ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (1,387)
  • Aircraft Design, Testing and Performance
  • Life and Medical Sciences
  • 2000-2004  (1,916)
  • 1950-1954  (721)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar and Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ra.v Observatory (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at approx.10 km/s prior to eruption and then accelerate to approx.100 km/s during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx.10(exp 14)-10(exp 15) and approx.10(exp 15)-10(exp 16) g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the "tether cutting" and the "breakout" models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether- cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of the corresponding filament can be compared with expectations from the breakout model, thereby setting constraints that the breakout model must meet. Our findings are consistent with both runaway tether-cutting-type reconnection and fast breakout-type reconnection, occurring early in the fast phase of the February eruption and with both types of reconnection being important in unleashing the explosion, but we are not able to say which, if either, type of reconnection actually triggered the fast phase. In any case, we have found specific constraints that either model, or any other model, must satisfy if correct.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 612; 1221-1232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources, in low hard states, steep power-law (soft) states and in transition between these states. The observations indicate that the X-ray spectrum of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission indicated the probable presence of a jet. Strong QPOs (less than 20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant ( i.e. 60-90% ). This evidence contradicts the dominant long standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model, that identifies and explains the origin of the QPOs and how they are imprinted on the properties of power-law flux component. We argue the existence of a bounded compact coronal region which is a natural consequence of the adjustment of Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) hard state, in which the TL is optically thin and very hot (kT approx. greater than 50 keV) producing photon upscattering via thermal Componization; the photon spectrum index Gamma appprox.1.5 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius; (2) a soft state which is optically thick and relatively cold (approx. less than 5 keV); the index for this state, Gamma approx. 2.8 is determined by soft-photon upscattering and photon trapping in converging flow into BH. In the TL model for corona the QPO frequency vnu(sub high) is related to the gravitational (close to Keplerian) frequency nu(sub K) at the outer (adjustment) radius and nu(sub low) is related to the TL s normal mode (magnetoacoustic) oscillation frequency nu(sub MA). The observed correlations between index and low and high QPO frequencies are readily explained in terms of this model. We also suggest a new method for evaluation of the BH mass using the index-frequency correlation.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: One of the primary uses of the in-flight icing research performed aboard NASA Glenn s DHC-6 Twin Otter is for Icing Research Tunnel (IRT) and icing prediction code (Lewice) validation. Using the in-flight data to establish the IRT and Lewice as accurate simulators of actual icing conditions is crucial for supporting the research done in the Icing Branch. During test flights during the 2003 and 2004 flight season, a Natural Ice Shape Database was collected. For flights where conditions were appropriate, the aircraft is flown in an icing cloud with all ice protection systems deactivated. The duration of this period is usually determined by the pilot s ability to safely control the aircraft. When safe flight is no longer possible, the aircraft is maneuvered into clear air above the cloud layer. At this point several photographs are taken of the ice shape that was accreted on the wing test section during this icing encounter using a stereo photograph system (Figure 1). The stereo photograph system utilizes two cameras located at different locations on the fuselage that are both pointed at the same location on the wing. When both cameras take photographs of the same location at the same time, the negatives can be combined digitally to generate a two dimensional plot describing the cross-section of the ice shape. After these photographs are taken, the wing de-icing boots are activated and the ice shape is removed.
    Keywords: Aircraft Design, Testing and Performance
    Type: Interm Summary Reports; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: We planned to launch in July 2000. Heading into March that year we were on schedule, under budget, meeting all of our performance requirements, and ready for the final testing Near the end of the day, it was time for the sign burst test. For 200 milliseconds we would put a non-feedback force on our system, which meant we couldn't adjust or halt the test in progress. Something went wrong, terribly wrong during the sign burst test. For 200 milliseconds we would put a non-feedback force on our system, which meant we couldn't adjust or halt the test in process. Something went wrong, terribly wrong during the sign burst test. As mission manager, I was standing just ten feet away from the spacecraft when this happened. It sounded like a clap of thunder. With the test stopped, we moved in closer to see what had happened - and we knew immediately that we had damaged our spacecraft. How much, we didn't know.
    Keywords: Aircraft Design, Testing and Performance
    Type: ASK Magazine, No. 18; 10-13; NASA/NP-2004-06-354-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB).
