reworking and deformation at granulite and amphibolite facies conditions. The best-preserved eclogite relics suggest a clockwise P–T –t history, beginning in the amphibolite facies, progressing through the eclogite facies, decompressing and partially reequilibrating through the high- and medium-pressure granulite facies, before cooling through the amphibolite facies. Textures demonstrate the former coexistence of the plagioclase-free assemblages garnet+clinopyroxene+quartz+rutile+ilmenite, garnet+clinopyroxene+ kyanite+rutile, and garnet+kyanite+quartz+rutile. The former existence of omphacite is evidenced by up to 45 vol.% plagioclase expelled as small grains within large clinopyroxene. Matrix plagioclase is secondary and occurs expelled from clinopyroxene or in fine-grained, granulite facies reaction domains formed during resorption of garnet and kyanite. Garnet shows preserved prograde growth zoning with rimward increasing pyrope content, decreasing spessartine content and decreasing Fe/(Fe+Mg) ratio, but is partly resorbed and reequilibrated at the rims. P–T estimates from microdomains with clinopyroxene+plagioclase+quartz+garnet indicate pressures of 9.5–12 kbar and temperatures of 705–795 °C for a stage of the granulite facies decompression. The preservation of the prograde zoning suggests that the rocks did not reside at these high temperatures for more than a few million years, and chemical disequilibrium and ‘frozen’ reaction textures indicate heterogeneous reaction progress and overstepping of reactions during the decompression through the granulite facies. Together these features suggest a rapid tectonic exhumation. The eclogite relics occur within a high-grade deformation zone with WNW–ESE stretching and associated oblique normal-sense, top-to-the-east (sensu lato) displacement, suggesting that extension was a main cause for the decompression and exhumation. Probable tectonic scenarios for this deformation are Sveconorwegian late-orogenic gravitational collapse or overall WNW–ESE extension.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Strona-Ceneri Zone (Southern Alps) contains folds with moderately to steeply inclined axial planes and fold axes, and amplitudes of up to several kilometres (so-called ‘Schlingen’). These amphibolite facies folds deform the main schistosity of Late Ordovician metagranitoids and are discordantly overlain by unmetamorphic Permian sedimentary rocks. Mutually cross-cutting relationships between these folds and garnet-bearing leucotonalitic dykes indicate that these dykes were emplaced during folding. Sm–Nd systematics and the strongly peraluminous composition of these dykes point to an anatectic origin. Pb step leaching of magmatic garnet from a leucotonalitic dyke yielded a 321.3±2.3 Ma intrusive age. Rb–Sr ages on muscovites from leucotonalitic dykes range from 307 to 298 Ma, interpreted as cooling ages during retrograde amphibolite facies metamorphism. Conventional U–Pb data of zircons from an older granodioritic dyke that pre-dates the Schlingen folds yielded discordant U–Pb ages ranging from 371 to 294 Ma. These ages reflect a more complicated multi-episodic growth history which is consistent with the observed polyphase structural overprint of this dyke. Schlingen folding was accompanied by prograde amphibolite facies metamorphism, during the thermal peak of which the leucotonalitic dyke material was generated by partial melting in a deeper source region from where these S-type magmas intruded the presently exposed level. Because partial melting may occur in a relatively late stage of a clockwise P–T–t path, or even during decompression on the retrograde path, we do not exclude the possibility that Schlingen folding had already started in Early Carboniferous time. Schlingen folds also occur in Penninic and Austroalpine basement units with a very similar pre-Alpine history, indicating that Variscan folding affected large segments of the future Alpine realm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Timing constraints on shear zones can provide an insight into the kinematic and exhumation evolution of metamorphic belts. In the Musgrave Block, central Australia, granulite facies gneisses have been affected, to varying degrees, by mylonitic deformation, some of which attained eclogite facies. The Davenport Shear Zone is a dominant strike-slip system that formed at eclogite facies conditions (T ≈650 °C and P≈12.0 kbar). Sm–Nd mineral isochrons obtained from equilibrated high-pressure assemblages, as well as 40Ar–39Ar data, show that the eclogite and greenschist facies high-strain overprints were coeval, at c. 550 Ma. Mylonitic processes do not appear to have reset the U–Pb system in zircon, but may have partially disturbed it. The thermal gradient in the Musgrave Block crust at c. 550 Ma was c. 16 °C km−1 and at c. 535 Ma was c. 18 °C km−1, based on P–T  estimates of eclogite and greenschist facies shear zones, respectively. These estimates are similar to present-day geothermal gradients in many stable continental shield areas, suggesting that the region did not undergo a significant transient perturbation of the geotherm. Therefore, in the Musgrave Block, cooling subsequent to eclogite facies metamorphism appears to have been controlled by exhumation, rather than by the removal of a heat source. Estimated exhumation rates in the range 0.2 to ≥1.5 mm year−1 are comparable with other orogenic belts, rather than cratonic areas elsewhere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Susunai Complex of southeast Sakhalin represents a subduction-related accretionary complex of pelitic and basic rocks. Two stages of metamorphism are recognized: (1) a local, low-P/T event characterized by Si-poor calcic amphiboles; (2) a regional, high-P/T event characterized by pumpellyite, actinolite, epidote, sodic amphibole, sodic pyroxene, stilpnomelane and aragonite. The major mineral assemblages of the high-P/T Susunai metabasites contain pumpellyite + epidote + actinolite + chlorite, epidote + actinolite + chlorite, epidote + Na-amphibole + Na-pyroxene + chlorite-(-haematite. The Na-amphibole is commonly magnesioriebeckite. The Na-pyroxene is jadeite-poor aegirine to aegirine-augite. Application of empirically and experimentally based thermobarometers suggests peak conditions of T= 250–300C, P= 4.7–6 kbar. Textural relationships in Susunai metabasite samples and a petrogenetic grid calculated for the Fe3+-rich basaltic system suggest that pressure and temperature increased during prograde metamorphism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In the Llano Uplift of central Texas (USA), prograde homogenization of garnet growth zoning took place during moderate-to high-pressure dynamothermal metamorphism over a narrow temperature range near the transition from the amphibolite to the granulite facies. This subtle record of early dynamothermal metamorphism survived subsequent static metamorphism at low pressures in the middle-amphibolite facies, despite the destruction of most high-pressure mineral assemblages that originated in the early metamorphic episode. Geographically systematic variations in the degree of homogenization indicate that the uplift as a whole underwent high-pressure metamorphism, in accord with emerging tectonic models for the mid-Proterozoic evolution of the southern margin of the North American continent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Sm–Nd ages of garnet from the northern Coast Mountains of south-eastern Alaska, USA, constrain the timing of thermal events in polyphase metamorphic rocks of the western metamorphic belt and provide new data on the spatial extent of Cretaceous regional metamorphism. Bulk garnet–whole-rock Sm–Nd ages for a sillimanite-zone amphibolite (Taku Inlet) and a biotite-zone metapelite (Tracy Arm) are 77±17 Ma and 59±12 Ma, respectively. Garnet core–whole-rock (80±9 Ma), core–matrix (84±9 Ma), rim–whole-rock (59±4 Ma) and rim–matrix (62±4 Ma) ages were obtained from a sample collected 200 m west of a Palaeocene Coast plutonic–metamorphic complex sill-like pluton that separates medium-grade metamorphic rocks from high-grade metamorphic rocks and voluminous Tertiary plutons in the core of the orogen. The garnet core ages of c. 80 Ma indicate that the regional metamorphic grade reached garnet zone prior to the intrusion of the plutons and high-grade metamorphism of rocks to the east. Similar ages for the younger plutons, the youngest garnets and the rim of a multistage garnet (c. 59 Ma) indicate a later episode of contact metamorphic garnet growth. Documentation of pre-71 Ma garnet-zone metamorphism along the western edge of the Coast plutonic–metamorphic complex confirms that Albian to Late Cretaceous metamorphism associated with crustal thickening affected this part of the orogen. The similarity of garnet Sm–Nd ages to independent age estimates for metamorphic events confirms that this technique provides useful estimates for the timing of Late Cretaceous to Tertiary thermal events. The c. 20 Myr difference between garnet core and rim ages suggests that the Sm–Nd isotope systematics of a single garnet grain can be used for distinguishing between multiple metamorphic events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Representative diamond-bearing gneisses and dolomitic marble, eclogite and Ti-clinohumite-bearing garnet peridotite from Unit I at Kumdy Kol and whiteschist from Unit II at Kulet, eastern Kokchetav Massif, northern Kazakhstan, were studied. Diamond-bearing gneisses contain variable assemblages, including Grt+Bt+Qtz±Pl±Kfs±Zo±Chl±Tur±Cal and minor Ap, Rt and Zrn; abundant inclusions of diamond, graphite+chlorite (or calcite), phengite, clinopyroxene, K-feldspar, biotite, rutile, titanite, calcite and zircon occur in garnet. Diamond-bearing dolomitic marbles consist of Dol+Di±Grt+Phl; inclusions of diamond, dolomite±graphite, biotite, and clinopyroxene were identified in garnet. Whiteschists carry the assemblage Ky+Tlc+Grt+Rt; garnet shows compositional zoning, and contains abundant inclusions of talc, kyanite and rutile with minor phlogopite, chlorite, margarite and zoisite. Inclusions and zoning patterns of garnet delineate the prograde P–T  path. Inclusions of quartz pseudomorphs after coesite were identified in garnet from both eclogite and gneiss. Other ultrahigh-pressure (UHP) indicators include Na-bearing garnet (up to 0.14 wt% Na2O) with omphacitic Cpx in eclogite, occurrence of high-K diopside (up to 1.56 wt% K2O) and phlogopite in diamond-bearing dolomitic marble, and Cr-bearing kyanite in whiteschist. These UHP rocks exhibit at least three stages of metamorphic recrystallization. The Fe-Mg partitioning between clinopyroxene and garnet yields a peak temperature of 800–1000 °C at P 〉40 kbar for diamond-bearing rocks, and about 740–780 °C at 〉28–35 kbar for eclogite, whiteschist and Ti-bearing garnet peridotite. The formation of symplectitic plagioclase+amphibole after clinopyroxene, and replacement of garnet by biotite, amphibole, or plagioclase mark retrograde amphibolite facies recrystallization at 650–680 °C and pressure less than about 10 kbar. The exsolution of calcite from dolomite, and development of matrix chlorite and actinolite imply an even lower grade greenschist facies overprint at c. 420 °C and 2–3 kbar. A clockwise P–T  path suggests that supracrustal sediments together with basaltic and ultramafic lenses apparently were subjected to UHP subduction-zone metamorphism within the diamond stability field. Tectonic mixing may have occurred prior to UHP metamorphism at mantle depths. During subsequent exhumation and juxtaposition of many other tectonic units, intense deformation chaotically mixed and mylonitized these lithotectonic assemblages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: White mica from the Liassic black shales and slates in Central Switzerland was analysed by transmission electron microscopy (TEM) and electron microprobe to determine its textural and compositional evolution during very low-grade prograde metamorphism. Samples were studied from the diagenetic zone, anchizone and epizone (T ≈100°–450 °C). Phyllosilicate minerals analysed include illite/smectite (I/S), phengite, muscovite, brammallite, paragonite, margarite and glauconite. Textural evolution primarily is towards larger, more defect-free grains with compositions that approach those of their respective end-members. The smectite-to-illite transformation reduced the amounts of the exchange components SiK−1Al−1, MgSiAl−2, and Fe3+Al−1. These trends continue to a lesser degree in the anchizone and epizone. Correlations between the proportion of smectite in I/S and the composition of I/S indicate that smectite layers may contain a high layer charge. Illite in I/S bears a compositional resemblance to macrocrystalline phengite in some samples, but is different in others. Paragonite first appears in the upper diagenetic zone or lower anchizone as an interlayer-deficient brammallite, and it may be mixed with muscovite on the nanometre scale. Owing to the small calculated structure factor for paragonite-muscovite superstructures, conventional X-ray powder diffraction cannot distinguish between mixed-layer structures and a homogeneous compositionally intermediate solid solutions. However, indirect TEM evidence shows that irregularly shaped domains of Na- and K-rich mica exist below 10 nm. Subsequent coarsening of domains at higher grades produced discrete paragonite grains at the margins of muscovite crystals or in laths parallel to the basal plane of the host muscovite. Margarite appears in the epizone and follows a textural evolution similar to paragonite in that mixtures of margarite, paragonite, and muscovite may initially occur on the nanometre scale. However, no evidence of interlayer-poor margarite has been found.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: On Holsnøy, an island off the coast of Western Norway, an anorthositic complex metamorphosed to granulite facies was partially overprinted by a later eclogite facies metamorphism. Eclogite facies rocks (containing omphacite, garnet, kyanite and hydrous phases such as mica and zoisite) occur in shear zones of various scales and adjacent to veins. Previous studies of shear zones on Holsnøy reported evidence for substantial element mobility (Jamtveit et al., 1990; Mattey et al., 1994). In this work, we compare chemical compositions of granulite and its undeformed eclogitized equivalent adjacent to veins in locations where a single band of granulite can be traced and sampled as it approaches the vein. This tracing is crucial because the pre-granulite rocks cover a substantial compositional range, indicative of a petrologically variable protolith consisting of anorthosite, gabbro and jotunite. We analysed multiple core samples collected across nine separate granulite-eclogite transition zones located at veins in anorthositic, jotunitic and gabbroic protoliths for major and trace elements. For each transition, no compositional difference between the average granulite and average eclogite composition was found at the 90% confidence level except for LOI (loss on ignition), which was consistently significantly higher in the eclogite samples. Although not significant at the 90% confidence level for any single traverse, the average eclogite concentrations of SiO2 , Na2O, Cs, As and Br exceed the average granulite concentrations for eight or all nine of the traverses. For most traverses, statistical analysis of the data limits any gain of SiO2 in the eclogites to no more than a few relative per cent. Other than the introduction of volatile substances, presumably an H2O-rich fluid, eclogitization associated with vein formation was essentially isochemical.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Inc
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A large mass of dolomitic marble including many eclogite blocks occurs in orthogneisses of the Rongcheng area of the Su-Lu province, eastern China. The marble consists mainly of dolomite, calcite (formerly aragonite), graphite, forsterite, diopside, talc, tremolite and phlogopite. Aggregates of talc and calcite occur at the boundary between dolomite and diopside. Tremolite is a reaction product between talc and calcite. Eclogite blocks are rimmed by dark green amphibolite. The primary mineral assemblage in the core of eclogite is Na-bearing garnet (up to 0.2 wt% Na2O), omphacitic pyroxene, clintonite and rutile. Secondary minerals are pargasitic/edenitic amphibole, plagioclase, sodic diopside, chlorite, zoisite and titanite. The peak metamorphic conditions, based on stability of the dolomite+forsterite+aragonite (now calcite)+graphite assemblage, under conditions where tremolite is unstable, are estimated at T =610–660 °C and P=2.5–3.5 GPa (for XCO=0.001). A reaction between dolomite and diopside to form talc under tremolite-unstable conditions indicates a temperature decrease under ultra-high-pressure conditions (P 〉2.4 GPa, XCO〈0.0013). The formation of secondary tremolite is consistent with a nearly adiabatic pressure decrease post-dating the ultra-high-pressure metamorphism. The temperature decrease under ultra-high-pressure conditions preceding decompression may reflect the underplating of a cold slab, and the rapid decompression probably corresponds to the upwelling stage promoted by the delamination of a downwelling lithospheric root. The P–T  conditions of the amphibolitization stage are estimated at 〈0.9 GPa and 〈460 °C, and are similar to conditions recorded by the surrounding orthogneisses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Macroscopic textures resulting from different atomic-scale mechanisms for metamorphic crystallization display different degrees of order, clustering, intergrowth and relative isolation of porphyroblasts. Data on the sizes and locations of thousands of crystals in a three-dimensional volume are required to identify reliably the mechanisms governing nucleation and growth of porphyroblasts from these textural features. These data can now be acquired by means of high-resolution computed X-ray tomography. Numerical models that simulate porphyroblast formation governed by either interface-controlled or diffusion-controlled reaction mechanisms indicate that quantitative textural analysis can discriminate between these possibilities. These numerical models also allow a comparison between textures predicted for different crystallization mechanisms and textures measured in natural samples, from which inferences can be drawn concerning the relative importance of these mechanisms in nature. An independent test of the validity of such inferences is possible for porphyroblasts such as garnet that may preserve prograde growth zoning and allow the examination of normalized radius–rate relations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Both magmatic and eclogitic parageneses are preserved in the gabbros of western Alpine ophiolites. Samples with relic magmatic mineralogies display partial transformation to eclogitic assemblages along cracks and grain boundaries. Gabbros with eclogitic mineralogies contain zoned pseudomorphs after olivine, comprising talc-rich cores with kyanite, Mg-chloritoid and omphacite in outer cores and garnet rims. The compositional zonation of these olivine pseudomorphs closely parallels that shown by olivines in hydrothermally altered ocean-floor gabbros.The eclogitic gabbros are hydrous, containing paragonite, zoisite and other water-bearing minerals, and it has been suggested that water was introduced during high-pressure metamorphism. However, the similarity of olivine alteration patterns to those of ocean-floor gabbros suggests that hydration and local metasomatism leading to the stability of aluminous minerals in olivine sites occurred during hydrothermal alteration prior to subduction. Oxygen-isotope systematics are consistent with this proposal: Alpine gabbros with magmatic relics have a mean δ18O value of 5.7±0.7, similar to that of unaltered oceanic crust, whereas eclogitic gabbros have a mean δ18O value of 4.8±0.9.This statistically significant difference is consistent with the eclogitic samples having undergone high-temperature ocean-floor alteration. The preservation of magmatic and hydrothermal δ18O values in ocean-floor gabbros that have been metamorphosed at 2–2.5 GPa (60–75 km) implies that the deeper levels of ocean crust have not experienced pervasive fluid flow during subduction or subsequent exhumation. Magmatic assemblages were preserved despite an overstep of eclogitization reactions by at least 0.6–1.1 GPa implying that equilibrium was not attained in undeformed parts of the system because of slow diffusion in water-deficient rock volumes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 15 (1997), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Rare earth element (REE) and yttrium concentrations of coexisting monazite and xenotime were determined from a suite of seven metapelites from the Variscan fold belt in NE Bavaria, Germany. The metapelites include a continuous prograde, mainly low-P (3–5 kbar) metamorphic profile from greenschist (c. 400 °C) to lower granulite facies conditions (c. 700 °C). The LREE (La–Sm) are incorporated preferentially in monoclinic monazite (REO9 polyhedron), whereas the HREE plus Y are concentrated in tetragonal xenotime (REO8 polyhedron). The major element concentrations of both phases in all rocks are very similar and do not depend on metamorphic grade. Monazite consists mainly of La, Ce and Nd (La0.20–0.23, Ce0.41–0.45, Nd0.15–0.18)PO4, all other elements are below 6 mol%. Likewise, xenotime consists mainly of YPO4 with some Dy and Gd solid solutions (Y0.76–0.80, Dy0.05–0.07, Gd0.04–0.06). In contrast, the minor HREE concentrations in monazite increase strongly with increasing metamorphic grade: Y, Dy and Gd increase by a factor of 3–5 from greenschist to granulite facies rocks. Monazite crystals often show zonation with cores low in HREE and rims high in HREE that is interpreted as growth zonation attained during prograde metamorphism. Similarly, Sm and Nd in xenotimes increase by a factor of 3–4 with increasing metamorphic grade. Prograde zonation in single crystals of xenotime was not observed. The XHREE+Y in monazite and XLREE in xenotime of the seven rocks define two limbs along the strongly asymmetric miscibility gap from c. 400 °C to 700 °C. The empirical calibration of the monazite miscibility gap limb coexisting with xenotime is appropriate for geothermometry. Due to its contents of U and Th, monazite has often been used for U–Pb age determination. The combination of our empirical thermometer on prograde zoned monazite along with possible age determination of zoned single crystals may provide information about prograde branches of temperature–time paths.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The In Ouzzal terrane (IOT) or In Ouzzal granulite unit (IOGU) is an elongated Palaeoproterozoic block within the Neoproterozoic Pan-African belt of north-west Africa. The granulites derive from Archaean protoliths that include a large volume of metasediments which were deposited on a 3.2-Ga gneissic basement. Near-peak granulite facies conditions between 2.17 and 2 Ga were estimated at P=10 kbar and T rising from 800 to 1000°C. Premetamorphic orthogneisses were intruded at 2.5 Ga, and followed by the emplacement of syn- to late-kinematic charnockites, syenites and carbonatites at around 2 Ga. Cooling of the granulites occurred till 1800 Ma. Shortly after its exhumation coeval with crustal extension and related alkaline magmatism in adjacent areas, the IOT was buried beneath late Palaeoproterozoic and Neoproterozoic cover sequences, and then behaved as a rigid block. Both margins are lithospheric faults, as evidenced by the occurrence of shear-zone-related mafic and felsic plutons. Pan-African tectonothermal events were negligible in the north, but granulites in the south were significantly reworked under lower greenschist facies conditions during the northern motion of the block with respect to both the western and the eastern Pan-African terranes. The Cambrian molasse, associated with widespread alkaline volcanism and subvolcanic granites, is horizontal in the north. The IOT, which was part of a larger continental mass including its counterpart in northern Mali, is interpreted as an exotic terrane which may have docked during Pan-African plate convergence and lateral collision. The unchanged pediplain since c. 1.7 Ga in the north suggests that the IOT is underlain by thick Palaeoproterozoic lithospheric mantle, whereas its southern part is probably allochthonous and overlies Pan-African structural units.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Al-Mg granulites, with cordierite, garnet, sapphirine, orthopyroxene, sillimanite, spinel, phlogopite, K-feldspar, plagioclase and variable quartz from Ihouhaouene (In Ouzzal, Algeria), display a range of decompression textures involving the breakdown of orthopyroxene and sillimanite, and of garnet. The succession of parageneses suggests that the P–T–t evolution corresponds to decompression with cooling from peak conditions of about 950°C and 10 kbar. This decompression path is obtained from the paragenetic analysis in the FMAS system. However, according to current KFMASH grids, this P–T–t evolution should take place outside the stability field of phlogopite+quartz; yet this assemblage is probably stable during most of the P-T evolution, notably during peak metamorphism. This discrepancy is interpreted as the effect of the high content of F in phlogopite which should shift its stability limit towards higher temperature. The consequences of this shift on the phase relationships in the KFeMASH system are investigated and it is concluded that a topological inversion could exist in the F-bearing system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Quartz Al–Mg granulites exposed at In Hihaou, In Ouzzal (NW Hoggar), preserve an unusual high-grade mineral association stable at temperatures up to 1050°C, involving the parageneses orthopyroxene–sillimanite–garnet–quartz, sapphirine–quartz and spinel–quartz. The phase relationships within the FMAS system show that a continuum exists between the earlier prograde reaction textures and those of the later decompressive event. The following mineral reactions involving sillimanite are deduced: (1) Grt+Qtz→Opx+Sil, (2) Opx+Sil→Grt+Spr+Qtz, (3) Grt+Sil+Qtz→Crd, (4) Grt+Sil→Crd+Spr, (5) Grt+Sil+Spr→Crd+Spl, (6) Grt+Sil→Crd+Spl, (7) Grt+Crd+Sil→Spl+Qtz and (8) Grt+Sil→Spl+Qtz. Minerals in quartz Al–Mg granulites display compositional variations consistent with the observed reactions. The Mg/(Mg+Fe2+) range of the main minerals is as follows: cordierite (0.81–0.97), sapphirine (0.77–0.88), orthopyroxene (0.65–0.81), garnet (0.33–0.64) and spinel (0.23–0.56). The reaction textures and the evolution of the mineral assemblages in the quartz Al–Mg granulites indicate a clockwise P–T trajectory characterized by peak conditions of at least 10 kbar and 1050°C, followed by decompression from 10 to 6 kbar at a temperature of at least 900°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Many thermodynamic calculations relating to metamorphic rocks hinge on the thermodynamic parameters of garnet. Though some models are widely used, it is not clear whether their underlying premise is correct: that a single set of equations can be written for the activities of the end-members of garnet covering the whole compositional range. A voluminous body of data can be used to constrain the thermodynamics of garnet, namely Fe–Mg exchange experimental data involving garnet and another mineral, particularly clinopyroxene, orthopyroxene and olivine. However, examination of these data reveals inconsistencies, apparently stemming from differences between the thermodynamics of low-Ca and high-Ca garnets, with a boundary of about XgCa= 0.15. In the two regions, for the high P–T of the experimental data, the thermodynamics follow the regular model, with values for the interaction parameters in the low Ca region of about wgFeMg= 50R and waFe–wgMgCa=– 1300R, in which R is the gas constant, and in the high Ca region of about wgFeMg= 1100R and wgCaFe–wgMgCa=– 2200R. Using the subregular, rather than the regular, model does not remove the discrepancy. The cause of the discrepancy needs to be identified if reliable calculations on rocks are to be made.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In the Hlinsko region (Variscan Bohemian Massif, Czech Republic) a major extensional shear zone separates low-grade metasedimentary series (Hlinsko schists) and high-grade rocks of the Moldanubian terrane (Svratka Crystalline Unit). During late-Variscan extension, a tonalite intruded syntectonically into the normal ductile shear zone, and caused contact metamorphism of the overlying schists. Concurrent syntectonic sedimentation of a flysch series took place at the top of the hangingwall schists. In order to decipher the detailed petrological evolution of the Hlinsko unit situated in the hangingwall of this tectonic contact, a phase diagram approach and petrogenetic grids, calculated with the thermocalc computer program, were used.The crystallization/deformation relationships and the paragenetic analysis of the Hlinsko schists define a P–T path with an initial minor increase in pressure followed by cooling. Calculated pseudosections constrain this anticlockwise P-T evolution to the upper part of the andalusite field between 0.36 and 0.40 GPa for temperatures ranging from 570 to 530°C. A low aH2O is required to explain the presence of andalusite-biotite-bearing assemblages, and could be related to the presence of abundant graphite.In contrast, the footwall rocks of the Svratka Crystalline Unit record decompression from around 0.8 GPa at a relatively constant temperature, followed by cooling. Thus, the footwall and the hangingwall units display opposite, but convergent P–T histories. Decompression in the footwall rocks is related to a rapid exhumation. We propose that the inverse, anticlockwise P–T path recorded in the hangingwall pelites is related to the rapid, extension-controlled sedimentation of the overlying flysch series.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Rock fracture enhances permeability and provides pathways through which fluids migrate. During contact metamorphism, fluids contained in isolated pores and fractures expand in response to temperature increases caused by the dissipation of heat from magmas. Heat transport calculations and thermomechanical properties of water-rich fluids demonstrate (1) that thermal energy is a viable mechanism to produce and maintain pore fluid pressure (Pf) in a contact metamorphic aureole; (2) that the magnitude of Pf generated is sufficient to propagate fractures during the prograde thermal history (cause hydrofracture) and enhance permeability; and (3) that Pf-driven fracture propagation is episodic with time-scales ranging from years to thousands of years. Because Pf dissipation is orders of magnitude faster than P, f buildup, Pf oscillations and cyclical behaviour are generated as thermal heating continues. The Pf cycle amplitude depends on the initial fracture length, geometry and the rock's resistance to failure whereas the frequency of fracture depends on the rate of heating. Consequently, oscillation frequency also varies spatially with distance from the heat source.Time series of fluid pressures caused by this process suggest that cyclical fracture events are restricted to an early time period of the prograde thermal event near the intrusive contact. In the far field, however, individual fracture events have a lower frequency but continue to occur over a longer time interval. Numerous fracture cycles are possible within a single thermal event. This provides a provisional explanation for multiple generations of veins observed in outcrop. P f cycling and oscillations may explain several petrological features. If pore fluids are trapped at various positions along a pressure cycle, the large amplitude of Pf variations for small fractures may account for different pressures recorded by fluid inclusions analysed from a single sample. Pf oscillations, during a single thermal episode, also drive chemical reactions which can produce complex mineral textures and assemblages for discontinuous reactions and/or zoning patterns for continuous reactions. These can mimic polymetamorphic or disequilibrium features.Temporal aspects of fracture propagation and permeability enhancement also constrain the likely timing of fluid flow and fluid-mineral interactions. These data suggest that fluid flow and fluid-mineral reactions are likely to be restricted to an early period in the prograde thermal history, characterized by high Pf coincident with relatively high temperatures, fracture propagation and consequent increases in permeability. This early prograde hydration event is followed by diffusional peak metamorphic reactions. This relationship is evident in the complex mineralogical textures common in some metamorphosed rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Andalusite-bearing veins formed during contact metamorphism in the aureole of the Vedrette di Ries tonalite. In the veins, quartz crystals that are completely armoured by andalusite or that occur in strain shadow areas contain three generations of fluid inclusions: low-salinity H2O-CO2-CH4 mixtures with CH4/(CO2+ CH4) ± 0.35 (type A); low-salinity aqueous fluids (type B); H2O-free, CO2-CH4 fluids with the same carbonic speciation as A (type C). Carbonic types A and C typically have a dark appearance, which is attributed to graphite coatings on inclusion walls. Microstructural analysis of the host quartz and calculated densities indicate that type A inclusions were likely trapped during vein formation. These inclusions underwent strain-assisted re-equilibration during cooling that resulted in density increases without change of composition. After the rocks had cooled below about 350 ° C, type C inclusions appear to have formed from one of the immiscible fractions after unmixing of the H2O-CO2-CH4 fluid mixtures. Aqueous type B inclusions, apparently trapped between 225 and 350 ° C, could represent an independent fluid, or could be the H2O-rich fraction of unmixed type A fluids. Taking account of the uncertainties, the composition and density of the complex type A inclusion fluids are in good agreement with the properties of primary fluids calculated from the petrological data. The fluid inclusion data support the model of vein formation by hydrofracturing as a result of dehydration of graphitic metapelites. These new results also demonstrate the importance of considering strain in the interpretation of metamorphic fluid inclusions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Aqueous fluid released in metamorphism is transported upwards from depth to the Earth's surface. I propose a hydrofracturing model for the fluid transport. In the model, fluid is transported by the upward propagation of a two-dimensional vertical fluid-filled crack from a fluid reservoir (e.g. overpressured compartment under a seal) at depth to the Earth's surface; fluid is injected consecutively from the reservoir into the crack at a given (but not necessarily constant) injection rate; some of the injected fluid is lost by infiltration from the crack walls into the surrounding permeable rock. An approximate solution of the crack propagation is obtained using fluid dynamics for turbulent film flow and linear elastic fracture mechanics. The solution shows the transition from a regime in which the excess pressure of the fluid in the reservoir drives the propagation to a regime in which the buoyancy of the fluid in the crack drives the propagation. For example, if the net injection rate of H2O is 1 m2/s, the regime transition occurs when the vertical crack length becomes 280 m; after the transition, the propagation velocity and average aperture are constant: 21 m/s and 4.8 cm. If the injection rate is lower than a critical value, hydrofracturing cannot be an effective mode for the fluid transport because of the significant fluid loss by infiltration from the crack walls into the surrounding permeable rock. Assuming a fluid-saturated crust with hydrostatic pore fluid pressure, a lower limit can be estimated for the injection rate required to transport H2O by hydrofracturing without significant fluid loss. For example, the lower limit for transport from a depth of 15 km to the Earth's surface is estimated at 0.2 m2/s if the crustal permeability is 10-17 m2. The lower limit decreases with decreasing crustal permeability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Microstructural and chemical analysis of plagioclase in 20 superficially similar amphibolite facies ductile shear zones in metagabbors and amphibolites of the Ivrea Zone in Italy reveals significant differences in An and Ba contents. Plagioclase, which was deformed at P-T conditions lower than those of the wall rocks, occurs in the following four different microstructural situations with different chemical compositions: (i) relatively undeformed porphyroclasts, (ii) dynamically recrystallized grains and subgrains rimming the porphyroclasts, (iii) infill of microcracks cross-cutting the porphyroclasts and (iv) fine-grained recrystallized grains in the matrix of the shear zones. The differences in the An and Ba contents are caused by partial chemical equilibration of plagioclase in the shear zones during and partly after deformation. Changes in An and Ba contents were caused by fluid-assisted grain-boundary migration recrystallization, as well as by solid-state diffusion, while fluid activity was high. The relation between the composition and microstructures of the plagioclase in the shear zones indicates that in the different shear zones, fluids ceased to be active during different stages in the late shear zone deformation history.The interpretation of the variations in composition and microstructures reveals that only grains that developed by grain-boundary migration recrystallization and that are not adjacent to porphyroclasts reflect P-T conditions during the dominant shear-zone deformation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract TEM and XRD techniques were used to study crystal growth characteristics of the fabric-forming phyllosilicates which developed in response to low-grade metamorphism and tectonic imbrication in part of the Southern Uplands thrust terrane. Prograde regional metamorphism, ranging from late diagenesis through the anchizone to the epizone, was accompanied by the development of a slaty cleavage which is commonly bedding-parallel. TEM-measured mean thicknesses of white mica and chlorite crystallite populations increase with advancing grade and correlate with XRD-measured crystallinity indices. Analytical TEM data show that prograde changes in composition lead to a net loss of Si, Ca and minor Fe from the fabric-forming phyllosilicates. White micas are paragonite-poor phengites with a mean b lattice parameter of 9.037 Å, and indicate an intermediate pressure series of metamorphism with a field gradient of 〈25° C km-1. Chlorite compositions evolved from diabantite (with intergrown corrensite) to ripidolite over an estimated temperature range of 150–320° C. Field gradient and temperature estimates suggest that crystal growth and fabric development occurred at burial depths ranging from 6 km to at least 13 km in the thrust terrane. During late diagenesis, crystal growth of white mica and chlorite was predominantly a consequence of polytypic and phase transitions, and resulted in similar size distributions which resemble typical Ostwald ripening curves. Under anchizonal and epizonal conditions, white mica grew more rapidly than chlorite because of its greater ability to store strain energy and recover from subgrain development; as a result crystal thickness distributions are not typical of Ostwald ripening. In contrast, chlorite crystals which grew under these conditions developed subgrain boundaries at high strain rates which were only partially recovered at low strain rates; these retained dislocations reduce the crystallite thicknesses detected by TEM and XRD, compared with those of white mica. These differences in strain-induced crystal growth indicate that white mica (illite) and chlorite crystallinity indices are likely to show significant differences where low-grade metamorphism is closely associated with tectonic fabric development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The metamorphic history of the Archaean Superior Province crystalline basement in the Palaeoproterozoic Ungava Orogen attests to the importance of structural and geohydrological controls on a retrograde amphibolite-granulite transition. Two distinct metamorphic suites, separated in age by nearly one billion years, are recognized in extensively exposed tonalitic to dioritic metaplutonic gneisses. The older suite comprises c. 2.7-Ga granulite facies assemblages (orthopyroxene-clinopyroxene-hornblende-plagioclase-ilmenite ± biotite ± quartz) that record moderate pressures (±5 kbar) and high temperatures (±800° C). A younger, c. 1.8-Ga suite resulted from amphibolitization of the granulites and is characterized by regionally extensive amphibolite facies mineral zones that broadly parallel the basal décollement of the overlying Proterozoic Cape Smith Thrust Belt. Deformation/mineral growth relationships in the amphibolitized basement indicate that extensive hydration and re-equilibration of the Archaean granulites occurred during thrust belt deformation. The transition from granulite facies to amphibolite facies assemblages is characterized by the growth of garnet-hornblende-quartz ° Cummingtonite coronas between plagioclase and orthopyroxene-clinopyroxene, as well as titanite coronas on ilmenite. Multi-equilibrium thermobarometry on the coronitic assemblages documents re-equilibration of the granulitic gneiss to 7.7 kbar at 644° C in the south and 9.8 kbar at 700° C in the north. The variably deformed, amphibolite facies domain sandwiched between the coronitic garnet zone and the basal décollement is marked by significant metasomatic changes in major element concentrations within tonalite. These changes are compatible with equilibrium flow of an aqueous-chloride fluid down a temperature gradient. The source of fluids for basement hydration/metasomatism is interpreted to be dehydrating clastic rocks in the overlying thrust belt, with fluid flow probably focused along the basal décollement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd.
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Two high-grade gneissic complexes of the Western Sudetes, the Góry Sowie Block and the Śnieżnik area complex, contain small, predominantly felsic granulitic inliers with minor Cpx-bearing intercalations. The P–T  conditions of the granulite facies events and of the subsequent re-equilibration are estimated using the ternary feldspar thermometer and the Geo-Calc computer program (version TWQ, Jan 92).In the Góry Sowie granulites, the peak granulitic event occurred at c. 18–20 kbar and 900 °C, and the late decompressive re-equilibration within a range of 4–10 kbar and temperatures decreasing to 600–700 °C. The latter event is thought to have coincided with the main metamorphic phase in the surrounding gneisses.The P–T  estimates are more scattered in the Śnieżnik granulites, but the peak conditions for the granulitic event are estimated at pressure over 22 kbar (possibly around 30 kbar) and temperature exceeding 900 °C. The analysed samples from the Śnieżnik area bear no significant evidence of lower-pressure re-equilibration.Integrating the thermobarometric data and some age constraints indicates that the Góry Sowie granulites belong to the early stage ‘type I’ granulites of the Variscan Belt (c. 400 Ma old), which are interpreted as fragments of continental crustal materials subducted to mantle depths in the earliest stages of the Variscan orogeny. The Śnieżnik granulites are more problematic; they may belong to a ‘younger high-P suite’ (c. 350 Ma old), widespread in the southern and eastern parts of the Bohemian Massif, and possibly related to the climax of the Variscan continent–continent collision.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd.
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Cretaceous granulite facies metamorphism in the Fiordland area of New Zealand has distinctive mineralogical, textural and structural features that set it apart from most other regional metamorphic belts. The metamorphism, developed over a 30×150-km area and the consequence of a 20-km-thick increment to crustal thickness, is closely associated in space and time with a large plutonic complex, the Western Fiordland Orthogneiss (WFO). Although temperatures and pressures as high as 700 °C and 12 kbar were attained, the metamorphic overprint on earlier low-pressure assemblages is weak and incomplete. Little strain accompanied the metamorphism. The temperature threshold at which metamorphic recrystallization is recorded is over 500 °C. Zoned garnets are preserved at unusually high temperatures, indicating duration of metamorphism on the order of 10 times shorter than in most other regional terranes. This pattern of features bears close similarity to metamorphism in the Coast Plutonic Complex in North America, where a mechanism of ‘magma loading’ has been invoked. In Fiordland, the high-pressure metamorphism can be explained by depression of country rock under a crustal zone that is inflated by intrusion of the WFO. Regional structure of the WFO as a horizontally sheeted complex suggests that the pluton was emplaced by vertical displacement of country rock, and supports the magma loading model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Raman spectral analyses of carbonaceous material (CM) extracted from pelitic samples along two sections traversing the metamorphic belt of Taiwan were carried out in the present study. The results show similar spectral variations of CM with metamorphic grade as those documented in the literature. However, continuous sampling from zeolite facies through prehnite–pumpellyite facies to greenschist facies metamorphic rocks in the present study does reveal some interesting features on the Raman spectra of CM that were not noted before. Both the Raman D (disordered-)/O (ordered-) peak area (i.e. integrated intensity) ratio and the D/O peak width (i.e. full width at half maximum, FWHM) ratio of the CM decrease with progressive metamorphism, but the most prominent change in the D/O peak area ratio occurs in samples of lower greenschist facies metamorphic grade, while the most significant decrease in the D/O peak width ratio occurs in samples near the boundary of prehnite–pumpellyite facies and greenschist facies. This phenomenon is interpreted as a result of the decoupling of the changing rates of in-plane crystallite size and degree of defects of CM with progressive metamorphism. It is postulated that the Raman spectrum of CM can serve as a metamorphic grade indicator to distinguish samples of prehnite–pumpellyite facies metamorphic grade from those of greenschist facies metamorphic grade.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Moderately manganiferous siliceous pelagites near Meyers Pass, Torlesse Terrane, South Canterbury, New Zealand, have been metamorphosed in the prehnite–pumpellyite facies. A conodont colour index measurement suggests T max in the range 190–300 °C. Porphyroblastic manganaxinite, manganoan pumpellyite, manganoan chlorite and trace spessartine-rich garnet and sphalerite have formed in an extremely fine-grained quartz–albite–berthierine–phengite–titanite groundmass. Porphyroblastic manganaxinite semischists and schists are distinctive rocks in prehnite–pumpellyite to lower-grade greenschist and blueschist facies of New Zealand and Japan. Mn in the manganoan pumpellyites substitutes for Ca in W sites. Total Fe/(Fe+Mg) ratios in chlorite are dependent on oxidation state, being ≤0.22 in red hematitic hemipelagites, and ≥0.61 in low-f O2 grey metapelagites. In the low-f O2 metapelagites, manganoan berthierine with little or no chlorite is inferred in the groundmass and iron-rich chlorite occurs as porphyroblasts and veinlets, whereas in the red rocks, Mg-rich chlorite occurs both in groundmasses and veinlets. Variably high Si in the manganoan chlorites correlates with evidence for contaminant phases. The Mn content of chlorite contributing to garnet growth is dependent on metamorphic grade; incipient spessartine indicates a saturation value of 6–8% MnO in chlorite in low-f O2 rocks at Meyers Pass. Lower MnO contents are recorded for otherwise analogous rocks with increasing metamorphic grade, but at a given grade coexisting chlorite and garnet are richer in Mn where f O2 is high. Manganaxinite and manganoan pumpellyite also contributed to reactions forming grossular–spessartine solid solutions. Formation of garnet in siliceous pelagites is dependent on both Mn and Ca content. The spessartine component increases with grade into the greenschist facies. Partial recrystallization of berthierine to chlorite and the growth of porphyroblastic patches of other minerals was facilitated by brittle fracture and access of fluids to an otherwise impermeable matrix; to this extent the very low-grade metamorphism was episodic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Carbon isotope fractionations between calcite and graphite in the Panamint Mountains, California, USA, demonstrate the importance of mass balance on carbon isotope values in metamorphosed carbon-bearing minerals while recording the thermal conditions during peak regional metamorphism. Interbedded graphitic marbles and graphitic calcareous schists in the Kingston Peak Formation define distinct populations on a δ13C(gr)–δ13C(cc) diagram. The δ13C values of both graphite and calcite in the marbles are higher than the values of the respective minerals in the schists. δ13C values in both rock types were controlled by the relative proportions of the carbon-bearing minerals: calcite, the dominant carbon reservoir in the marble, largely controlled the δ13C values in this lithology, whereas the δ13C values in the schists were largely controlled by the dominant graphite. This is in contrast to graphite-poor calcsilicate systems where carbon isotope shifts in carbonate minerals are controlled by decarbonation reactions.The marbles record a peak temperature of 531±30 °C of a Jurassic low-pressure regional metamorphic event above the tremolite isograd. In the schists there is a much wider range of recorded temperatures. However, there is a mode of temperatures at c. 435 °C, which approximately corresponds to the temperatures of the principal decarbonation metamorphic reactions in the schists, suggesting that the carbon exchange was set by loss of calcite and armouring of graphite by newly formed silicate minerals. The armouring may explain the relatively large spread of apparent temperatures. Although the modal temperature also corresponds to the approximate temperature of the Cretaceous retrograde event, retrograde exchange is thought less likely due to very slow exchange rates involving well-crystallized graphite, armouring of graphite by silicates during the earlier event, and because of other barriers to retrograde carbon exchange. Thus, only the calcite–graphite carbon isotope fractionations recorded by the marbles demonstrate the high-temperature conditions of the low-pressure Jurassic metamorphic event that was associated with the emplacement of granitic plutons to the west of the Panamint Mountains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Seventy-five spatially orientated, serial thin sections cut from a single rock containing ‘millipede’ porphyroblast microstructure from the Robertson River Metamorphics, Australia, reveal the three-dimensional (3-D) geometry of oppositely concave microfolds (OCMs) that define the microstructure. Electronic animations showing progressive serial sections of the 3-D microstructure are made available via the World Wide Web. The OCM amplitudes decrease regularly from a maximum in near-central sections to a minimum in near-marginal sections, whereas the OCM interlimb angles increase regularly from a minimum in near-central sections to a maximum in near-marginal sections. These observations illustrate that the OCMs are noncylindrical surfaces with culminations located in near-central sections. Because the porphyroblast cores appear to have been present before significant development of the syn-OCM foliation, all of the OCMs were formed by heterogeneous extension around these cores. The overall geometry of the OCMs described here reflects the strain state, and cannot be used to constrain deformation paths.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The gneisses of the Makuti Group in north-west Zimbabwe are characterized by complex geometries that resulted from intense non-coaxial deformation in a crustal scale high-strain zone that accommodated extensional deformation along the axis of the Zambezi Belt at c. 800 Ma. Within low-strain domains in the Makuti gneisses, undeformed metagabbroic lenses preserve eclogite and granulite facies assemblages, which record a part of the metamorphic history that predates Pan-African events. Eclogitic rocks can be subdivided into: (1) corona-textured metagabbros that preserve igneous textures, and (2) garnet–omphacite rocks in which primary textures are destroyed. The lenses of eclogitic rocks are enveloped in a mantle of garnet–clinopyroxene–hornblende gneiss, which is a common rock type in the Makuti gneisses. The eclogites preserve multi-staged, domainal, symplectic reaction textures that developed progressively as the rocks experienced loading followed by decompression–heating. In the metagabbros, the original clinopyroxene, plagioclase and olivine domains acted separately during the peak of metamorphism, with plagioclase being replaced by garnet and kyanite, and olivine being replaced by orthopyroxene and possibly omphacite. The peak assemblage was overprinted by: (1) the multi-mineralic corona assemblage pargasite–orthopyroxene–spinel–plagioclase replacing garnet–kyanite–clinopyroxene (possibly at c. 19 kbar, 760±25 °C); (2) orthopyroxene–pargasite–plagioclase–scapolite coronas replacing orthopyroxene (15±1.5 kbar, 750±50 °C); and (3) moats of orthopyroxene–plagioclase replacing garnet (10±1 kbar, 760±50 °C). The garnet–omphacite rocks record similar peak conditions (15±1.1 kbar, 760±60 °C). Garnet–clinopyroxene–hornblende–plagioclase gneisses envelop the eclogites and record matrix conditions of 11±1.5 kbar at 730±50 °C using assemblages that are oriented in the regional fabric. These rocks are characterized by decompression-heating textures, reflecting temperature increases during exhumation of the Makuti gneisses.The eclogite facies rocks formed during a collisional event prior to 850 Ma. Their formation could be related to a suture zone that developed along the axis of the Zambezi Belt during the formation of Rodinia (between 1400 and 850 Ma). The main deformation-metamorphism in the Makuti gneisses occurred around 800 Ma and involved extension and exhumation of the high-P rocks (break-up of Rodinia), which experienced a high-T metamorphic overprint. Around 550–500 Ma, a collisional event associated with the formation of Gondwana resulted in renewed burial and metamorphic recrystallization of the Makuti gneisses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A suite of metapelitic, basic and quartzofeldspathic rocks intruded by enderbitic gneiss from the southernmost tip of the Eastern Ghats Belt, India, and metamorphosed at c. 750–800 °C, 6 kbar, were subjected to repeated ductile shear deformation, hydration, cooling and accompanying alkali metasomatism along narrow shear zones. Gedrite-bearing assemblages developed in the shear zones traversing metapelitic rocks. Interpretation of the reaction textures in an appropriate P–T  grid in the system FMASH, an isothermal–isobaric μH2O–μNa2O grid in the system NFMASH, and geothermobarometric data suggest a complex evolutionary history for the gedrite-bearing parageneses. Initially, gedrite-bearing assemblages were produced due to increase in μNa2O at nearly constant but high μH2O accompanying cooling. Gedrite was partially destabilized to orthopyroxene+albite due to progressively increasing μNa2O. During further cooling and at increased μH2O a second generation of gedrite appeared in the rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Alternative assignment of invariant point stabilities in a possible P–T  phase diagram is given by a family of grids that derives from a form of the Euler equation. Invariant points are represented by great circles that divide the surface of a sphere (the Euler sphere) into polygonal regions that correspond to the number of potential solutions or grids in n-component systems with n+3 non-degenerate phases. A particular invariant point is stable in all grids on one side of the great circle and metastable on the other. The advantage of this representation is the ease and efficiency by which all grids consistent with experimental and theoretical constraints can be identified. The method is well suited for systems of n+3 phases in which the thermochemical data necessary for direct calculation of the phase diagram is either uncertain or non-existent for one or more of the phases. The mass balance equations among the n+3 phases of interest define the Euler sphere for any particular system. There is a unique Euler sphere for unary systems, and another for binary systems. Ternary and quaternary systems have four and 11 different types of Euler spheres, respectively. In the ternary case with six phases, the 16 non-degenerate chemographies belong to four groups that are associated with the four Euler spheres. An analysis of those groups shows a close relationship between the topologies of the chemographies and the topologies of the grids represented on the Euler sphere. Euler spheres for degenerate chemographies are characterized by a smaller number of spherical polygons. A useful application of the Euler sphere concept is the systematic derivation of possible FMAS petrogenetic grids from subsystem constraints. Assumption of just one stable invariant point in each of MAS and FAS systems is consistent with seven FMAS grids involving cordierite, garnet, hypersthene, quartz, sapphirine, sillimanite and spinel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Meta-peridotites outcropping at different structural levels within the Alpine metamorphic complex of the Cycladic island of Naxos were studied to re-examine their metamorphic evolution and possible tectonic mechanisms for emplacement of mantle material into the continental crust. The continental margin section exposed on Naxos, consisting of pre-Alpine basement and c. 7 km thick Mesozoic platform cover, has undergone intense metamorphism of Alpine age, comprising an Eocene (M1) blueschist event strongly overprinted by a Miocene Barrovian-type event (M2). Structural concordance with the country rocks and metasomatic zonation at the contact with the felsic host rocks indicate that the meta-peridotites have experienced the M2 metamorphism. This conclusion is supported by the similarity between metamorphic temperatures of the ultrabasic rocks and those of the host rocks. Maximum temperatures of 730–760 °C were calculated for the upper-amphibolite facies meta-peridotites (Fo–En–Hbl–Chl–Spl), associated with sillimanite gneisses and migmatites. Relict phases in ultrabasics of different structural levels indicate two distinct pre-M2 histories: whereas the cover-associated horizons have been affected by low-grade serpentinization prior to metamorphism, the basement- associated meta-peridotites show no signs of serpentinization and instead preserve some of their original mantle assemblage. The geochemical affinities of the two groups are also different. The basement-associated meta-peridotites retain their original composition indicating derivation by fractional partial melting of primitive lherzolite, whereas serpentinization has led to almost complete Ca-loss in the second group. The cover-associated ultrabasics are interpreted as remnants of an ophiolite sequence obducted on the adjacent continental shelf early in the Alpine orogenesis. In contrast, the basement-associated meta-peridotites were tectonically interleaved with the Naxos section at great depth during the Alpine collision and high P/T  metamorphism. Their emplacement at the base of the orogenic wedge is inferred to have involved isobaric cooling from temperatures of c. 1050 °C within the spinel lherzolite field to eclogite facies temperatures of c. 600 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Fluid inclusion salinities from quartz veins in the Otago Schist, New Zealand, range from 1.0 to 7.3 wt% NaCl eq. in the Torlesse terrane, and from 0.4 to 3.1 wt% NaCl eq. in the Caples terrane. Homogenization temperatures from these inclusions range from 124 to 350 °C, with modal values for individual samples ranging from 163 to 229 °C, but coexisting, low-salinity inclusions exhibiting metastable ice melting show a narrower range of T h from 86 to 170 °C with modes from 116 to 141 °C. These data have been used in conjunction with chlorite chemistry to suggest trapping conditions of ≈350–400 °C and 4.1–6.0 kbar for inclusions showing metastable melting from lower greenschist facies rocks, with the densities of many other inclusions reset at lower pressures during exhumation of the schist. The fluid inclusion salinities and Br/Cl ratios from veins from the Torlesse terrane are comparable to those of modern sea-water, and this suggests direct derivation of the vein fluid from the original sedimentary pore fluid. Some modification of the fluid may have taken place as a result of interaction with halogen-bearing minerals and dehydration and hydration reactions. The salinity of fluids in the Caples terrane is uniformly lower than that of modern sea-water, and this is interpreted as a result of the dilution of the pore fluid by dehydration of clays and zeolites. The contrast between the two terranes may be a result of the original sedimentary provenance, as the Torlesse terrane consists mainly of quartzofeldspathic sediments, whilst the Caples terrane consists of andesitic volcanogenic sediments and metabasites which are more prone to hydration during diagenesis, and hence may provide more fluid via dehydration at higher grades.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Petrological and thermochronological data provide our best record of the thermal structure of deeply eroded orogens, and, in principle, might be used to relate the metamorphic structure of an orogen to its deformational history. In this paper, we present a two-dimensional thermal model of collisional orogens that includes the processes of accretion and erosion to examine the P–T  evolution of rocks advected through the orogen. Calculated metamorphic patterns are similar to those observed in the field; metamorphic temperatures, depths and ages generally increase with distance from the toe of the orogen; P–T  paths are anti-clockwise, with rocks heating during burial and early stages of unroofing, followed by cooling during late-stage unroofing. The results indicate that peak metamorphic temperatures within the core of a collisional orogen and the distance from the toe of an orogen to the metamorphic core can be related to the relative rates of accretion, erosion and plate convergence. Model orogens displaying high metamorphic temperatures (〉600 °C) are associated with low ratios of accretion rate to plate convergence velocity and with high heat flow through the foreland. Model orogens with metamorphic cores far from the toe of the orogen are associated with high ratios of accretion rate to erosion rate. Calculated metamorphic gradients mimic steady-state geotherms, and inverted thermal gradients can be preserved in the metamorphic record, suggesting reconsideration of the concept that the metamorphic record does not closely reflect geothermal gradients within an orogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 17 (1999), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We discuss upper-amphibolite to granulite facies, early Palaeozoic metamorphism and partial melting of aluminous greywackes from the Sierra de Comechingones, SE Sierras Pampeanas of Central Argentina. Consistent P–T  estimates, obtained from equilibria involving Al and Ti exchange components in biotite and from more traditional thermobarometric equilibria, suggest that peak metamorphism of the exposed section took place at an essentially constant pressure of 7–8 kbar, and at temperatures ranging from 650 to 950 °C. Mineral compositions record an initial decompression, after peak metamorphism, of c. 1.5 kbar, which was accompanied by a cooling of c. 100 °C. Upper-amphibolite facies gneisses consist of the assemblage Qtz+Pl+Bt+Grt+Rt/Ilm. The transition to the granulite facies is marked by the simultaneous appearance of the assemblage Kfs+Sil and of migmatitic structures, suggesting that the amphibolite to granulite transition in the Sierra de Comechingones corresponds to the beginning of melting. Rocks with structural and/or chemical manifestations of partial melting range from metatexites, to diatexites, to melt-depleted granulites, consisting of the assemblage Grt+Crd+Pl+Qtz+Ilm±Ath. The melting stage overlapped at least partially with decompression, as suggested by the occurrence of cordierite, in both the migmatites and the residual granulites, of two distinct textural types: idiomorphic porphyroblasts (probably representing peritectic cordierite) and garnet-rimming coronas. Metapelitic rocks are unknown in the Sierra de Comechingones. Therefore, it appears most likely that the Al-rich residual assemblages found in the migmatites and residual granulites were formed by partial melting of muscovite- and sillimanite-undersaturated metagreywackes. We propose a mechanism for this that relies on the sub-solidus stabilization of garnet and the ensuing changes in the octahedral Al content of biotite with pressure and temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: To constrain the tectonic history of the Pan-African belt in Tanzania, we have studied the P–T  evolution of granulites from northern and eastern Tanzania representative for a large part of the southern Pan-African belt of East Africa (e.g. Pare, Usambara, Ukaguru and Uluguru Mountains). Thermobarometry (conventional and multireaction equilibria) on enderbites and metapelites gives 9.5–11 kbar and 810±40 °C during peak metamorphism at 650–620 Ma. This is consistent with the occurrence of both sillimanite and kyanite in metapelites and of the high-P granulite facies assemblage garnet–clinopyroxene–quartz in mafic rocks. Peak metamorphic conditions are surprisingly similar over a very large area with N-S and E-W extents of about 700 and 200 km respectively. The prograde metamorphic evolution in the entire area started in the kyanite field but evolved mainly within the sillimanite stability field. The retrograde P–T  evolution is characterized by late-stage kyanite in metapelites and garnet–clinopyroxene coronas around orthopyroxene in meta-igneous rocks. This is in agreement with thermobarometric results and isotopic dating, indicating a period of nearly isobaric and slow cooling prior to tectonic uplift. The anticlockwise P–T  path could have resulted from magmatic underplating and loading of the lower continental crust which caused heating and thickening of the crust. Substantial postmetamorphic crustal thickening of yet unknown age (presumably after 550 Ma) led subsequently to the exhumation of high-P granulites over a large area. The results are consistent with formation of the Pan-African granulites at an active continental margin where tonalitic intrusions caused crustal growth and heating 70–100 Ma prior to continental collision. The P–T–t path contradicts recent geodynamic models which proposed tectonic crustal thickening due to continental collision between East and West Gondwana as the cause of granulite formation in the southern part of the Pan-African belt.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Highly magnesian and aluminous migmatitic gneisses from Mather Peninsula in the Rauer Group, Eastern Antarctica, preserve ultrahigh temperature (UHT) metamorphic assemblages that include orthopyroxene+sillimanite±quartz, garnet+sillimanite±quartz and garnet+orthopyroxene±sillimanite. Garnet that ranges up to XMg of 71.5 coexists with aluminous orthopyroxene that shows zoning from cores with 7.5–8.5 wt% Al2O3 to rims with up to 10.6 wt% Al2O3 adjacent to garnet. Peak P–T  conditions of 1050 °C and 12 kbar are retrieved from Fe–Mg–Al thermobarometry involving garnet and orthopyroxene, in very good agreement with independent constraints from petrogenetic grids in FeO–MgO–Al2O3–SiO2 and related chemical systems. Sapphirine, orthopyroxene and cordierite form extensive symplectites and coronas on the early phases. The specific reaction textures and assemblages involving these secondary phases correlate with initial garnet XMg , with apparent higher-pressure reaction products occurring on the more magnesian garnet, and are interpreted to result from an initial phase of ultrahigh temperature near-isothermal decompression (UHT-ITD) from 12 to 8 kbar at temperatures in excess of 950 °C. Later textures that involved biotite formation and then partial breakdown, along with garnet relics, to symplectites of orthopyroxene+cordierite or cordierite+spinel may reflect hydration through back-reaction with crystallizing melts on cooling below 900–850 °C, followed by ITD from 7 to 8 kbar to c. 5 kbar at temperatures of 750–850 °C. The tectonic significance of this P–T  history is ambiguous as the Rauer Group records the effects of Archean tectonothermal events as well as high-grade events at 1000 and 530 Ma. Late-stage biotite formation and subsequent ITD can be correlated with the P–T  history preserved in the Proterozoic components of the Rauer Group and hence with either 1000 or 530 Ma collisional orogenesis. However, whether the preceding UHT-ITD history reflects a temporally unrelated event (e.g. Archean) or is simply an early stage of either the late-Proterozoic or Pan-African tectonism, as recently deduced for similar UHT rocks from other areas of the East Antarctica, remains uncertain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Coronal reaction textures occur in metanorite and related intrusions in the Pan-African Dahomeyide orogen of West Africa; they apparently formed by retrograde subsolidus reactions during cooling of the intrusions from 900 to 700 °C at c. 9±1 kbar. The coronas that formed around orthopyroxene (Opx) consist of sequential layers of diopside (Dio), hornblende (Hbl), garnet (Grt) and plagioclase (Pl) with inclusions of kyanite (Ky) or sillimanite (Sil). Three well-organized mineral assemblage sequences have been identified and modelled using steady-state diffusion theory for closed and open systems. The mineral sequence Opx|Hbl+Qtz|Hbl|Pl+Ky, formed by diffusion-controlled reactions in a closed system as layer thicknesses are very sensitive to relative component mobilities defined by Onsager diffusion coefficient (Lii). Models of this corona (type i) that satisfy modes require LCaCa≥LMgMg≥LFeFe〉LAlAl∼LSiSi ; however, small open-system fluxes involving loss of Al and gain of Ca are required to obtain the best fit between model and observed mineral proportions. Under steady-state diffusion, the monomineralic hornblende layer grew by replacing plagioclase whereas the |Hbl+Qtz| grew by Opx replacement. The type ii corona, which consists of the sequence Opx|Dio|Grt+Dio|Pl+Sil, is also stable under steady-state diffusion in a closed system. Modelling results show that the diopside grew by replacing Opx whereas most of Grt+Dio grew by replacing plagioclase. Stable solutions to the closed-system diffusion model that approximate the mode are restricted to the L-ratio regions where Fe, Mg and Ca are more mobile than Si and Al but are unstable when LAlAl〉100 LSiSi . However, type ii corona mineral proportions were only closely matched when open-system loss of Al and gain of small amounts of Fewere considered in the diffusion models and relative mobilities were LFeFe≥LCaCa≥LMgMg〉LAlAl∼LSiSi . The modelling results indicate that Ca and Mg were the most mobile elements in the formation of type i corona whereas Fe and Ca were the most mobile components in the growth of type ii coronas. A third corona type, consisting of the mineral sequence Act|Hbl|Grt|Pl+Sil, is only stable in open systems and requires large external fluxes involving gain of Fe, Al, Mg and Na and loss of Ca to obtain a solution of the diffusion model that approximates the estimated mineral proportions. Extensive recrystallization of plagioclase to produce sillimanite or kyanite inclusions accompanying corona formation may explain the open-system behaviour indicated by the diffusion models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Deformed rocks of the Itabira Iron Formation (itabirites) in Brazil show microstructural evidence of pressure solution of quartz and iron oxides; it appears that magnetite was dissolved and hematite precipitated. The dissolution of magnetite seems to be related to its transformation to hematite by oxidation of Fe2+ to Fe3+. The transformation of magnetite to hematite occurs along {111} planes, and results in the development of hematite domains along {111} that are parallel to the foliation. The difference in volume created by the transformation of magnetite to hematite and the shear stress acting on the interphase boundaries allow fluids to migrate along these planes. The dissolution of magnetite involves the hydrolyzation of the Fe2+—O bonds at interphase boundaries of high normal stress. The high fugacity of oxygen in the fluid phase promotes the reaction of Fe2+ (in solution) with oxygen. Fe2+ ions oxidize to Fe3+ and precipitate as hematite platelets with their longest axes oriented parallel to the direction of maximum stretching. The transformation of magnetite to hematite during deformation plays an important role in the fabric evolution of the iron formation rocks. The transformation along {111} creates planes of weakness that facilitate fracturing. The fracturing plus the dissolution result in a reduction of magnetite grain size, and the oriented precipitation results in layers of hematite platelets. These processes produce a new fabric characterized by a penetrative foliation and lineation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The development of 10–30 m wide mylonite zones at mid-crustal depths in late Proterozoic granitoids on King Island, Tasmania, was associated with pervasive infiltration of low δ18O-fluids (+5 to +7) on the scale of the shear zones. Syndeformational fluid–rock interaction produced substantial differences in mineral composition and bulk rock chemistry among several adjacent shear zones which are hosted by the same granite. In a shear zone at Cape Wickham with a normal slip component, changes in whole-rock chemistry between granite and mylonites indicate a gain of Ca, and losses of K and Na during deformation, which was nearly isovolumetric. Notable losses of K, Rb and Si occurred during partial retrograde alteration of mylonites near the western margin of this shear zone. The alteration suggests a component of up-temperature fluid flow. In contrast, 3 km to the south east, in a strike-slip shear zone at Disappointment Bay, complete albitization of plagioclase was associated with Na-gain and Ca-loss. Deformation also involved losses of Mg and Fe. Up to 60% volume gain occurred during the formation of closely spaced mesoscopic to microscopic quartz veins during mylonitization. The substantial silica-gain in this, as well as in two mylonite zones further south east, is interpreted to have been associated with upward flow of aqueous fluids along these shear zones. On the basis of a gradient reaction model, minimum time-integrated fluid-fluxes of 106 m3/m2 are estimated for the Disappointment Bay (West) Shear Zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A study of the metamorphic and tectonic evolution of the Bündnerschiefer of the Engadine window shows that the individual nappes have been thinned by a large amount and that extension was active during and soon after nappe stacking.Based on contrasting P–T  histories the Penninic Bündnerschiefer can be divided in two major units bounded by a horizontal contact. The lower (Mundin) unit shows typical high-P/low-T  parageneses in metapelites (Mg-carpholite) and in metabasites (glaucophane); metamorphic conditions are estimated around 12 kbar, 375 °C. The upper (Arina) unit contains no specific high-P minerals; metamorphic conditions are estimated around 7 kbar, 325 °C. A minimum pressure gap of 5 kbar is thus observed. The contact between the two units is marked by a mappable normal shear zone with top-to-the-north-west sense of shear. Near the shear zone, fresh carpholite fibres trend parallel to the regional stretching lineation, implying that the detachment is an early structure active from the depth of stability of the carpholite and persisting during subsequent exhumation. The good preservation of carpholite and the absence of retrograde chloritoid below the shear zone show that exhumation occurred along a cooling path, whereas the deeper units are exhumed along an isothermal path. Exhumation probably occurred during convergence and further nappe stacking during the earlier Eocene. These results suggest that pre-collisional tectonic thinning of the Penninic oceanic units may be more widespread and significant than generally recognized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Two major Proterozoic tectonic events are documented in the Taos Range of northern New Mexico. Regional structures involving the tectonic interleaving of c. 1.65 Ga granitoids with supracrustal rocks are interpreted to have formed before 1.42 Ga and probably during collisional assembly of island arc crust into new (1.7–1.6 Ga) continental lithosphere. Supracrustal rocks record 650–750 °C, 6–8 kbar metamorphism (M2); these high temperatures may have been reached during sandwiching between c. 1.65 Ga granitoids. However, the early history has been obscured by renewed tectonism at c. 1.4 Ga that resulted in partial melting, fabric reactivation and new mineral growth at 4 kbar (M3). Metamorphic temperature variations from uppermost-amphibolite to amphibolite facies rocks may be associated with c. 1.65 and/or 1.4 Ga plutonism, but not to a 1.4 Ga extensional shear zone as previously proposed. Syn- and post-1.4 Ga contraction is suggested by high- and low-temperature microstructures showing top-to-the-south-east thrusting. This work reconciles conflicting models by suggesting that the geometry of the structures was mainly established by c. 1.65 Ga, but that the present fabric also records 1.4 Ga tectonism involving high-T  metamorphism and fabric reactivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Detailed b lattice parameter and illite crystallinity (IC) studies of K-white micas in slates from the Stawell and Ballarat-Bendigo Zones (SZ, BBZ) in the western Lachlan Fold Belt of Victoria, Australia, reveal a metamorphic pattern characterized by regional metamorphism associated with crustal thickening and younger contact metamorphism accompanied by deformation. The IC data indicate that rocks regionally metamorphosed prior to the intrusion of the Early and Late Devonian granitoids, vary in grade from epizonal (greenschist facies) to diagenetic (zeolite facies) and that most are of epizonal to anchizonal (prehnite–pumpellyite facies) grade. In the BBZ, a decrease in grade from west to east occurs. Across fault zones, IC values show little change, indicating that limited vertical displacement has occurred. This is in accord with the thin skinned deformation model proposed for the western Lachlan Fold Belt. The b lattice parameters (x=9.022 Å; n=137; σn=0.009) indicate baric conditions intermediate between those of New Hampshire (P=Al2SiO5 triple point) and Otago (intermediate P ). Thus, a moderately low geothermal gradient existed 450–430 Ma ago, when these rocks were deformed. KD Fe/Mg (actinolite)/Fe/Mg (chlorite) values (0.52–0.70) obtained from coexisting actinolite and chlorite in metabasites from fault zones support the moderately high-P (c. 4 kbar) metamorphism suggested by the b cell parameter values. The metamorphic conditions indicated by these data are contrary to the low-P/high-T  conditions proposed by previous authors, who inferred an intimate association between deformation, granitoid intrusion and gold mineralization. The b lattice parameter of white micas in slates adjacent to Early Devonian (c. 400 Ma) granitoids with schist bearing aureoles in the north-eastern part of the BBZ (x=9.002 Å; n=27; σn=0.007), indicate pressures in the order of c. 2.5 kbar which are in accord with those obtained from andalusite–cordierite and zoisite–garnet bearing assemblages observed in the higher grade metapelitic and calcareous rocks. This contrasts with the higher pressure (c. 4 kbar) existing during regional metamorphism and implies that c. 6.5–8 km of metasedimentary rocks in the BBZ were removed before the emplacement of the Early Devonian granitoids. Metamorphic assemblages in hornfelses associated with Late Devonian granitoids indicate a further 5–6 km of metasediment were removed in the next 40 Ma prior to their emplacement. This study shows the value of white mica studies in elucidating the tectonothermal history of a low-grade metamorphic terrane dominated by metapelitic rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The thermodynamic properties of 154 mineral end-members, 13 silicate liquid end-members and 22 aqueous fluid species are presented in a revised and updated data set. The use of a temperature-dependent thermal expansion and bulk modulus, and the use of high-pressure equations of state for solids and fluids, allows calculation of mineral–fluid equilibria to 100 kbar pressure or higher. A pressure-dependent Landau model for order–disorder permits extension of disordering transitions to high pressures, and, in particular, allows the alpha–beta quartz transition to be handled more satisfactorily. Several melt end-members have been included to enable calculation of simple phase equilibria and as a first stage in developing melt mixing models in NCKFMASH. The simple aqueous species density model has been extended to enable speciation calculations and mineral solubility determination involving minerals and aqueous species at high temperatures and pressures. The data set has also been improved by incorporation of many new phase equilibrium constraints, calorimetric studies and new measurements of molar volume, thermal expansion and compressibility. This has led to a significant improvement in the level of agreement with the available experimental phase equilibria, and to greater flexibility in calculation of complex mineral equilibria. It is also shown that there is very good agreement between the data set and the most recent available calorimetric data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Otago and Alpine Schist belts of southern New Zealand have traditionally been treated as structurally continuous metamorphic belts with minor modification by brittle faulting. Mapping of biotite and garnet isograds has been hindered by rock types unfavourable for index mineral growth. Closer examination of well-exposed boundaries between metamorphic zones shows that they juxtapose rocks of different type and structural history. Apparent structural continuity across these zones is due to development of a locally pervasive boundary-parallel foliation on both sides of the boundary, in a broad boundary zone (up to 2 km wide). This feature has implications for mapping and metamorphic petrology in other metamorphic belts, where structural continuity has traditionally been assumed. True metamorphic isograds may be rare, and metamorphic zones may more commonly represent structural slices of complex, tectonically disrupted metamorphic piles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Intrusion-related migmatites comprise a substantial part of the high-grade part of the southern Damara orogen, Namibia which is dominated by Al-rich metasedimentary rocks and various granites. Migmatites consist of melanosomes with biotite+sillimanite+garnet+cordierite+hercynite and leucosomes are garnet- and cordierite-bearing. Metamorphic grade throughout the area is in the upper amphibolite to lower granulite facies (5–6 kbar at 730–750 °C). Field evidence, petrographic observations, chemical data and mass balance calculations suggest that intrusion of granitic magmas and concomitant partial melting of metasedimentary units were the main processes for the generation of the migmatites. The intruding melts were significantly modified by magma mixing with in situ partial melts, accumulation of mainly feldspar and contamination with garnet from the wall rocks. However, it is suggested that these melts originally represented disequilibrium melts from a metasedimentary protolith. The occurrence of LILE-, HFSE- and LREE-enriched and -depleted residues within the leucosomes implies that both quartzo-feldspathic and pelitic rocks were subjected to partial melting. Isotope ratios of the leucosomes are rather constant (143Nd/144Nd (500 Ma): 0.511718–0.511754, ε Nd (500 Ma): −3.54 to −5.11) and Sr (87Sr/86Sr (500 Ma): 0.714119–0.714686), the metasedimentary units have rather constant Nd isotope ratios (143Nd/144Nd (500 Ma): 0.511622–0.511789, ε Nd (500 Ma): −3.70 to −6.93) but variable Sr isotope ratios Sr (87Sr/86Sr (500 Ma): 0.713527–0.722268). The most restitic melanosome MEL 4 has a Sr isotopic composition of 87Sr/86Sr (500 Ma): 0.729380. Oxygen isotopes do not mirror the proposed contamination process, due to the equally high δ18O contents of metasediments and crustal melts. However, the most LILE-depleted residue MEL 4 shows the lowest δ18O value (〈10). Mass balance calculations suggest high degrees of partial melting (20–40%). It is concluded that partial melting was promoted by heat transfer and release of a fluid phase from the intruding granites. High degrees of partial melting can be reached as long as the available H2O, derived from the crystallization of the intruding granites, is efficiently recycled within the rock volume. Due to the limited amounts of in situ melting, it seems likely that such regional migmatite terranes are not the sources for large intrusive granite bodies. The high geothermal gradient inferred from the metamorphic conditions was probably caused by exhumation of deep crustal rocks and contemporaneous intrusion of huge masses of granitoid magmas. The Davetsaub area represents an example of migmatites formed at moderate pressures and high temperatures, and illustrates some of the reactions that may modify leucosome compositions. The area provides constraints on melting processes operating in high-grade metasedimentary rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The relationship between deformation and dehydration has been investigated in Hercynian regionally metamorphosed rocks exposed on NW Sardinia. Two episodes of prograde mineral growth (M1 & M2) involving dehydration are recognized: growth of chlorite/phengite porphyroblasts at anchizone metamorphic conditions, contemporaneous with the first phase of deformation, D1, and growth of biotite from chlorite and phengite coincident with the second phase of deformation, D2. Deformation during both episodes of dehydration is characterized by penetrative axial planar foliations defined by well-developed phyllosilicate preferred orientations quantified by XRD textural goniometry, tight to isoclinal similar folds (interlimb angles 〈40°), and mineral-filled veins (hydrofractures) orientated parallel to axial planar foliations, that formed contemporaneously with the development of the penetrative foliations. No prograde mineral growth occurred during D2 at chlorite-zone conditions. D2 deformation in the absence of dehydration is characterized by non-penetrative crenulation cleavages, poorly developed phyllosilicate preferred orientations, relatively open (interlimb angles 〉40°), low-strain similar folds and minor brittle deformation. Systematic variations in macrofold interlimb angles, with respect to the timing of mineral growth, indicate that enhanced shortening (c. 80%) occurred during dehydration. Microfabrics show that the onset of dehydration is associated with the transition from a crenulation cleavage to a penetrative foliation. The presence of axial planar hydrofractures that formed coevally with dehydration and fabric development requires that supralithostatic fluid pressures and low differential stresses (〈c. 20 MPa) accompanied dehydration. These features demonstrate a connection between the timing of dehydration and the style of deformation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Ion microprobe dating of zircon and monazite from high-grade gneisses has been used to (1) determine the timing of metamorphism in the Western Province of New Zealand, and (2) constrain the age of the protoliths from which the metamorphic rocks were derived. The Western Province comprises Westland, where mainly upper crustal rocks are exposed, and Fiordland, where middle to lower crustal levels crop out. In Westland, the oldest recognisable metamorphic event occurred at 360–370 Ma, penecontemporaneously with intrusion of the mid-Palaeozoic Karamea Batholith (c. 375 Ma). Metamorphism took place under low-pressure/high-temperature conditions, resulting in upper-amphibolite sillimanite-grade metamorphism of Lower Palaeozoic pelites (Greenland Group). Orthogneisses of younger (Cretaceous) age formed during emplacement of the Rahu Suite granite intrusives (c. 110 Ma) and were derived from protoliths including Cretaceous Separation Point suite and Devonian Karamea suite granites. In Fiordland, high-grade paragneisses with Greenland Group zircon age patterns were metamorphosed (M1) to sillimanite grade at 360 Ma. Concomitant with crustal thickening and further granite emplacement, M1 mineral assemblages were overprinted by higher-pressure kyanite-grade metamorphism (M2) at 330 Ma. It remains unclear whether the M2 event in Fiordland was primarily due to tectonic burial, as suggested by regional recumbent isoclinal folding, or whether it was due to magmatic loading, in keeping with the significant volumes of granite magma intruded at higher structural levels in the formerly contiguous Westland region. Metamorphism in Fiordland accompanied and outlasted emplacement of the Western Fiordland Orthogneiss (WFO) at 110–125 Ma. The WFO equilibrated under granulite facies conditions, whereas cover rocks underwent more limited recrystallization except for high-strain shear zones where conditions of lower to middle amphibolite facies were met. The juxtaposition of Palaeozoic kyanite-grade rocks against Cretaceous WFO granulites resulted from late Mesozoic extensional deformation and development of metamorphic core complexes in the Western Province.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Meatiq basement, which is exposed beneath late Proterozoic nappes of supracrustal rocks in the Central Eastern Desert of Egypt, was affected by three metamorphic events. The ophiolite cover nappes show only the last metamorphic overprint. The M1 metamorphic event (T ≥750 °C) is restricted to migmatized amphibolite xenoliths within the Um Ba′anib orthogneiss in the structurally lowest parts of the basement. Typical upper amphibolite facies M2 mineral assemblages include Grt–Zn-rich Spl–Qtz±Bt, Grt–Zn-rich Spl–Ms–Kfs–Bt–Sil–Qtz and locally kyanite in metasedimentary rocks. The mineral assemblages Ms–Qtz–Kfs–Sil in the matrix and Sil–Grt in garnet cores indicate that peak M2 P–T  conditions exceeded muscovite and staurolite stabilities. Diffusional equilibration at M2 peak temperature conditions caused homogeneous chemical profiles across M2 garnets. Abundant staurolite in garnet rims and the matrix indicates a thorough equilibration during M2 at decreasing temperature conditions. M2 P–T  conditions ranged from 610 to 690 °C at 6–8 kbar for the metamorphic peak and 530–600 °C at about 5.8 kbar for the retrograde stage. However, relic kyanite indicates pressures above 8 kbar, preceeding the temperature peak. A clockwise P–T  path is indicated by abundant M2 sillimanite after relic kyanite and by andalusite after sillimanite. M2 fluid inclusions, trapped in quartz within garnet and in the quartz matrix show an array of isochores. Steepest isochores (water-rich H2O-CO2±CH4/N2 inclusions) pass through peak M2 P–T  conditions and flatter isochores (CO2-rich H2O-CO2±CH4/N2 inclusions) are interpreted to represent retrograde fluids which is consistent with a clockwise P–T  path for M2. The M3 assemblage Grt–Chl in the uppermost metasedimentary sequence of the basement limits temperature to 460 to 550 °C. M3 temperature conditions within the ophiolite cover nappes are limited by the assemblage Atg–Trem–Tlc to〈540 °C and the absence of crysotile to 〉350 °C. The polymetamorphic evolution in the basement contrasts with the monometamorphic ophiolite nappes. The M1 metamorphic event in the basement occurred prior to the intrusion of the Um Ba′anib granitoid at about 780 Ma. The prograde phase of the M2 metamorphic event took place during the collision of an island arc with a continent. The break-off of the subducting slab increased the temperature and resulted in the peak M2 mineral assemblages. During the rise of the basement domain retrograde M2 mineral assemblages were formed. The final M3 metamorphic event is associated with the updoming of the basement domain at about 580 Ma along low-angle normal faults.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The zonal structure of prograde garnet in pelitic schists from the medium-grade garnet zone and the higher-grade albite-biotite zone was examined to investigate the evolution of prograde P–T  paths of the Sanbagawa metamorphism. The garnet studied shows a bell-shaped chemical zoning of the spessartine component, which decreases in abundance from the core towards the rim. Almandine and pyrope contents and XMg [=Mg/(Mg+Fe2+)] increase monotonously outwards. The general scheme of the zonal structure for grossular content [XGrs=Ca/(Fe2++Mn+Mg+Ca)] can be summarized as: (1) XGrs increases outwards (inner segment) and reaches a maximum at an intermediate position between the crystal core and the rim, then decreases towards the outermost rim (outer segment) (2) the inner segment of garnet in the garnet zone samples tends to have a higher XGrs/XSps values for a given XSps than those in the albite–biotite zone samples (3) average XSps at the maximum XGrs position in the albite–biotite zone samples ranges from 0.02 to 0.12 and is lower than that in the garnet zone samples (0.13–0.32) (4) the maximum XGrs in the albite–biotite zone samples (0.34–0.39 on average) tends to be higher than that in the garnet zone samples (0.26–0.36), and (5) differences of XGrs between the maximum and rim in the albite–biotite zone samples are between 0.10 and 0.14 and higher than those in the garnet zone samples (〈 0.11). These facts imply that albite–biotite zone materials (a) were recrystallized under lower dP/dT  conditions at an early stage of the prograde metamorphism (b) began their exhumation under higher P–T  conditions and (c) have been continuously heated during exhumation for a longer duration than the garnet zone materials. The systematic changes of prograde P–T  paths can be interpreted as documenting the evolution of the Sanbagawa subduction zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Southwest Japan is divided into Outer and Inner Zones by the Median Tectonic Line (MTL), a major transcurrent fault. The Outer Zone is composed of the Sambagawa (high-pressure intermediate or high P/T  type metamorphism), Chichibu and Shimanto Belts. In the Inner Zone, the Ryoke Belt (andalusite– sillimanite or low P/T  type metamorphism) was developed mainly within a Jurassic accretionary complex. This spatial relationship between high P/T  type and low P/T  type metamorphic belts led Miyashiro to the idea that metamorphic belts were developed as ‘paired’ systems. Textural relationships and petrogenetically significant mineral assemblages in pelites from the Ryoke Belt imply peak P–T  conditions of ≈5 kbar and up to 850 °C in migmatitic garnet–cordierite rocks from the highest-grade metamorphic zone. It is likely that the thermal anomaly responsible for metamorphism of the Ryoke Belt was related to a segment of the Farallon–Izanagi Ridge as it subducted under the eastern margin of the Asian continent during the Cretaceous. The sequence of mineral assemblages developed in pelites implies a metamorphic field gradient with shallow dP/dT  slope, inferred to have been generated by a nested set of hairpin-like ‘clockwise’P–T  paths. These P–T  paths are characterized by limited prograde thickening, minor decompression at peak-T , and near-isobaric cooling, features that may be typical of P–T  paths in low P/T  type metamorphic belts caused by ridge subduction. A ridge subduction model for the Ryoke Belt implies that juxtaposition of the high-P/T  metamorphic rocks of the Sambagawa Belt against it was a result of terrane amalgamation. Belt-parallel ductile stretching, recorded as syn-metamorphic, predominantly constrictional strain in both Ryoke and Sambagawa Belt rocks, and substantial sinistral displacement on the MTL are consistent with left-lateral oblique convergence. Diachroneity in fast cooling of the Ryoke Belt is implied by extant thermochronological data, and is inferred to relate to progressive SW to NE docking of the Sambagawa Belt. Thus, an alternative interpretation of ‘paired’ metamorphic belts in Japan is that they represent laterally contemporaneous terranes, rather than outboard and inboard components of a trench/arc ‘paired’ system. Amalgamation of laterally contemporaneous terranes during large translations of forearcs along continental margins may explain other examples of ‘paired’ metamorphic belts in the geological record.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...