ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (74)
  • AMS (American Meteorological Society)  (73)
  • AGU / Wiley
  • Kraatz, Berlin
  • 1995-1999  (61)
  • 1985-1989  (13)
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 12 (4). pp. 923-934.
    Publication Date: 2020-08-04
    Description: A method to derive salinity data from RAFOS float temperature and pressure measurements is described. It is based on evaluating the float's in situ density from its mechanical properties and in situ pressure and temperature data. The salinity of the surrounding water may then be determined, assuming that the float has reached equilibrium with its environment. This method, in comparison with the possible use of floatborne salinity cells, has the advantage of being both cost and energy neutral and highly stable in the long term. The effect on the estimated salinity of various parameters used in the determination of the float's in situ density is discussed. Results of seven RAFOS Boats deployed in the Brazil Basin are compared with corresponding CTD data to estimate the magnitude of these errors. At present, an accuracy of 0.3 psu is achieved. The accuracy may be improved to 0.02 psu by referring the float's calculated density to a reference density established by a CTD cast at the time of launch. Results from five floats deployed in the heterogeneous water masses of the Iberian Basin are compared with the corresponding CM casts to demonstrate the variability and interpretation of p-T-S float datasets from different areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 16 (5). pp. 827-837.
    Publication Date: 2016-04-19
    Description: Data from a surface mooring located in the Sargasso Sea at 34°N, 70°W between May 1982 and May 1984 were compared with satellite data to investigate large diurnal sea surface temperature changes. Mooring and satellite measurements are in excellent agreement for those days on which no clouds covered the site at the time of the satellite pass. During the summer half-year at this site, there is a 20% charm of diurnal warming of more than 0.5°C, with values of up to 3.5°C observed in the two-year period. Diurnal warming observed at the mooring has been simulated well by a one-dimensional model driven by local beat and momentum fluxes. Under the conditions of very light wind and strong insolation that produce the Largest surface warming, the surface mixed-layer depth reduces to the convection depth, and wind-mixing becomes unimportant. The thermal response is then limited to depths between 1 and 2 m, making it likely that such events have been underreported in routine ship observations. In all cases observed, the spatial extent of warming events as determined by satellite data are well correlated with the corresponding atmospheric pressure patterns. Conditions giving rise to the largest diurnal warming events are often associated with a westward-extending ridge of the Bermuda high. In the region studied, 57°–75°W and 29°–43°N, diurnal warming of more than 1°C was found on occasion to cover areas in excess of 300 000 km2, with warming of more than 2°C coveting areas in excess of 130 000 km2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 19 (10). pp. 1440-1448.
    Publication Date: 2020-08-04
    Description: Historical data from the region between the Greenwich meridian and the African continental shelf are used to compute the offshore geostrophic transport of the Benguela Current. At 32°S, the Benguela Current is located near the African coast, transporting about 21 Sv (1 Sv = 106 m3 s−1) of surface water toward the north relative to a potential density surface lying between the upper branch of Circumpolar Deep Water and the North Atlantic Deep Watar. Two warm core eddies of probable Agulhas Current origin an observed west of the Benguela Current at 32°S. Near 30°S, the Benguela Current turns toward the northwest and begins to separate from the eastern boundary. It carries about 18 Sv of surface water across 28°S. The current then turns mainly toward the west to flow over a relatively deep segment of the Walvis Ridge south of the Valdivia Bank. A surface current with northward surface of about 10 cm s−1 flows along the western side of the Valdivia Bank, while another northward surface current flows at about 20 cm s−1 some 300 km west of the bank. About 3 Sv of surface now do not leave the Cape Basin south of the Vaidivia Bank, but instead drift northward as a wide. sluggish flow out of the northern end of the Cape Basin. Because of the more southerly seaward extensions of most of the Benguela Current, there are no deep-reaching interactions observed between this current and the cyclonic gyre in the Angola Basin east of the Greenwich meridian. Beneath the surface layer, about 4–5 Sv of Antarctic Intermediate Water are carried northward across 32° and 28°S by the Benguela Current, essentially all of which turns westward to cross the Greenwich meridian south of 24°S.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 3 (1). pp. 75-83.
    Publication Date: 2016-05-10
    Description: An XBT interface is described for use with Commodore and other 6502 based microprocessors. This interface takes the form of a single circuit board mounted inside the microcomputer and is completely software controlled. The application of this digital XBT system to the real-time computation of density and dynamic height, using historical or recent temperature-salinity relationships, is also described. Comparison between XBT and CTD measured temperatures from the Northeast Atlantic yield a mean temperature difference of −0.08°C and an rms temperature difference of 0.33°C for the upper 800 m. Examples of dynamic topography maps and a temperature section computed using this technique are also presented and comparison between objectively analyzed XBT and CTD dynamic topographies demonstrates the reliability of the method for mapping the baroclinic flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 17 (1). pp. 158-163.
    Publication Date: 2020-08-04
    Description: The existence of energetic anticyclonic mid-depth vortices of Mediterranean Water (meddies) questions the validity of a conventional advective–diffusive balance in the eastern Atlantic subtropical gyre. A mesoscale experiment in the Azores–Madeira region reveals a link of these meddies to large-scale subsurface meanders. For the first time it is shown that meddies may have strong surface vorticity, indicative of a generation process involving the Azores Current—a deep reaching near-surface jet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 25 (1). pp. 77-91.
    Publication Date: 2020-08-04
    Description: The Southern Hemisphere Subtropical Front (STF) is a narrow zone of transition between upper-level subtropical waters to the north and subantarctic waters to the south. It is found near 40 degrees S across the South Atlantic and South Indian Oceans and is associated with an eastward geostrophic current band, The current band in each basin is found at or just north of the surface front except near the eastern boundaries where most of the subtropical waters turn north into the eastern limbs of the subtropical gyres. The bands associated with the STF are thus distinct features separated from the strong zonal flows of the Antarctic Circumpolar Current farther south. The authors have referred to the current bands in the two respective oceans as the South Atlantic Current and the South Indian Ocean Current. In this paper the authors use the historical database from the South Pacific Ocean to investigate the geostrophic flow associated with the STF there. The STF extends across the southern Tasman Sea from south of Tasmania to southern New Zealand, and a weak eastward flow appears to be associated with it. The transport amounts to only about 3 Sv (1Sv = 10(6) m(3) s(-1)), little of which passes south of New Zealand. Mixing within the eddy-rich Tasman Sea may account for this weakness, while also setting up another more significant front in the northern Tasman Sea, the Tasman Front. It branches off from the East Australian Current toward the north of New Zealand, along which moves a flow of about 14 Sv. After passing north of New Zealand, a portion of this current flows east to contribute to a current band near 30 degrees S, while another portion turns south as the East Auckland Current and meets with subantarctic waters near Chatham Rise (44 degrees S), thus reestablishing the STF. An enhanced eastward current band is associated with the front there, one that extends across the remainder of the South Pacific and is referred to as the South Pacific Current. In comparison with its counterparts in the other basins, which typically begin by carrying 30 Sv (Atlantic) to 60 Sv (Indian) in the upper 1000 m in their western portions before weakening to 10-15 Sv in the east, the South Pacific Current is weak. Near Chatham Rise, it starts with a transport of approximately 5 Sv, and it remains near this strength as it shifts gradually north across the basin toward South America. The current appears to split into two smaller bands in the region of 115 degrees-85 degrees W, while near 28 degrees 5, 83 degrees W it begins to turn more strongly north and becomes shallower and weaker. Potential vorticity distributions indicate that this current acts as an impediment toward the northward spreading of Antarctic Intermediate Water, But why the South Pacific Current east of New Zealand should be so much weaker than its counterparts in the other basins is not particularly clear. It may be due to the presence of New Zealand and other topographic barriers to deep now east of Australia, to the axis of the subtropical gyre in the South Pacific shifting more rapidly southward with depth than those elsewhere, thus causing greater reductions in the underlying zonal velocities, and to strong poleward eddy heat and salt fluxes in the other two basins leading to smaller cross-STF gradients in the Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 16 . pp. 133-145.
    Publication Date: 2020-08-04
    Description: The reliability of the Comprehensive Ocean–Atmosphere Dataset (COADS) Release 1a 2° monthly winds is tested by comparing it with instrumental measurements in the northwest Atlantic from 1981 to 1991. The instrumental dataset contains anemometer measurements of a very high homogeneity and quality, which were taken by six research sister ships with known anemometer heights in the northwest Atlantic. Special data processing was made with instrumental samples to provide compatibility with the COADS winds. Comparison shows overestimation of the COADS winds in the low ranges and underestimation of the strong and moderate winds. Application of the alternative equivalent Beaufort scales does not remove this bias and makes it even more pronounced. Thus, the conclusion is made that the disagreement obtained results primarily from the uncertainties of anemometer measurements in COADS, especially from the incorrect evaluation of the true wind. Instrumental data also do not indicate significant long-term interannual changes, which are pronounced in the COADS dataset for the 1980s. Some regional features of the comparison are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 29 (11). pp. 2785-2801.
    Publication Date: 2020-08-04
    Description: The Rio Grande Rise acts as a natural barrier for the equatorward flow of Antarctic Bottom Water in the subtropical South Atlantic. In addition to the Vema Channel, the Hunter Channel cuts through this obstacle and offers a separate route for bottom-water import into the southern Brazil Basin. On the occasion of the Deep Basin Experiment, a component of the World Ocean Circulation Experiment (WOCE), the expected deep flow through the Hunter Channel was directly observed for the first time by an array of moored current meters and thermistor chains from December 1992 to May 1994. Main results are (i) the Hunter Channel is, in fact, a conduit for bottom-water flow into the Brazil Basin. Our new mean transport from moored current meters [2.92 (±1.24) × 106 m3 s−1] is significantly higher than earlier estimates that were based on geostrophic calculations. (ii) During the WOCE observational period a tendency toward increased bottom-water temperatures was observed. This observation from the Hunter Channel is consistent with findings from the Vema Channel. (iii) The overflow through the Hunter Channel is highly variable and puts in perspective earlier synoptic geostrophic transport estimates
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 18 . pp. 320-338.
    Publication Date: 2018-04-05
    Description: We examine the diffusive behavior of the flow field in an eddy-resolving, primitive equation circulation model. Analysis of fluid particle trajectories illustrates the transport mechanisms, which are leading to uniform tracer and potential vorticity distributions in the interior of the subtropical thermocline. In contrast to the assumption of weak mixing in recent analytical theories, the numerical model indicates the alternative of tracer and potential vorticity homogenization on isopycnal surfaces taking place in a nonideal fluid with strong, along-isopycnal eddy mixing. The eastern, ventilated portion of the gyre appears to be sufficiently homogeneous to allow the concept of an eddy diffusivity to apply. A break in a random walk behavior of particle statistics occurs after about 100 days when along-flow dispersion sharply increases, indicative of mean shear effects. During the first months of particle spreading, eddy dispersal and mean advection are of similar magnitude. Eddy kinetic energy is of O(60–80 cm2 s−2) in the model thermocline, comparable to the pool of weak eddy intensity found in the eastern parts of the subtropical oceans. Eddy diffusivity in the model thermocline (Kxx = 8 × 107, Kyy = 3 × 107 cm2 s−1) seems to be higher by a factor of about 3 than oceanic values estimated for these area. Below the thermocline, model diffusivity decreases substantially and becomes much more anisotropic, with particle dispersal preferentially in the zonal direction. The strong nonisotropic behavior, prominent also in all other areas of water eddy intensity, appears as the major discrepancy when compared with the observed behavior of SOFAR floats and surface drifters in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 28 (10). pp. 1904-1928.
    Publication Date: 2018-04-06
    Description: The mean warm water transfer toward the equator along the western boundary of the South Atlantic is investigated, based on a number of ship surveys carried out during 1990–96 with CTD water mass observations and current profiling by shipboard and lowered (with the CTD/rosette) acoustic Doppler current profiler and with Pegasus current profiler. The bulk of the northward warm water flow follows the coast in the North Brazil Undercurrent (NBUC) from latitudes south of 10°S, carrying 23 Sv (Sv ≡ 106 m3 s−1) above 1000 m. Out of this, 16 Sv are waters warmer than 7°C that form the source waters of the Florida Current. Zonal inflow from the east by the South Equatorial Current enters the western boundary system dominantly north of 5°S, adding transport northwest of Cape San Roque, and transforming the NBUC along its way toward the equator into a surface-intensified current, the North Brazil Current (NBC). From the combination of moored arrays and shipboard sections just north of the equator along 44°W, the mean NBC transport was determined at 35 Sv with a small seasonal cycle amplitude of only about 3 Sv. The reason for the much larger near-equatorial northward warm water boundary current than what would be required to carry the northward heat transport are recirculations by the zonal current system and the existence of the shallow South Atlantic tropical–subtropical cell (STC). The STC connects the subduction zones of the eastern subtropics of both hemispheres via equatorward boundary undercurrents with the Equatorial Undercurrent (EUC), and the return flow is through upwelling and poleward Ekman transport. The persistent existence of a set of eastward thermocline and intermediate countercurrents on both sides of the equator was confirmed that recurred throughout the observations and carry ventilated waters from the boundary regime into the tropical interior. A strong westward current underneath the EUC, the Equatorial Intermediate Current, returns low-oxygen water westward. Consistent evidence for the existence of a seasonal variation in the warm water flow south of the equator could not be established, whereas significant seasonal variability of the boundary regime occurs north of the equator: northwestward alongshore throughflow of about 10 Sv of waters with properties from the Southern Hemisphere was found along the Guiana boundary in boreal spring when the North Equatorial Countercurrent is absent or even flowing westward, whereas during June–January the upper NBC is known to connect with the eastward North Equatorial Countercurrent through a retroflection zone that seasonally migrates up and down the coast and spawns eddies. The equatorial zone thus acts as a buffer and transformation zone for cross-equatorial exchanges, but knowledge of the detailed pathways in the interior including the involved diapycnal exchanges is still a problem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...