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 607; 1-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Description: Observations show that solar activity is distributed nonaxisymmetrically, concentrating at preferred longitudes.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 604; 944-959
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Description: The Palomar Integral Field Spectrograph was used to probe a variety of environments in nine nearby galaxies that span a range of morphological types, luminosities, metallicities, and infrared-to-blue ratios.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 601; 813-830
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-12
    Description: We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 Angstroms, Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar arid Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ray Observation, (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at approximately 10 kilometers per second prior to eruption and then accelerate to approximately 100 kilometers per second during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approximately 10(exp 14)-10(exp 15) and approximately 10(exp 15)-10(exp 16)g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the tether cutting and the breakout models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether-cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of the corresponding filament can be compared with expectations from the breakout model, thereby setting constraints that the breakout model must meet. Our findings are consistent with both runaway tether-cutting-type reconnection and fast breakout-type reconnection, occurring early in the fast phase of the February eruption and with both types of reconnection being important in unleashing the explosion, but we are not able to say which, if either, type of reconnection actually triggered the fast phase. In any case, we have found specific constraints that either model, or any other model, must satisfy if correct.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 612; 1221-1232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: A back-and-forth orbit integration technique, developed for our previous investigation of the splitting of the parent of the sungrazers C/1882 R1 and C/1965 S1, is now applied in an effort to understand the history and orbital evolution of the Kreutz sungrazer system, starting with the birth of two subgroups, which show prominently among the bright members and whose inception dates back to the progenitor's breakup into two superfragments. The integration technique is used to reproduce the motion of comet C/1843 D1 - the second brightest sungrazer known and presumably the most massive surviving piece of superfragment I - from the motion of C/1882 R1 - the brightest sungrazer on record and arguably the most massive surviving piece of superfragment II. Running the orbit of C/1882 R1 back to A.D. 326, the progenitor comet is found to have split at a heliocentric distance of 50 AU and nearly 30 yr before perihelion. The superfragments acquired separation velocities of similar to8 m s(-1) in opposite directions. Using the same technique, we show next that (1) the motions of two additional sungrazers, C/1880 C1 and C/1887 B1, are matched extremely well if these objects shared a common parent with C/1843 D1, and (2) C/1963 R1 (Pereyra), the second brightest subgroup I member on record, is more closely related to subgroup II objects (such as C/1882 R1 and C/1965 S1) than to C/1843 D1. This finding raises serious doubts about the major role of the subgroups in the system's orbital history and offers an incentive for considering an alternative dynamical scenario. The fragmentation models for C/1963 R1 and two additional bright sungrazers, C/1945 X1 and C/1970 K1, suggest that (1) these comets may have been the most massive pieces of the fragment populations formed from their respective disintegrating parents, and (2) the course of evolution of the Kreutz system at the upper end of the mass spectrum may be better ascertained from the distribution of the sungrazers' arrival times than from the sources of subgroups. If so, the fragment hierarchy should be determined primarily by the cascading nature of the fragmentation process, which was recently shown by Sekanina to control the evolution of minor fragments as well. The sungrazer system's estimated age is in any case very short, less than 1700 yr.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: We report detections of X-rays from HH 80 and HH 81 with the ACIS instrument on the Chandra X-Ray Observatory.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 605; 259-271
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-12
    Description: The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 614; 781-795
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasi-periodic oscillations (QPOs) and the spectral power law index of several black hole (BH) candidate sources, in low (hard) states, steep power law (soft) states, and transitions between these states. The observations indicate that the X-ray spectra of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission, indicating the probable presence of a jet. Strong QPOs (〉20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant (i.e., 60%90%). This evidence contradicts the dominant, long-standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model that identifies and explains the origin of the QPOs and how they are imprinted on the properties of the power-law flux component. We argue for the existence of a bounded compact coronal region that is a natural consequence of the adjustment of the Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) a hard state, in which the TL is optically thin and very hot (kT approximately greater than 50 keV), producing photon upscattering via thermal Comptonization (the photon spectrum index Gamma approximates 1.7 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius), and (2) a soft state that is optically thick and relatively cold (kT approximately less than 5 keV the index for this state, Gamma approximates 2.8, is determined by soft-photon upscattering and photon trapping in a converging flow into the BH). In the TL model for the corona, the QPO frequency V(sub high) is related to the gravitational (close to Keplerian) frequency V(sub K) at the outer (adjustment) radius and v(sub low) is related to the TL's normal mode (magnetoacoustic) oscillation frequency v(sub MA) . The observed correlations between index and low and high QPO frequencies are readily explained in terms of this model. We also suggest a new method for evaluation of the BH mass using the index-frequency correlation.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution spectroscopy. The mission will also perform routine high- resolution X-ray spectroscopy of faint and extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity, and ionization state for a wide range of astrophysical problems. This has enormous potential for the discovery of new unexpected phenomena. The Constellation-X mission is a high priority in the National Academy of Sciences McKee-Taylor Astronomy and Astrophysics Survey of new Astrophysics Facilities for the first decade of the 21st century.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: Previous observations of the luminous Seyfert 1 galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0), which exhibits broad features that can be modelled myth the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419-577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was 'X-ray bright' indicates the dominant spectral variability occurs via a steep power law component.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: We present new XMM-Newton results on the field around the NGC346 star cluster in the SMC. This continues and extends previously published work on Chandra observations of the same field. The two XMM-Newton observations were obtained, respectively, six months before and six months after the previously published Chandra data. Of the 51 X-ray sources detected with XMM-Newton, 29 were already detected with Chandru. Comparing the properties of these X-ray sources in each of our three datasets has enabled us to investigate their variability on times scales of a year. Changes in the flux levels and/or spectral properties were observed for 21 of these sources. In addition, we discovered long-term variations in the X-ray properties of the peculiar system HD5980, a luminous blue variable star, that is likely to be a colliding wind binary system, which displays the largest luminosity during the first XMM-Newton observation.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.
    Keywords: Astrophysics
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 129-133; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. In these sources, the primary and secondary electrons continue to accelerate to high altitude and their Lorentz factors are limited by curvature and synchrotron radiation reaction. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons a t 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV. Subject headings: pulsars: general - radiation mechanisms: nonthermal - stars: neutron - gamma rays: theory
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: We report the results of a search for burst oscillations during thermonuclear X-ray bursts from the low mass X-ray binary (LMXB) EXO 0748-676. With the proportional counter array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) we have detected a 45 Hz oscillation in the average power spectrum of 38 thermonuclear X-ray bursts from this source. We computed power spectra with 1 Hz frequency resolution for both the rising and decaying portions of 38 X-ray bursts from the public RXTE archive. We averaged the 1 Hz power spectra and detected a significant signal at 45 Hz in the decaying phases of the bursts. The signal is detected at a significance level of 4 x 10 (exp -8) similar signal was detected in the rising intervals. The oscillation peak is unresolved at 1 Hz frequency resolution, indicating an oscillation quality factor, Q = nu (sub 0)/Delta nu (sub fwhm) greater than 45, and the average signal amplitude is approximately equal to 3% (rms) The detection of 45 Hz burst oscillations from EXO 0748-676 provides compelling evidence that this is the neutron star spin frequency in this system. We use the inferred spin frequency to model the widths of absorption lines from the neutron star surface and show that the widths of the absorption lines from EXO 0748-676 recently reported by Cottam et al. are consistent with a 45 Hz spin frequency as long as the neutron star radius is in the range from about 9.5 - 15 km. With a known spin frequency, precise modelling of the line profiles from EXO 0748-676 holds great promise for constraining the dense matter equation of state.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-06
    Description: The goal of the Orbiting Wide-field Light-collectors (0WL) mission is to study the origin and physics of the highest energy particles known in nature, the ultra- high energy cosmic rays (UHECRs). The OWL mission consists of telescopes with UV sensitive cameras on two satellites operating in tandem to view in stereo the development of the giant particle showers induced in the Earth s atmosphere by UHECRs. This paper discusses the characteristics of the 0WL mission.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: We present RHESSI observF5oss of three homologous flares, which occurred between April 14 and 16, 2002. We find that the RHESSI images of all three flares at energies between 6 and 25 keV had some common features: (1) A. separate coronal source up to approx. 30 deg. above the flare loop appeared in the early impulsive phase and stayed stationary for several minutes. (2) Before the flare loop moved upward; previously reported by others, the flare loop-top centroid moved downward for 2-4 minutes during the early impulsive phase of the Ears: falling by 13 - 30% of its initial height with a speed between 8 and 23 km/s. We conclude that these features are associated with the formation and development of a current sheet between the loop-top and the coronal source. In the April 14-15 flare, we find that the hard X-ray flux (greater than 25 keV) is correlated with the rate at which the flare loop moves upward, indicating that the faster the loop grows, the faster the reconnection rate, and therefore, the greater the flux of accelerated electrons. Subject headings: Sun: L'iaies-Sun: X-1-ay-s -
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: We report on Chandra ACE observations of the ultracompact AM CVn binary ES Cet. This object has a 10.3 minute binary period and is the most compact of the confirmed AM CVn systems. We have, for the first time, unambiguously detected the X-ray counterpart to ES Cet. In a 20 ksec ACIS-S image a point-like X-ray source is found within 1 sec. of the catalogued optical position. The mean countrate in ACIS-S is 0.013/s, and there is no strong evidence for variability. We folded the X-ray data using the optical ephemeris of Warner & Woudt, but did not detect any significant modulation. If an approx. = 100% modulation similar to those seen in the ultracompact candidates V407 Vu1 and Rx J0806.3+1527 were present then we would have detected it. The upper limit (3(sigma)) to any modulation at the putative orbital period is approx. 40% (rms). We extract the first X-ray spectrum from ES Cet, and find that it is not well described by simple continuum models. We find suggestive evidence for discrete spectral components at approx. 470 and 890 eV, that can be modelled as gaussian emission lines. In comparison with recent X-ray detections of nitrogen and neon in another AM CVn system (GP Com), it appears possible that these features may represent emission lines from these same elements; however, deeper spectroscopy will be required to confirm this. Our best spectral model includes a black body continuum with kT = 0.8 keV along with the gaussian lines. The 0.2 - 5 keV X-ray flux was approx. 7 x 10(exp -14) ergs/sq cm s. The luminosity implied by this flux for any reasonable distance is much smaller than that expected for a mass accretion rate as high as m = 10(exp -8) solar mass/yr, suggesting that the bulk of the accretion luminosity is below 100 eV and not seen with Chandra. We discuss the implications of our results for the nature of ES Cet.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-12
    Description: Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-12
    Description: We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 611; 545-556
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-12
    Description: Measurements by Ulysses in the high-speed polar solar wind have shown the wind to carry some fine-scale structures in which the magnetic field reverses direction by having a switchback fold in it. The lateral span of these magnetic switchbacks, translated back to the Sun, is of the scale of the lanes and cells of the magnetic network in which the open magnetic field of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. This possibility motivated us to undertake the study reported here of the structure of Ha macrospicules observed at the limb in polar coronal holes, to determine whether a significant fraction of these eruptions appear to be erupting loops. From a search of the polar coronal holes in 6 days of image- processed full-disk Ha movies from Big Bear Solar Observatory, we found a total of 35 macrospicules. Nearly all of these (32) were of one or the other of two different forms: 15 were in the form of an erupting loop, and 17 were in the form of a single column spiked jet. The erupting-loop macrospicules are appropriate for producing the magnetic switchbacks in the polar wind. The spiked-jet macrospicules show the appropriate structure and evolution to be driven by reconnection between network-scale closed field (a network bipole) and the open field rooted against the closed field. This evidence for reconnection in a large fraction of our macrospicules (1) suggests that many spicules may be generated by similar but smaller reconnection events and (2) supports the view that coronal heating and solar wind acceleration in coronal holes and in quiet regions are driven by explosive reconnection events in the magnetic network.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Vol. 605; 511-520
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: A CAMRAD II model of the V-22 Osprey tiltrotor was constructed for the purpose of analyzing the effects of blade design changes on whirl flutter. The model incorporated a dual load-path grip/yoke assembly, a swashplate coupled to the transmission case, and a drive train. A multiple-trailer free wake was used for loads calculations. The effects of rotor design changes on whirl-mode stability were calculated for swept blades and offset tip masses. A rotor with swept tips and inboard tuning masses was examined in detail to reveal the mechanisms by which these design changes affect stability and loads. Certain combinations of design features greatly increased whirl-mode stability, with (at worst) moderate increases to loads.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: From August to September 2003, NASA conducted an extensive measurement campaign to characterize the acoustic signal of wake vortices. A large, both spatially as well as in number of elements, phased microphone array was deployed at Denver International Airport for this effort. This paper will briefly describe the program background, the microphone array, as well as the supporting ground-truth and meteorological sensor suite. Sample results to date are then presented and discussed. It is seen that, in the frequency range processed so far, wake noise is generated predominantly from a very confined area around the cores.
    Keywords: Aircraft Design, Testing and Performance
    Type: Proceedings of the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop; NASA/CP-2004-213308
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-02
    Description: The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-02
    Description: The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-02
    Description: Rotor health monitoring and online damage detection are increasingly gaining the interest of aircraft engine manufacturers. This is primarily due to the fact that there is a necessity for improved safety during operation as well as a need for lower maintenance costs. Applied techniques for the damage detection and health monitoring of rotors are essential for engine safety, reliability, and life prediction. Recently, the United States set the ambitious goal of reducing the fatal accident rate for commercial aviation by 80 percent within 10 years. In turn, NASA, in collaboration with the Federal Aviation Administration, other Federal agencies, universities, and the airline and aircraft industries, responded by developing the Aviation Safety Program. This program provides research and technology products needed to help the aerospace industry achieve their aviation safety goal. The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center is currently developing propulsion-system-specific technologies to detect damage prior to catastrophe under the propulsion health management task. Currently, the NDE group is assessing the feasibility of utilizing real-time vibration data to detect cracks in turbine disks. The data are obtained from radial blade-tip clearance and shaft-clearance measurements made using capacitive or eddy-current probes. The concept is based on the fact that disk cracks distort the strain field within the component. This, in turn, causes a small deformation in the disk's geometry as well as a possible change in the system's center of mass. The geometric change and the center of mass shift can be indirectly characterized by monitoring the amplitude and phase of the first harmonic (i.e., the 1 component) of the vibration data. Spin pit experiments and full-scale engine tests have been conducted while monitoring for crack growth with this detection methodology. Even so, published data are extremely limited, and the basic foundation of the methodology has not been fully studied. The NDE group is working on developing this foundation on the basis of theoretical modeling as well as experimental data by using the newly constructed subscale spin system shown in the preceding photograph. This, in turn, involved designing an optimal sub-scale disk that was meant to represent a full-scale turbine disk; conducting finite element analyses of undamaged and damaged disks to define the disk's deformation and the resulting shift in center of mass; and creating a rotordynamic model of the complete disk and shaft assembly to confirm operation beyond the first critical concerning the subscale experimental setup. The finite element analysis data, defining the center of mass shift due to disk damage, are shown. As an example, the change in the center of mass for a disk spinning at 8000 rpm with a 0.963-in. notch was 1.3 x 10(exp -4) in. The actual vibration response of an undamaged disk as well as the theoretical response of a cracked disk is shown. Experiments with cracked disks are continuing, and new approaches for analyzing the captured vibration data are being developed to better detect damage in a rotor. In addition, the subscale spin system is being used to test the durability and sensitivity of new NDE sensors that focus on detecting localized damage. This is designed to supplement the global response of the crack-detection methodology described here.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-02
    Description: Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-06
    Description: RX 51914.4+2456 is a candidate double-degenerate binary with a putative 1.756 mHz orbital frequency. In a previous timing study using archival ROSAT and ASCA data we reported evidence for an increase of the putative orbital frequency at a rate consistent with expectations for gravitational radiation from the system. Here we report the results of new Chandra timing observations which confirm the previous indications of spin-up of the X-ray frequency, and provide much tighter constraints on the frequency derivative, u. We obtained with Chandra a total of 75 ksec of exposure in two epochs separated in time by 10.3 months. The total time span of the archival ROSAT, ASCA and new Chandra data is now 10.2 years. This more than doubles the interval spanned by the ROSAT and ASCA data alone, providing much greater sensitivity to a frequency derivative. With the addition of the Chandra data an increasing frequency is unavoidable, and the mean i/ is 5.9f0.9 x 10-l' Hz s-'. Interestingly, power spectra of the longest Chandra pointing show evidence for a sideband structure to the 1.756 mHz frequency. The fundamental and first harmonic show evidence for upper sidebands with a frequency separation of E 0.5 mHz from their parent peaks. Additionally, the first and second harmonics show evidence for lower sidebands with approximately half the frequency separation of the upper sidebands. Similar sideband structure is a common feature of Intermediate Polars (Ips)-although it is usually observed in the optical-and suggests the presence of a longer period in the system, perhaps the previously unseen orbital period. If this is correct the sideband structure indicates an orbital period close to 1 hr, and the observed u likely represents the accretion-induced spin-up of a white dwarf. We discuss the implications of these findings for the nature of RX J1914.4+2456.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-10-02
    Description: The ubiquity of accretion disks around pre-main sequence and young main sequence stars having the potential to form planetary systems is now well established. However, unknown is an accurate estimate of the fraction of single stars with disks that have produced planetary systems. Theoretical models of particle aggregation show that if particles can grow from submicron to mm to cm in size, then the formation of planetesimals is possible in the time before the disk dissipates. The problem remains to understand how grains condense from nebular gases, and how relic interstellar grains survive and are modified by their transport in the disk. If grains are lofted above the disk photosphere by processes such as winds, turbulent convection, or changes in vertical structure, the evolution of dust can be investigated by observing the properties of the small (less than or = 1 micron) grains in the optically thin disk surface layer or atmosphere.
    Keywords: Astrophysics
    Type: Chondrites and the Protoplanetary Disk, Part 2; LPI-Contrib-1218-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-04-04
    Description: This viewgraph presentation reviews NASA's project to demonstrate that careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. The areas in covered in this presentation are: (1) Past airborne shock measurement efforts, (2) SR-71 Sonic Boom Propagation Experiment (3) F-5E Inlet Spillage Shock Measurement (4) Flight test approach (5) GPS data (6) Shaped Sonic Boom Demonstration (SSBD) Mach calibration (7) Super Blanik L-23 sailplane (8) Near-field probing (8a)Maneuvers (8b) Control Room Displays (8c) Pressure Instrumentation (8d) Signatures.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-02
    Description: Next-generation launch vehicles are being designed with turbine-based combined cycle (TBCC) propulsion systems having very aggressive thrust/weight targets and long lives. Achievement of these goals requires advanced materials in a wide spectrum of components. TiAl has been identified as a potential backstructure material for maintainable composite panel heat exchangers (HEX) in the inlet, combustor, and nozzle section of a TBCC propulsion system. Weight reduction is the primary objective of this technology. Design tradeoff studies have assessed that a TiAl structure, utilizing a high-strength, hightemperature TiAl alloy called Gamma MET PX,1 reduce weight by 41 to 48 percent in comparison to the baseline Inconel 718 configuration for the TBCC propulsion system inlet, combustor, and nozzle. A collaborative effort between the NASA Glenn Research Center, Pratt & Whitney, Engineering Evaluation & Design, PLANSEE AG (Austria), and the Austrian Space Agency was undertaken to design, manufacture, and validate a Gamma-MET PX TiAl structure for scramjet applications. The TiAl inlet flap was designed with segmented flaps to improve manufacturability, to better control thermal distortion and thermal stresses, and to allow for maintainable HEX segments. The design philosophy was to avoid excessively complicated shapes, to minimize the number of stress concentrations, to keep the part sizes reasonable to match processing capabilities, and to avoid risky processes such as welding. The conceptual design used a standard HEX approach with a double-pass coolant concept for centrally located manifolds. The flowpath side was actively cooled, and an insulation package was placed on the external side to save weight. The inlet flap was analyzed structurally, and local high-stress regions were addressed with local reinforcements.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: Fully relativistic and causal equations for the flow of charge in curved spacetime are derived. It is believed that this is the first set of equations to be published that correctly describes the flow of charge, as well as the evolution of the electromagnetic field, in highly dynamical relativistic environments on timescales much shorter than the collapse time (GM/c3).
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 605; 340-349
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-08
    Description: We present the results of stellar photometry of polar ring galaxies NGC 2685 and NGC 4650A, using the archival data obtained with the Hubble Space Telescope's Wide Field Planetary Camera 2.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 127; 789-797
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-08
    Description: The metal-poor stars in the halo of the Milky Way galaxy were among the first objects formed in our Galaxy. These Population II stars are the oldest objects in the universe whose ages can be accurately determined. Age determinations for these stars allow us to set a firm lower limit, to the age of the universe and to probe the early formation history of the Milky Way. The age of the universe determined from studies of Population II stars may be compared to the expansion age of the universe and used to constrain cosmological models. The largest uncertainty in estimates for the ages of stars in our halo is due to the uncertainty in the distance scale to Population II objects. We propose to obtain accurate parallaxes to a number of Population II objects (globular clusters and field stars in the halo) resulting in a significant improvement in the Population II distance scale and greatly reducing the uncertainty in the estimated ages of the oldest stars in our galaxy. At the present time, the oldest stars are estimated to be 12.8 Gyr old, with an uncertainty of approx. 15%. The SIM observations obtained by this key project, combined with the supporting theoretical research and ground based observations outlined in this proposal will reduce the estimated uncertainty in the age estimates to 5%).
    Keywords: Astrophysics
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 12-14; JPL-Publ-2004-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-08
    Description: The Space Interferometer Mission (SIM) will provide a census of planetary systems by con- ducting a broad survey of 2,000 stars that will be sensitive to the presence of planets with masses as small as approx. 15 Earth masses (1 Uranus mass) and a deep survey of approx. 250 of the nearest, stars with a mass limit of approx.3 Earth masses. The broad survey will include stars spanning a wide range of ages, spectral types, metallicity, and other important parameters. Within this larger context, the Young Stars and Planets Key Project will study approx. 200 stars with ages from 1 Myr to 100 Myr to understand the formation and dynamical evolution of gas giant planets. The SIM Young Stars and Planets Project will investigate both the frequency of giant planet formation and the early dynamical history of planetary systems. We will gain insight into how common the basic architecture of our solar system is compared with recently discovered systems with close-in giant planets by examining 200 of the nearest (less than 150 pc) and youngest (1-100 Myr) solar-type stars for planets. The sensitivity of the survey for stars located 140 pc away is shown in the planet mass-separation plane. We expect to find anywhere from 10 (assuming that only the presently known fraction of stars. 5-7%, has planets) to 200 (all young stars have planets) planetary systems. W-e have set our sensitivity threshold to ensure the detection of Jupiter-mass planets in the critical orbital range of 1 to 5 AU. These observations, when combined with the results of planetary searches of mature stars, will allow us to test theories of planetary formation and early solar system evolution. By searching for planets around pre-main sequence stars carefully selected to span an age range from 1 to 100 Myr, we will learn a t what epoch and with what frequency giant planets are found at the water-ice snowline where they are expected to form. This will provide insight into the physical mechanisms by which planets form and migrate from their place of birth, and about their survival rate. With these data in hand, we will provide data, for the first time, on such important questions as: What processes affect the formation and dynamical evolution of planets? When and where do planets form? What is initial mass distribution of planetary systems around young stars? How might planets be destroyed? What is the origin of the eccentricity of planetary orbits? What is the origin of the apparent dearth of companion objects between planets and brown dwarfs seen in mature stars? The observational strategy is a compromise between the desire to extend the planetary mass function as low as possible and the essential need to build up sufficient statistics on planetary occurrence. About half of the sample will be used to address the "where" and "when" of planet formation. We will study classical T Tauri stars (cTTs) which have massive accretion disks and post- accretion, weak-lined T Tauri stars (wTTs). Preliminary estimates suggest the sample will consist of approx. 30% cTTs and approx. 70% wTTs, driven in part by the difficulty of making accurate astrometric measurements toward objects with strong variability or prominent disks.
    Keywords: Astrophysics
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 1-2; JPL-Publ-2004-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-08
    Description: We present small-aperature(15) photometry and new high-resolution images at 10 mu (N band) for 87 Seyfert galaxies from the Extended 12 mu Sample drawn from the IRASX database.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 605; 156-167
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-08
    Description: We present deep submillimeter observations of 17 galaxies at z = 0.5 that are hosts of a Type Ia supernova.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 603; 489-494
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-08
    Description: The radiative lifetime of the 1S0 level was found to be 540 +/- 27 ms. This is in good agreement with a previous measurement and with a number of theoretical calculations. Metastable lifetimes, when combined with collisional excitation rates, can provide a diagnostic for electron density Ne in a stellar or solar plasma.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 602; 1075-1078
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: We have obtained Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope STIS spectra of HR 4796A, a nearby 8 Myr old main-sequence star that possesses a dusty circumstellar disk whose inclination has been constrained from high-resolution near-infrared observations to be 17 degrees from edge-on.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 602; 985-992
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-08
    Description: Fischer-Tropsch catalysis has been suggested as a means of driving hydrocarbon chemistry in oxygen rich regions such as the protosolar nebula. In addition to producing hydrocarbons, Fischer-Tropsch catalysis also produces water, and it is therefore possible that such processes could account for the recent observations of water in the circumstellar envelope of asymptotic giant branch star IRC +10216.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 600; L87-L90
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-06
    Description: A ducted fan VTOL UAV with a 10-inch diameter rotor was tested in the US Army 7-by 10-Foot Wind Tunnel. The test conditions covered a range of angle of attack from 0 to 110 degrees to the freestream. The tunnel velocity was varied from 0 (simulating a hover condition) to 128 ft/sec in propeller mode. A six-component internal balance measured the aerodynamic loads for a range of model configurations. including the isolated rotor, the isolated duct, and the full configuration of the duct and rotor. For some conditions, hotwire velocity surveys were conducted along the inner and outer surface of the duct and across the downstream wake. In addition, fluorescent oil flow visualization allowed the flow separation patterns inside and outside of the duct to be mapped for a few test conditions. Two different duct shapes were tested to determine the performance effects of leading edge radius. For each duct, a range of rotor tip gap from 1%R to 4.5%R was tested to determine the performance penalty in hover and axial flight. Measured results are presented in terms of hover performance, hover performance in a crosswind, and high angle of attack performance in propeller mode. In each case, the effects of both tip gap and duct leading edge radius are illustrated using measurements. Some of the hover performance issues were also studied using a simple analytical method, and the results agreed with the measurements.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-06
    Description: An overview of the current NASA Ultra Efficient Engine Technology (UEET) project with an emphasis on the reinvention of UEET as part of the Vehicle Systems Program is presented.
    Keywords: Aircraft Design, Testing and Performance
    Type: 2003 NASA Seal/Secondary Air System Workshop, Volume 1; 43-90; NASA/CP-2004-212963/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-05
    Description: At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics, Inc., Mountainview, CA), the regression training required a fraction of a CPU second, whereas neural network training was between 1 and 9 min, as given. For a single analysis cycle, the 3-sec CPU time required by the FLOPS code was reduced to milliseconds by the approximators. For design calculations, the time with the FLOPS code was 34 min. It was reduced to 2 sec with the regression method and to 4 min by the neural network technique. The performance of the regression and neural network methods was found to be satisfactory for the analysis and design optimization of the subsonic aircraft.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-05
    Description: Since the late 1990s the national airspace system has been recognized as approaching a capacity crisis. In the light of this condition, industry, government, user organizations, and educational institutions have been working on procedural and technological solutions to the problem. One aspect of system operations that holds potential for improvement is the separation criteria applied to aircraft for wake vortex avoidance. These criteria, applied when operations are conducted under instrument flight rules (IFR), were designed to represent safe spacing under weather conditions conducive to the longest wake hazards. It is well understood that wake behavior is dependent on meteorological conditions as well as the physical parameters of the generating aircraft. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft VOrtex Spacing System (AVOSS). Successfully demonstrated in a realtime field demonstration during July 2000 at the Dallas Ft. Worth International Airport (DFW), AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. AVOSS provides dynamic wake separation criteria that are a function of the ambient weather conditions for a particular airport, and the predicted wake behavior under those conditions. Wake sensing subsystems provide safety checks and validation for the predictions. The AVOSS was demonstrated in shadow mode; no actual spacing changes were applied to aircraft. This paper briefly reviews the system architecture and operation, reports the latest performance results from the DFW deployment, and describes the future direction of the project.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-06
    Description: A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-06
    Description: The well known black-hole X-ray binary transient XTE J1550-564 underwent an outburst during the spring of 2003 which was substantially underluminous in comparison to previous periods of peak activity in that source. In addition, our analysis shows that it apparently remained in the hard spectral state over the duration of that outburst. This is again in sharp contrast to major out-bursts of that source in 1998/1999 during which it exhibited an irregular light curve, multiple state changes and collimated outflows. This leads us to classify it as a failed outburst. We present the results of our study of the spring 2003 event including light curves based on observations from both INTEGRAL and RXTE. In addition, we studied the evolution of the high-energy 3-300 keV continuum spectrum using data obtained with three main instruments on INTEGRAL. These spectra are consistent with typical low-hard-state thermal Comptonization emission. We also consider the 2003 event in the context of a multi-source, multi-event period-peak luminosity diagram in which it is a clear outlyer. We then consider the possibility that the 2003 event was due to a discrete accretion event rather than a limit-cycle instability. In that context, apply model fitting to derive the timescale for viscous propagation in the disk, and infer some physical characteristics.
    Keywords: Astrophysics
    Type: Sponsored in part by ESA member states(especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-06
    Description: We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-06
    Description: The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.
    Keywords: Aircraft Design, Testing and Performance
    Type: Third US-Japen Symposium on Advancing Applications and Capabilities in NDE; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-06
    Description: We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-06
    Description: Accretion from a disk onto a collapsed, relativistic star - a neutron star or black hole - is the mechanism widely believed to be responsible for the emission from compact X-ray binaries. Because of the extreme spatial resolution required, it is not yet possible to directly observe the evolution or dynamics of the inner parts of the accretion disk where general relativistic effects are dominant. Here, we use the bright X-ray emission from a superburst on the surface of the neutron star 4U 1820-30 as a spotlight to illuminate the disk surface. The X-rays cause iron atoms in the disk t o fluoresce, allowing a determination of the ionization state, covering factor and inner radius of the disk over the course of the burst. The time-resolved spectral fitting shows that the inner region of the disk is disrupted by the burst, possibly being heated into a thicker, more tenuous flow, before recovering its previous form in approximately 1000 s. This marks the first instance that the evolution of the inner regions of an accretion disk has been observed in real-time.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Six long-term technology focus areas are: 1. Environmentally Friendly, Clean Burning Engines. Focus: Develop innovative technologies to enable intelligent turbine engines that significantly reduce harmful emissions while maintaining high performance and increasing reliability. 2. New Aircraft Energy Sources and Management. Focus: Discover new energy sources and intelligent management techniques directed towards zero emissions and enable new vehicle concepts for public mobility and new science missions. 3. Quiet Aircraft for Community Friendly Service. Focus: Develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. 4. Aerodynamic Performance for Fuel Efficiency. Focus: Improve aerodynamic efficiency,structures and materials technologies, and design tools and methodologies to reduce fuel burn and minimize environmental impact and enable new vehicle concepts and capabilities for public mobility and new science missions. 5. Aircraft Weight Reduction and Community Access. Focus: Develop ultralight smart materials and structures, aerodynamic concepts, and lightweight subsystems to increase vehicle efficiency, leading to high altitude long endurance vehicles, planetary aircraft, advanced vertical and short takeoff and landing vehicles and beyond. 6. Smart Aircraft and Autonomous Control. Focus: Enable aircraft to fly with reduced or no human intervention, to optimize flight over multiple regimes, and to provide maintenance on demand towards the goal of a feeling, seeing, sensing, sentient air vehicle.
    Keywords: Aircraft Design, Testing and Performance
    Type: National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology, Part 1; 5-55; NASA/CP-2004-213243/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-11
    Description: This presentation is designed as a limited-scope "tutorial" and is aimed primarily at the CFDer who has not been exposed to stability and control problems. Examples of some classic S&C problems are used for illustration. S&C is a fundamental technology for enabling flight, but significant problems with the prediction of S&C characteristics persists, especially where separated flow is involved. Even after 100 years of flight, experimental methods still have significant limitations. Experimental and computational tools can and must be complementary. NASA Flight Prediction Workshop (Williamsburg, Virginia, November 2002) brought together experts from government, industry, and academia to discuss problems associated with state-of-the-art flight prediction. Among the concerns highlighted were deficiencies in S&C prediction lack of calibrated CFD tools for aerodynamic prediction in general.
    Keywords: Aircraft Design, Testing and Performance
    Type: COMSAC: Computational Methods for Stability and Control; 28-47; NASA/CP-2004-213028/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Future vehicle designs will see a paradigm shift from: 1) Steady to the unsteady world (e.g. flow control, adaptive morphing); 2) Passive to active; 3) Rigid designs to exploitation of flexibility and adaptability; 4) Few discrete to numerous distributed (e.g. sensors, control surfaces); 5) To obtain a vehicle that is always at optimum performance. Therefore, future designs will be inherently multidisciplinary, and the greatest technical challenges and opportunities occur at the intersection of disciplines COMSAC appears to be a step towards enabling the future vision.
    Keywords: Aircraft Design, Testing and Performance
    Type: COMSAC: Computational Methods for Stability and Control; 1-5; NASA/CP-2004-213028/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-08
    Description: We present rotational light-curve data for Saturn's satellite Phoebe taken over the observing period prior to the Cassini mission's encounter with that moon.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 610; L57-L60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-08
    Description: A remarkably linear, bipolar, knotty jet was recently discovered in Hen 2-90, an object classified as a young planetary nebula. Using two-dimensional, magnetohydrodynamic simulations, we investigate periodic variations in jet density and velocity as the mechanism for producing the jet and its knotty structures.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 606; 483-496
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-08
    Description: The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated.
    Keywords: Astrophysics
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 24-26; JPL-Publ-2004-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-27
    Description: An overview of research efforts at NASA in support of the stage separation and ascent aerothermodynamics research program is presented. The objective of this work is to develop a synergistic suite of experimental, computational, and engineering tools and methods to apply to vehicle separation across the transonic to hypersonic speed regimes. