ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1,636,858)
  • 1980-1984  (1,016,746)
  • 1945-1949  (130,850)
Collection
Language
Years
Year
  • 1
    Publication Date: 2024-07-01
    Description: Die untersuchten, feinkörnig-konglomeratischen, mäßig gut sortierten, lithischen Arenite, bilden zusammen mit Siltsteinen und untergeordnet Tonschiefern die Sao Khua Formation, die als Speichergestein der Uran-Vererzung Phu Wiang I in einem fluviatil-beherrschten Deltakomplex mit deutlich marinen Einflüssen im Zeitraum Ober-Jura bis Unter-Kreide sedimentiert wurde. Die in den Areniten der Sao Khua Formation aufgearbeiteten Klasten und der detritische Mineral bestand deuten auf sauer bis intermediäre Plutonite und Vulkanite, Phyllite, Quarzite und Cherts als Liefergesteine. Erosionsgebiete dieser Gesteinsserien sind wegen der rekonstruierten, unimodalen, hauptsächlich NE/SW verlaufenden Paläoströmungsrichtung in pratriassischen Formationen, nordöstlich des Untersuchungsgebietes, zu suchen. Zusammen mit diesen sind möglicherweise äolisch nach E verfrachtete Vulkanite, des westlich von Si Chiang Mai gelegenen Vulkanitgürtels, umgelagert und im Deltabereich sedimentiert worden. Die linsenförmige, penekonkordante Uran-Mineralisation ist an mittel- bis grobkörnige, teilweise konglomeratische Bereiche, des als “channelsequenz" interpretierten Sandsteins gebunden, die feinverteiltes, inkohltes Pflanzenmaterial enthalten und im Hangenden einer für (perkolierende) Porenwässer impermeablen Barriere aus feinkörnigen Sandsteinen, Siltsteinen und Tonschiefern liegen.
    Description: Fine grained to conglomeratic, moderateley well-sorted, lithic arenites combine with siltstones and minor amounts of shale to make the Sao Khua formation. The latter was deposited during the Upper Jurassic and Lower Cretaceous in a delta donimated by fluvial distributary channels but with distinct marine features and is the host roch for the uranium mineralization. The clasts and the detritic minerals of the arenites of the Sao Khua Formation indicate that acid to intermediate plutonios and volcanics, phyllites, quarzites and cherts were the source rocks. Possibly volcanics from the volcanic arc, situated to the west of Si Chiang Mai, were aeolianly transported to the east and after their first deposition carried together with the above cited detrital mineral assemblage by fluvial action into the delta area. The lenticular, peneconcordant uranium mineralization is restricted to these medium to coarse grained, partly conglomeratic intervals of the sandstone which together have been interpreted as channel - sequences. These intervals contain finely distributed carbonaceous matter of plant origin and are situated above a barrier. The latter is made up of fine-grained sandstone, siltstone and shale, which connot be permeated by (percolating) pore-water-solutions.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:551 ; Thailand ; Sedimentgestein ; Uranlagerstätten
    Language: German
    Type: doc-type:book
    Format: 92
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Reimer
    In:  Herausgeberexemplar
    Publication Date: 2024-07-01
    Description: Über den paläozoischen Sedimenten im Dakhla-Becken folgen überwiegend fluvio-kontinentale Sedimente des Mesozoikums, die sich aufgrund ihrer gleichartigen Ausbildung innerhalb des Beckens in Ost-West-Erstreckung verfolgen lassen. Die pauschal als "Nubischer Sandstein" bezeichneten klastischen Sedimente konnten in sechs Formationen gegliedert und ihre strati graphische Stellung weitgehend gesichert werden. Die Einheiten der Nubischen Gruppe heißen von unten nach oben: Six Hills Formation (Basal Clastics), Abu Ballas Formation (Lingula Shale), Sabaya Formation (Desert Rose Beds), Maghrabi Formation (Plant Beds), Taref Formation (Taref Sandstein) und Mut Formation (Variegated Shales). Sie sind fast ausschließlich der Kreide bis zum Maastricht zugehörig. Der Sedimentationsraum gehört zu einem sich nach Nordwesten vertiefenden Becken zwischen der Calanscio-Uweinat-Schwelle im Westen und dem Kharga-Upl ift im Osten. Die Sandstein-Formationen bestehen in der Körnerfraktion ausschließlich aus Quarz, Zirkon, Turmalin, Rutil und Leukoxen und zeigen bei den Tonmineralen eine absolute Kaolinitvormacht. Die überwiegend tonigen Formationen, mit unterschiedlichen Tonmineral-Vergesellschaffungen, deuten auf eine Sedimentation in einem flachen Epikontinentalmeer hin. Die Sedimente der Nubischen Gruppe entstammen Gebieten mit lateritischer Verwitterung. Die Resedimentation erfolgte unter gleichen Klimabedingungen, wie synsedimentäre Bodenbildung und Sesquioxid-Krusten zeigen. Die Faktoren-Analyse ergab folgende Elementgruppen: Ti, Nb, Zr und Cr: Elemente, die überwiegend in Schwermineralen auftreten ; Mn, Co, Ni und Cu: adsorptiv an Mn gebunden und in manganreichen Krusten angereichert ; Y, SE; an Tonminerale angelagerte Elemente ; Ca, Sr, Rb und Pb: an Tonminerale gebundene Elemente. Eisen konnte keiner dieser Gruppen zugeordnet werden. Da die fünf Elementgruppen in den Formationen der Nubischen Gruppe charakteristisch verteilt sind, ist eine Unterscheidung der Formationen aufgrund der Elementverteilung möglich.
    Description: The Paleozoic sediments within the Dakhla Basin are overlain by fluvio-continental sediments of Mesozoic age which can be traced in the. basin in east-west extension caused by their similar development. The clastic sediments, generally called "Nubian Sandstone", could be subdivided into six formations and their: stratigraphic position could be more or less assured. The units of the Nubia Group are named from the bottom towards the top as follows: Six Hills Formation (Basal Clastic Unit), Abu Ballas Formation (Lingula Shale Unit), Sabaya Formation (Desert Rose Unit), Maghrabi Formation (Plant Bed Unit), Taref Formation (Taref Sandstone Unit), and Mut Formation (Variegated Shale Unit). Stratigraphically they are nearly exclusively of Cretaceous up to Maastrichtian age. The area of sedimentation is a basin between the Calanscio-Uweinat Uplift in the west and the Kharga Uplift in the east. The bottom of the basin dips towards the northwest. The more sandy units contain as grains exclusively quartz, zircone, turmaline, rutile and leocoxene. The same units show as a clay-mineral an absolute predominance of kaolinite. The chiefly clayey units with a different association of clayminerals point at a sedimentation in a shallow epicontinental sea. The sediments of the Nubia Group are descended from regions with a lateritic weathering. The resedimentation took place under the same climatic conditions as it is shown by syn sedimentary development of soil horizons and sesquioxide crusts. The factor analysis caused the following groups of elements: Ti, Nb, Zr and Cr: elements which occur mainly in heavy minerals ; Mn, Co, Ni and Cu: elements which are bound adsorptively at Mn and are concentrated in crusts with a high content of manganese ; Y and R.E.E.: elements which are attached to clayminerals ; Ca, Sr, Rb and Pb: elements which are bound at clayminerals. Iron could not be associated with one of these groups. As the five groups of elements are distributed characteristically in the units of the Nubia Group, a differentiation of the units is possible based on the dissamination of the elements.
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:551 ; Nubischer Sandstein ; Stratigraphie ; Geochemie ; Sedimentologie
    Language: German
    Type: doc-type:book
    Format: 93
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-01
    Description: Die Magmatite des Indosinia-Orogens in NE-Thailand wurden auf Grund von petrographischen und petrochemischen Untersuchungen durch die Einführung geochemischer Indizes nach folgenden Gesteinstypen und Sippen klassifiziert, sowie den entsprechenden magmatischen Phasen im orogenen Zyklus zugerechnet. - Alkali-Rhyolithe, die als Ignimbrite und Tuffe auftreten, sowie Dacite, die der Kalk-Alkali-Reihe angehören (frühe Phase des finalen Magmatismus) im Pak Chom-Si Chiang Mai Gebiet und im Loei-Chum Phae Gebiet. Letztere zeigen auch eine Tendenz zu einer höheren Alkalini tat (finaler Magmatismus) im Saraburi -Gebiet bzw. Loei-Tha Li Gebiet. - Andesite, die als Tuffe und Agglomerate vorliegen und der Kalk-Alkali-Reihe mit einem mittelstark pazifischen Charakter angehören (früher subsequenter Magmatismus) im Chum Phae-Lom Sak Gebiet. - Lenco-Basalte mit einem ophitischen Gefüge, die sowohl der Kalk- Alkali -Reihe (früher subsequenter Magnetismus) im Chiang Khan Gebiet, als auch einer Obergangsphase zur Alkali-Reihe (finaler Magnetismus) im Petchabun und Saraburi Gebiet zuzurechnen sind. - Granite-Monzonite, die der Kalk-Alkali-Reihe angehören (synorogener Magnetismus) im Loei-Chiang Khan Gebiet. Petrographische und geochemische Untersuchungsergebnisse, sowie paläogeographische und quantitative Voraussetzungen zeichnen die alkali-rhyolithischen Ignimbrite und Tuffe des Pak Chom-Si Chiang Mai Gebietes als potentielle Uran-Lieferanten aus. Folgende Untersuchungsergebnisse können als Begründung herangezogen werden: - Die ober-triassischen bis unter-jurassischen Ignimbrite und Tuffe des Pak Chom-Si Chiang Mai Gebietes sind dicht verschweißt und ihre Grundmasse liegt zu einem großen Teil in einem vollständig devitrifizierten Zustand vor, im Gegensatz zu den der Saraburi und Loei-Tha Li Gebiete, in denen die holohyalinen Anteile in der Grundmasse z.T. überwiegen. -Die Alkali-Rhyol ithe des Pak Chom-Si Chiang Mai Gebietes sind am höchsten differenziert, wie dem numerischen +Differentiationsindex (bis 16,65) zu entnehmen ist. - Sie zeigen die größten Gehalte an lithophilen Spurenelementen (Ba: 415 - 969 ppm; Rb: 109 - 213 ppm; Sr: 35 - 124 ppm; Zr: 77 - 209 ppm;) innerhalb vergleichbarer Differentiationsgrade der Alkali-Rhyolithe des Loei-Tha Li und Saraburi Gebietes. - Die Uran- und Lithium-Gehalte sind dagegen ungewöhnlich niedrig und liegen im Bereich von 2,09 - 3,6 ppm U bei einem Th/U-Verhältnis von 2,2 - 8,5 und 2,5 - 61,3 ppm Li (mit einem Mittelwert von 15,60 ppm Li), im Gegensatz zu den U- und Li-Gehalten des Loei-Tha Li Gebietes (U = 3,1 - 7 ppm; Th/U = 1 - 2; Li = 6,0 - 210,0 ppm, mit einem Mittelwert von 79 ppm Li) und des Saraburi Gebietes (U = 3,6 - 5 ppm; Th/U = 3,2 - 4,0; Li = 10,90 - 43,00 ppm, mit einem Mittelwert von 27,9 ppm Li). - Der xOxidationsgrad (0x0 = 0,51 - 0,99) ist mit dem U-Gehalt negativ korrelierbar im Gegensatz zu dem der Alkali-Rhyolithe in den anderen Gebieten. Zu ähnlichen, sich scheinbar widersprechenden, Untersuchungsergebnissen in Ignimbriten und Tuffen gelangten ROSHOLT et al. (1969), SCHATKOV et al. (1970) und ZIELINSKI (1978). Die geringen U-Gehalte werden auf die größere Mobilationsbereitschaft der leichtflüchtigen Elemente (Uran, Lithium, Fluor und Chlor) und deren Verbindungen während des Devitrifikationsprozesses im Zuge der langen Abkühlungszeit mächtiger Ignimbrit- und Tuffdecken zurückgeführt. Das in mobiler Phase vorliegende Uran (U6+) kann entweder supergene Anreicherungen innerhalb der Ignimbrit-Tuff-Decken bilden, die bei einer einsetzenden Erosion in Form von Uran-angereichertem Detritus weiter transportiert werden, oder direkt in migrierende Grundwässer gelangen. Der so eingetretene Verlust von Uran kann bei den Pak Chom-Si Chiang Mai alkali-rhyolitischen Ignimbriten und Tuffen mit einer Größenordnung von 46 - 52 % angegeben werden. Zu den von SCHATKOV (1970) ermittelten prospektionssignifikanten Faktoren (Devitrifikationsgrad, Th/U und 0x0 in Abhängigkeit vom U-Gehalt) kann als ergänzende Prospektionshilfe für supergene U-Anreicherungen in Ignimbriten bzw. Tuffen die geochemische Inkongruenz des U-Li-Gehaltes und des Differentiationsindex erwähnt werden. Im Gegensatz zur normalerweise positiven Korrelation von Oxidationsgrad, Thorium-Uran-Lithium-Gehalt und Differentiationsindex nimmt bei den Pak Chom-Si Chiang Mai Ignimbriten und Tuffen der U-Li -Gehalt bei den höchsten Differentiationsgraden ab. +Differentiationsindex: 1/3 Si + K - Ca - Mg xOxidationsgrad (0x0) : Fe3+ / Fe2+ + Fe3+ + Mn
    Description: According to the results of petrographic and petrochemical investigations using geochemical indices, the magmatites of the Indos inia-orogeny in NE-Thailand have been classified in the following rock types and associations as well as attributed to the corresponding magmatic phases of the orogenic cycles. - alkalirhyolithic ignimbrites and tuffs as well as dacites belonging to the calc-alkaline series (early phase of the final magmatism) in the Pak Chom-Si Chiang Mai and Loei-Chum Phae area. Both rock types tend toward alkalinity (final magmatism) in the Saraburi, that is Loei-Tha Li area. - andesitic tuff and agglomerates »belonging to the calc-alkaline series with a medium to strong Pacific character (early subsequent magmatism) in the Chum Phae-Lom Sak area. - leuco-basalts with an ophitic texture, belonging partly to the calc-alkaline series (early subsequent magmatism) in the Chiang Khan area and partly to a transitions phase of the alkaline series (final magmatism) in the Pete ha bun and Saraburi province. - granite-monzonites, belonging to the calc-alkaline series (synorogenic magmatism) in the Loei-Chiang Khan area. The petrographic and goechemical investigations, as well as the palaeographic and quantitative conditions suggest that the alkalirhyol ithic ignimbrites and tuffs of the Pak Chom-Si Chiang Mai area are the potential uranium source-rocks in the area under investigation. The following results support this assuption: - the Upper Triassic - Lower Jurassic alkalirhyolithes of the Pak Chom-Si Chiang Mai area consist of densely welded and nearly completely devitrified ignimbrites and tuffs, in contrast to those of the Saraburi and Loei-Tha Li areas, which show a high amount of holohyaline groundmass. - the alkalirhyolithes of the Pak Chom-Si Chiang Mai area are the most differentiated of all those investigated, as shown by the high numerical differentiationindex+ (16,65). - the content of lithophile trace elements (Ba: 415 - 969 ppm; Rb: 109 - 213 ppm; Sr: 35 - 124 ppm; Zr: 77 - 209 ppm;) is higher than that of the alkalirhyolithes exhibiting the same degree of the differentiation
    Description: thesis
    Description: DFG, SUB Göttingen
    Language: German
    Type: doc-type:book
    Format: 107
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-01
    Description: Kernproben aus dem Bereich der Abu-Ballas-Formation (Lingula Shale, früher Teil des "Nubischen Sandsteins") in der Bohrung Mawhoub West 2 (Teufe 596 - 634 m) lieferten zwei praktisch ausschließlich kontinentale Palynomorphen-Assoziationen (vgl. Tab. 1). Beide Assoziationen sind charakterisiert durch einen hohen Anteil an Pollen von Ephedripites- (in der älteren Mikroflora ca. 22 %, in der jüngeren ca. 24 %) und Retimonocolpites-Arten (in der älteren Mikroflora ca. 24 %, in der jüngeren ca. 17 %). Unter den Sporen ist die Deltoidospora/Cyathidites- ruppz mit ca. 8 % vom Gesamtbestand der Mikrofloren am häufigsten. Die verschiedenen Retimonocolpites-Arten repräsentieren die aus Ägypten noch kaum dokumentierte frühe monosulcate, reticulate Phase der Angiospermen-Pollen-Evolution. Nach einem Vergleich mit der palynologischen Zonierung für die algerisch/tunesische Sahara (REYRE 1973) sowie unter Berücksichtigung des ebenfalls vorhandenen "Reticulatasporites" jardinus, der in S-Amerika und in Afrika auf das Intervall Apt/Cenoman beschränkt ist, können die Mawhoub-West-Mikrofloren ins Apt (bis unteres Alb?) gestellt werden.
    Description: Core samples from the borehole Mawhoub West 2 (depth 596 - 634 m) probably belonging to the Abu Ballas Formation (Lingula Shale, a part of the former "Nubian Sandstone") have yielded two nearly exclusively continental associations of palynomorphs (see Table 1). Both associations are characterized by a high percentage of Ephedripites (ca. 22 % in the lower microflora, ca. 24 % in the upper microflora) and Retimonocolpites (ca. 24 % in the lower microflora, ca. 17 % in the upper microflora). The Deltoidospora/Cythidites group is most frequent among the spores. It represents ca. 8 % of all spore/pollen grains found. The different species of Retimonocolpites represent the early monosulcate, reticulate phase of angiosperm pollen evolution hitherto hardly recorded from Egypt. After a comparison with the palynological zonation of the Algerian/Tunesi an Sahara (REYRE 1973) and taking into consideration the also occurring "Reticulatasporites" jardinus, which is restricted in South America and in Africa to the Aptian/Cenomani an , the Mawhoub West pollen and spores may be placed in the Aptian (until Lower Albian?).
    Description: thesis
    Description: DFG, SUB Göttingen
    Keywords: ddc:561.13 ; Sporomorphae ; Kreide ; Nubischer Sandstein ; Palynologie
    Language: German
    Type: doc-type:book
    Format: 40
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wollenburg, Jutta Erika; Mackensen, Andreas (1998): On the vertical distribution of living (Rose Bengal stained) benthic foraminifers in the Arctic Ocean. Journal of Foraminiferal Research, 28(4), 268-285
    Publication Date: 2024-07-01
    Description: The vertical distribution of living (Rose Bengal stained) benthic foraminifers was determined in the upper 15 cm of sediment cores taken along transects extending from the continental shelf of Spitsbergen through the Eurasian Basin of the Arctic Ocean. Cores taken by a multiple corer were raised from 50 stations with water depths between 94 and 4427 m, from areas with moderate primary production values to areas that are among the least productive ones in the world. We believe, that in the Arctic Ocean the vertical distribution of living foraminifers is determined by the restricted availability of food. Live foraminiferal faunas are dominated by potentially infaunal species or epifaunal species. Species confined to the infaunal microhabitat are absent in Arctic sediments that we examined, and predominantly infaunal living species are nowhere dominant. In general, an infaunal mode of life is restricted to the seasonally ice-free areas and thus to areas with at least moderate primary production during the summer period. Under the permanent ice cover living species are usually restricted to the top centimeter of the sediment surface, even though some are able to dwell deeper in the sediment under ice-free conditions.
    Keywords: ANT-X/4; ARK-IX/4; ARK-VIII/2; ARK-VIII/3; AWI_Paleo; Barents Sea; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; Lomonosov Ridge, Arctic Ocean; MIC; MiniCorer; MUC; MultiCorer; Nansen Basin; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS19/111; PS19/113; PS19/114; PS19/117; PS19/150; PS19/152; PS19/154; PS19/157; PS19/175; PS19/178; PS19/190; PS19/245; PS19/246; PS19/249; PS19/252; PS19 ARCTIC91; PS19 EPOS II; PS21 06AQANTX_4; PS2137-1; PS2139-1; PS2140-1; PS2143-1; PS2157-3; PS2159-3; PS2161-1; PS2163-1; PS2177-3; PS2179-3; PS2187-5; PS2212-6; PS2213-4; PS2214-1; PS2215-1; PS2247-1; PS2445-2; PS2446-2; PS27; PS27/019; PS27/020; Quaternary Environment of the Eurasian North; QUEEN; South Atlantic; Svalbard; Yermak Plateau
    Type: Dataset
    Format: application/zip, 18 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Weber, Michael E; Pisias, Nicklas G (1999): Spatial and temporal distribution of biogenic carbonate and opal in deep-sea sediments from the eastern equatorial Pacific: implications for ocean history since 1.3 Ma. Earth and Planetary Science Letters, 174(1-2), 59-73, https://doi.org/10.1016/S0012-821X(99)00248-4
    Publication Date: 2024-07-01
    Description: High-resolution records of glacial-interglacial variations in biogenic carbonate, opal, and detritus (derived from non-destructive core log measurements of density, P-wave velocity and color; r 〉= 0.9) from 15 sediment sites in the eastern equatorial (sampling resolution is ~1 kyr) clear response to eccentricity and precession forcing. For the Peru Basin, we generate a high-resolution (21 kyr increment) orbitally-based chronology for the last 1.3 Ma. Spectral analysis indicates that the 100 kyr cycle became dominant at roughly 1.2 Ma, 200-300 kyr earlier than reported for other paleoclimatic records. The response to orbital forcing is weaker since the Mid-Brunhes Dissolution Event (at 400 ka). A west-east reconstruction of biogenic sedimentation in the Peru Basin (four cores; 91-85°W) distinguishes equatorial and coastal upwelling systems in the western and eastern sites, respectively. A north-south reconstruction perpendicular to the equatorial upwelling system (11 cores, 11°N-°3S) shows high carbonate contents (〉= 50%) between 6°N and 4°S and highly variable opal contents between 2°N and 4°S. Carbonate cycles B-6, B-8, B-10, B-12, B-14, M-2, and M-6 are well developed with B-10 (430 ka) as the most prominent cycle. Carbonate highs during glacials and glacial-interglacial transitions extended up to 400 km north and south compared to interglacial or interglacial^glacial carbonate lows. Our reconstruction thus favors glacial-interglacial expansion and contraction of the equatorial upwelling system rather than shifting north or south. Elevated accumulation rates are documented near the equator from 6°N to 4°S and from 2°N to 4°S for carbonate and opal, respectively. Accumulation rates are higher during glacials and glacial-interglacial transitions in all cores, whereas increased dissolution is concentrated on Peru Basin sediments close to the carbonate compensation depth and occurred during interglacials or interglacial-glacial transitions.
    Keywords: 181KL; 184KL; 189KL; 206KL; 217KL; 222SL; 229KL; 235KL; 243KL; 244KA; 249KL; 251KL; 254KL; 261KA; 268KA; 272KA; 276KL; 278KA; 286KL; ATESEPP; Gravity corer (Kiel type); KAL; Kasten corer; KL; Peru Basin; Piston corer (BGR type); SEDIPERU - TUSCH; SL; SO106/1; SO106/1_181KL; SO106/1_184KL; SO106/1_189KL; SO106/1_206KL; SO106/1_217KL; SO106/1_222SL; SO106/1_229KL; SO106/1_235KL; SO106/2; SO106/2_243KL; SO106/2_244KA; SO106/2_249KL; SO106/2_251KL; SO106/2_254KL; SO106/2_261KA; SO106/2_268KA; SO106/2_272KA; SO106/2_276KL; SO106/2_278KA; SO106/2_286KL; SO79; SO79_108KL; SO79_136KL; SO79_164KL; SO79_169KL; SO79_26KL; SO79_48KL; SO79_53KL; SO79_71KL; SO79_77KL; SO79_82KL; SO79_85KL; SO79_9KL; Sonne
    Type: Dataset
    Format: application/zip, 37 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Höll, Christine; Zonneveld, Karin A F; Willems, Helmut (1998): On the ecology of calcareous dinoflagellates: The Quaternary Eastern Equatorial Atlantic. Marine Micropaleontology, 33(1-2), 1-25, https://doi.org/10.1016/S0377-8398(97)00033-9
    Publication Date: 2024-07-01
    Description: Sediments of the Equatorial Atlantic (core GeoB 1105-4) have been investigated for both calcareous dinoflagellates and organic-walled dinoflagellate cysts. In order to determine the ecological affinity of calcareous dinoflagellates the statistical methods of Detrended Correspondence Analysis (DCA) and Redundancy Analysis (RDA) were used. Utilising DCA, distribution patterns of calcareous dinoflagellates have been compared with those of the ecologically much better known organic-walled dinoflagellate cysts. This method was also used to determine which environmental gradients have a major influence on the species composition. By using existing environmental information based on benthic and planktic foraminifera, such as Sea Surface Temperature (SST) and stable oxygen and carbon isotopes, as well as information on the amount of Calcium Carbonate and Total Organic Carbon (TOC) in bottom sediments, these gradients could be interpreted in terms of productivity and glacial-interglacial trends. Using RDA, the direct relationships between the distribution patterns of calcareous dinoflagellates with the above mentioned external variables could be determined. For the studied region and time interval (141-6.7 ka) the calcareous dinoflagellates show enhanced abundances in periods with reduced productivity most probably related to decreased divergence and relatively stratified, oligotrophic oceanic conditions.
    Keywords: Equatorial Atlantic; GeoB1105-4; Gravity corer (Kiel type); M9/4; Meteor (1986); SFB261; SL; South Atlantic in Late Quaternary: Reconstruction of Budget and Currents
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Frank, Martin; Eisenhauer, Anton; Bonn, Wolfgang J; Walter, Peter; Grobe, Hannes; Kubik, Peter W; Dittrich-Hannen, Beate; Mangini, Augusto (1995): Sediment redistribution versus paleoproductivity change: Weddell Sea margin sediment stratigraphy and biogenic particle flux of the last 250,000 years deduced from 230Thex, 10Be and biogenic barium profiles. Earth and Planetary Science Letters, 136(3-4), 559-573, https://doi.org/10.1016/0012-821X(95)00161-5
    Publication Date: 2024-07-01
    Description: High resolution 230Thex and 10Be and biogenic barium profiles were measured at three sediment gravity cores (length 605-850 cm) from the Weddell Sea continental margin. Applying the 230Thex dating method, average sedimentation rates of 3 cm/kyr for the two cores from the South Orkney Slope and of 2.4 cm/kyr for the core from the eastern Weddell Sea were determined and compared to delta18O and lithostratigraphic results. Strong variations in the radionuclide concentrations in the sediments resembling the glacial/interglacial pattern of the delta18O stratigraphy and the 10Be stratigraphy of high northern latitudes were used for establishing a chronostratigraphy. Biogenic Ba shows a pattern similar to the radionuclide profiles, suggesting that both records were influenced by increased paleoproductivity at the beginning of the interglacials. However, 230Thex0 fluxes (0 stands for initial) exceeding production by up to a factor of 4 suggest that sediment redistribution processes, linked to variations in bottom water current velocity, played the major role in controlling the radionuclide and biogenic barium deposition during isotope stages 5e and 1. The correction for sediment focusing makes the 'true' vertical paleoproductivity rates, deduced from the fluxes of proxy tracers like biogenic barium, much lower than previously estimated. Very low 230Thex0 concentrations and fluxes during isotope stage 6 were probably caused by rapid deposition of older, resedimented material, delivered to the Weddell Sea continental slopes by the grounded ice shelves and contemporaneous erosion of particles originating from the water column.
    Keywords: ANT-II/3; ANT-IV/3; ANT-VI/3; Atka Bay; AWI_Paleo; Gravity corer (Kiel type); Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS04; PS04/257; PS08; PS08/366; PS1170-3; PS12; PS12/248; PS1388-3; PS1575-1; SL; South Atlantic Ocean; South Orkney
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lindemann, Frank (1998): Sedimente im arktischen Meereis - Eintrag, Charakterisierung und Quantifizierung (Sediments in arctic sea ice - entrainment, characterization and quantification). Berichte zur Polarforschung = Reports on Polar Research, 283, 124 pp, https://doi.org/10.2312/BzP_0283_1998
    Publication Date: 2024-07-01
    Description: Sediments in Arctic sea ice are important for erosion and redistribution and consequently a factor for the sediment budget of the Arctic Ocean. The processes leading to the incorporation of sediments into the ice are not understood in detail yet. In the present study, experiments on the incorporation of sediments were therefore conducted in ice tanks of The Hamburg Ship Model Basin (HSVA) in winter 1996/1997, These experiments showed that on average 75 % of the artificial sea-ice sediments were located in the brine-channel system. The sediments were scavenged from the water column by frazil ice. Sediments functioning as a nucleus for the formation of frazil ice were less important for the incorporation. Filtration in grease ice during relatively calm hydrodynamic conditions was probably an effective process to enrich sediments in the ice. Wave fields did not play an important role for the incorporation of sediments into the artificial sea ice. During the expedition TRANSDRIFT III (TDIII, October 1995), different types of natural, newly-formed sea ice (grease ice, nilas and young ice) were sampled in the inner Laptev Sea at the time of freeze-up. The incorporation of sediments took place during calm meteorological conditions then. The characteristics of the clay mineral assemblages of these sedirnents served as references for sea-ice sediments which were sampled from first-year drift ice in the outer Laptev Sea and the adjacent Arctic Ocean during the POLARSTERN expedition ARK-XI/1 (July-September 1995). Based on the clay mineral assemblages, probable incorporation areas for the sedirnents in first-year drift ice could be statistically reconstructed in the inner Laptev Sea (eastern, central, and Western Laptev Sea) as well as in adjacent regions. Comparing the amounts of particulate organic carbon (POC) in sea-ice sediments and in surface sediments from the shelves of potential incorporation areas often reveals higher values in sea-ice sediments (TDIII: 3.6 %DM; ARK-XI/1: 2.3 %DM). This enrichment of POC is probably due to the incorporation process into the sea ice, as could be deducted from maceral analysis and Rock-Eval pyrolysis. Both methods were applied in the present study to particulate organic material (POM) from sea-ice sediments for the first time. It was shown that the POM of the sea-ice sediments from the Laptev Sea and the adjacent Arctic Ocean was dominated by reworked, strongly fragmented, allochthonous (terrigenous) material. This terrigenous component accounted for more than 75 % of all counted macerals. The autochthonous (marine) component was also strongly fragmented, and higher in the sediments from newly-formed sea ice (24 % of all counted macerals) as compared to first-year drift ice (17 % of all counted macerals). Average hydroge indices confirmed this pattern and were in the transition zone between kerogen types II and III (TDIII: 275 mg KW/g POC; ARK-XI/1: 200 mg KW/g POC). The sediment loads quantified in natural sea ice (TDIII: 33.6 mg/l, ARK-XI/1: 49.0 mg/l) indicated that sea-ice sediments are an important factor for the sediment budget in the Laptev Sea. In particular during the incorporation phase in autumn and early winter, about 12 % of the sediment load imported annually by rivers into the Laptev Sea can be incorporated into sea ice and redistributed during calm meteorological conditions. Single entrainment events can incorporate about 35 % of the river input into the sea ice (ca. 9 x 10**6 t) and export it via the Transpolar Drift from the Eurasian shelf to the Fram Strait.
    Keywords: 201; 205b; 208; 209; 210; 219; 221; 228a; 228b; 229; 230; 232b; 234; 237; 239; 240; 241; 242; 246; 283-1; 283-4; 285-1; 286-1; 287-1; 287-2; 288-2; 288-4; 290-1; 291-1; 291-3; 292-1; 292-2; 293-1; 293-2; 293-3; 293-4; 293-5; 293-6; 293-7; 294-1; 294-2; 294-3; 294-4; 294-6; 295-1; 295-2; 295-3; 295-4; 295-5; 295-6; 296-1; 296-2; 296-5; 296-6; Arctic Ocean; ARK-XI/1; ARK-XI/1_201; ARK-XI/1_205b; ARK-XI/1_208; ARK-XI/1_209; ARK-XI/1_210; ARK-XI/1_219; ARK-XI/1_221; ARK-XI/1_228a; ARK-XI/1_228b; ARK-XI/1_229; ARK-XI/1_230; ARK-XI/1_232b; ARK-XI/1_234; ARK-XI/1_237; ARK-XI/1_239; ARK-XI/1_240; ARK-XI/1_241; ARK-XI/1_242; ARK-XI/1_246; East Siberian Sea; ICE; Ice station; Kapitan Dranitsyn; Laptev Sea; Polarstern; PS36; Quaternary Environment of the Eurasian North; QUEEN; TDIII_283-1; TDIII_283-4; TDIII_285-1; TDIII_286-1; TDIII_287-1; TDIII_287-2; TDIII_288-2; TDIII_288-4; TDIII_290-1; TDIII_291-1; TDIII_291-3; TDIII_292-1; TDIII_292-2; TDIII_293-1; TDIII_293-2; TDIII_293-3; TDIII_293-4; TDIII_293-5; TDIII_293-6; TDIII_293-7; TDIII_294-1; TDIII_294-2; TDIII_294-3; TDIII_294-4; TDIII_294-6; TDIII_295-1; TDIII_295-2; TDIII_295-3; TDIII_295-4; TDIII_295-5; TDIII_295-6; TDIII_296-1; TDIII_296-2; TDIII_296-5; TDIII_296-6; Transdrift-III
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mix, Alan C; Morey, Ann E; Pisias, Nicklas G; Hostetler, Steven W (1999): Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics. Paleoceanography, 14(3), 350-359, https://doi.org/10.1029/1999PA900012
    Publication Date: 2024-07-01
    Description: The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5° to 6°C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.
    Keywords: 138-846B; A150/180; A152-84; A153-154; A15-547TW; A15-552TW; A15-558; A15-558P; A15-558TW; A15-559FF; A15-572FF; A15-585GC; A15-586TW; A15-590GC; A15-591GC; A15-592FF; A15-596FF; A15-597A; A15-597B; A15-600FF; A15-602FF; A15-612GC; A15-614TW; A15-618GC; A156-4; A157-3; A164-13; A164-15; A164-16; A164-17; A164-23; A164-24; A164-5; A164-6; A164-61; A167-12; A167-13; A167-14; A167-18TW; A167-1TW; A172-1; A172-2; A173-4; A179-13; A179-15; A179-20; A179-24; A179-6; A179-7; A180-13; A180-15; A180-16; A180-20; A180-32; A180-39; A180-47; A180-47PC; A180-48; A180-48PC; A180-56; A180-69; A180-70; A180-72; A180-73; A180-74; A180-76; A180-78; A180-9; A181/185; A181-7; A181-9; A260210A; Agassiz; AH-1; AH-4; AH-5; AH-7; AH-8; All5402P; All5423P; All5424P; All542P; also published as VM28-122; AMPH-005G; AMPH-007PG; AMPH-011P; AMPH-012G; AMPH-013G; AMPH-016G; AMPH-017G; AMPH-019G; AMPH01AR; AMPH-021G; AMPH-022G; AMPH-023G; AMPH-024G; AMPH-107G; AMPH-130G; AMPH-131G; AMPH-132G; AMPH-133G; AMPH-134G; AMPH-135GV; AMPH-137GV; AMPH-138GV; AMPH-139GV; AMPHITRITE; AR1-117; AR1-119; AR1-144; AR2-113; AR2-117; AR2-128; AR2-136; AR3-25; AR3-38; AR3-45; AR4-52; AR4-55; AR4-56; AR4-63; Argo; ARIES; ARIES-046G; ARIES-049G; Atlantic; Atlantic Ocean; Bay of Bengal; BC; Box corer; BRA-262D; BRA-91AD; BRA-91D; BRA-96D; CAP-1BG; CAP-1HG; CAP-2-1BG; CAP-32HG; CAP-3HG; CAP-42-1; CAP-44BG; CAP-48-2; CAP-48HG; CAP-49BG; CAP-4BG; CAP-50HG; CAP-5HG; CAP-6HG; CAP-8-2; CH10098P; CH10-98; CHA-164B; CHA-296; CHA-300; CHA-302; Challenger1872; CHM-5; CHU-23; CHU-23G; CHU-24; CHU-26; CHU-30; CHU-X1; CIRCE; CIRCE-21; CIRCE-239; CIRCE-24; CIRCE-26; CIRCE-27; CIRCE-32; CIRCE-36; CIRCE-38; CIRCE-42; CIRCE-44; CUS-3G; DIS-385D; DIS-386D; DODO; DODO-117PG; DODO-119PG; DODO-126P; DODO-126PG; DODO-144G; DODO-173G; DODO-191; DODO-192G; DODO-193; DODO-195G; DODO-197; DODO-200V; DODO-201G; DODO-202V; DODO-204; DODO-220V; DRILL; Drilling/drill rig; DW010; DW013; DW034; DW035; DW036; DW048; DW050; DW058; DW089; DW137; DW147B; DWD-100B; DWD-108B; DWD-10BG; DWD-10HH; DWD-11BG; DWD-12BG; DWD-12HH; DWD-137G; DWD-13BG; DWD-13HH; DWD-143; DWD-147B; DWD-149; DWD-15BG; DWD-16BG; DWD-34HG; DWD-35HH; DWD-36HG; DWD-46BG; DWD-47B; DWD-47BG; DWD-48BG; DWD-48HG; DWD-49BG; DWD-50HG; DWD-54HG; DWD-56BG; DWD-56HG; DWD-58BG; DWD-58HH; DWD-59BG; DWD-60BG; DWD-61BG; DWD-62BG; DWD-63BG; DWD-64BG; DWD-68BG; DWD-70BG; DWD-71BG; DWD-73BG; DWD-74BG; DWD-75BG; DWD-76BG; DWD-77BG; DWD-78BG; DWD-79BG; DWD-83BG; DWD-89HH; DWD-89HH-2; DWD-93BG; East Atlantic; Eastern Equatorial Pacific; ELT11.010; ELT11.064; ELT11.089; ELT-1101; ELT-1110; ELT-1164; ELT-1189; ELT-1246; ELT-1271; ELT44; ELT44.027-PC; ELT45; ELT45.027-PC; ELT45.029-PC; ELT45.070-PC; ELT45.073-PC; ELT45.077-PC; ELT45.078-PC; ELT45.081-PC; ELT48; ELT48.003-PC; ELT48.011-PC; ELT48.022-PC; ELT48.023-PC; ELT48.027-PC; ELT49; ELT49.022-PC; ELT49.023-PC; ELT49.024-PC; ELT49.025-PC; Eltanin; ELT-C100; EN06601; EN066-10GGC; Endeavor; EQA-27; FANHMS2G; FANHMS4G; FFC; Free fall corer; GC; GIK12392-1; Grab; GRAB; Gravity corer; H.M.S. Challenger (1872); Horizon; Indian Ocean; JAPANYON; Joides Resolution; JSB-5P; JSB-6P; JYN2; JYN2-007G; JYN5-019G; K708-001; K708-004; K708-006; K708-007; K708-008; K714-3; KAL; Kasten corer; KM1-41; KNR073-04-003; KNR733P; Knr735P; KNR735P; Leg138; LFGS; LFGS-36G; LFGS-38G; LFGS-45G; LSDA; LSDA-103V; LSDA-106G; LSDA-107GA; LSDA-113G; LSDA-117G; LSDA-128G; LSDA-136G; LSDA-SCS; LSDA-SCS-002G; LSDA-SCS-003G; LSDA-SCS-006G; LSDA-SCS-008G; LSDA-SCS-009G; LSDA-SCS-013D; LSDH; LSDH-009G; LSDH-025V; LSDH-038V; LSDH-076PG; LSDH-077G; LSDH-078PG; LSDH-079P; LSDH-079PG; LSDH-080G; LSDH09; LSDH-093PG; LSDH-104G; LUSIAD-9; LUSIAD-A; LUSIAD-H; M12392-1; M25; M70-68; M70-PC-49; M70-PC-61; Marion Dufresne (1972); MD10; MD13; MD76-131; MD76-132; MD76-135; MD77-168; MD77-169; MD77-170; MD77-171; MD77-174; MD77-176; MD77-179; MD77-180; MD77-181; MD77-185; MD77-191; MD77-194; MD77-196; MD77-199; MD77-202; MD77-203; MD77-204; MDPC03HO-043K; Melville; MEN; MEN-08G; MEN-11G; MEN-12G; Meteor (1964); MIDPAC; MONS01AR-MONS08AR; MONSOON; MPC-0-1; MPC-0-2; MPC-10-1; MPC-1-1; MPC-11-1; MPC-43K; MPC-45; MSN-100G; MSN-103P; MSN-104P; MSN-109P; MSN-10G; MSN-135P; MSN-136G; MSN-137P; MSN-138P; MSN-141G; MSN-14G; MSN-45G; MSN-52G; MSN-55G; MSN-56PG; MSN-63G; MSN-90G; MSN-93G; mt1-gyre; MT1-gyre; mt1-mid; MT1-mid; mt1-nrsh; MT1-nrsh; MUK-19BP; MUK-20BP; MUK-27HG; NEL-394D; NZO-A106; NZO-A181; NZO-A315; OSIRIS II; OSIRIS III; Pacific Ocean; PAP-127V; PAP-14; PAP-19; PC; Piston corer; PLDS-001G; PLDS-1; Pleiades; PROA; PROA-011P; PROA-079PG; PROA-083PG; PROA-084PG; PROA-085PG-1; PROA-086P; PROA-086PG; PROA-087PG; PROA-088PG; PROA-089PG; PROA-103PG; PROA-118G; PROA-122G; PROA-124G1; PROA-146G; PROA-147G; PROA-149G; PROA-151G; PROA-155G; PROA-156G; PROA-160G; RC0-113; RC0-117; RC0-121; RC08; RC08-102; RC08-103; RC08-145; RC08-16; RC08-18; RC08-22; RC08-23; RC08-27; RC08-28; RC08-39; RC08-40; RC08-41; RC08-46; RC08-50; RC08-53; RC08-60; RC08-61; RC08-62; RC08-63; RC08-94; RC09; RC09-124; RC09-126; RC09-139; RC09-14; RC09-143; RC09-150; RC09-155; RC09-160; RC09-161; RC09-162; RC09-163; RC09-212; RC09-222; RC09-225; RC09-49; RC09-61; RC09-67; RC10; RC10-114; RC10-139; RC10-140; RC10-141; RC10-142; RC10-143; RC10-146; RC10-161; RC10-162; RC10-172; RC10-175; RC10-176; RC10-22; RC10-49; RC10-50; RC10-52; RC10-53; RC10-54; RC10-56; RC10-62; RC10-64; RC10-97; RC11; RC11-10; RC11-103; RC11-106; RC11-11; RC11-111; RC11-116; RC11-117; RC1112; RC11-12; RC11-120; RC11-121; RC11-122; RC11-128; RC11-13; RC11-134; RC11-138; RC11-139; RC11-14; RC11-141; RC11-145; RC11-146; RC11-147; RC11-15; RC11-16; RC11-160; RC11-162; RC11-21; RC11-210; RC11-213; RC11-22; RC11-220; RC11-230; RC11-238; RC11-255; RC11-26; RC11-260; RC11-35; RC11-37; RC11-78; RC11-79; RC11-80; RC11-86; RC11-9; RC12; RC12-107; RC12-121; RC12-138; RC12-139; RC12-143; RC12-146; RC12-233; RC12-234; RC12-235; RC12-241; RC12-266; RC12-268; RC12-291; RC12-292; RC12-293; RC12-294; RC12-297; RC12-298; RC12-299; RC12-300; RC12-303; RC12-304; RC12-328; RC12-33; RC12-330; RC12-331; RC12-332; RC12-333; RC12-335; RC12-339; RC12-340; RC12-341; RC12-342; RC12-343; RC12-344; RC12-347; RC12-350; RC12-361; RC12-365; RC12-366; RC12-417; RC12-418; RC12-45; RC13; RC13-108; RC13-110; RC13-113; RC13-115; RC13-122; RC13-136; RC13-138; RC13-140; RC13-151; RC13-152; RC13-153; RC13-158; RC13-159; RC13-17; RC13-184; RC13-189; RC13-190; RC13-195; RC13-196; RC13-197; RC13-199; RC13-205; RC13-209; RC13-210; RC13-227; RC13-229; RC13-242; RC13-253; RC13-275; RC13-81; RC14; RC14-29; RC14-31; RC14-31TW; RC14-33; RC14-33TW; RC14-34; RC14-34TW; RC14-35; RC14-35TW; RC14-36; RC14-37; RC14-37TW; RC14-39; RC14-39TW; RC14-44; RC14-44TW; RC14-7; RC14-79TW; RC14-9; RC14-92; RC14-93; RC14-94; RC14-97; RC15; RC15-115; RC15-143; RC15-145; RC15-151; RC15-91; RC15-93; RC15-94; RC17; RC17-101; RC17-102; RC17-103; RC17-104; RC17-105; RC17-110; RC17-113; RC17-114; RC17-116; RC17-121; RC17-123; RC17-125; RC17-126; RC17-127; RC17-132; RC17-142; RC17-144; RC17-145; RC17-176; RC17-177; RC17-178; RC17-69; RC17-73; RC17-98; RC18; RC18-47; RC24; RC24-1; RC24-16; RC24-27; RC24-7; RE009-7; RE010-002; RE5-034; RE5-036; RE5-054; RE5-057; RIS-101; RIS-103; RIS-104; RIS-105; RIS-106; RIS-108; RIS-121V; RIS-14; RIS-15G; RIS-17; RIS-17G; RIS-21G; RIS-24; RIS-29G; RIS-32; RIS-33; RIS-34; RIS-35; RIS-51G; Robert Conrad; SCAN; SCAN-015P; SCAN-022PG; SCAN-023PG; SCAN-025G; SCAN-026G; SCAN-027G; SCAN-028G; SCAN-059P; SCAN-065G; SCAN-066G; SCAN-067G; SCAN-068G; SCAN-082P; SCAN-083P; SCAN-084P; SCAN-084PG; SCAN-085P; SCAN-086P; SCAN-087P; SCAN-088P; SCAN-088PG; SCAN-091G; SCAN-094P; SCAN-095G; SCAN-096P; SDS-93P; SDS-95P; SDS-97P; SDS-98P; SOB; SOB-009G; SOB-026GA; SOB-031GA; South Atlantic Ocean; Southern Borderland; South Pacific Ocean; SP008-004; SP009-003; SP010-005; Spencer F. Baird; Stranger; STYX_III; STYX_IX; STYX03AZ; STYX09AZ; STYXIII-75G; STYXIII-77P; STYXIII-80FF-34; STYXIII-81FF-41; STYXIII-81FF-44;
    Type: Dataset
    Format: application/zip, 14 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...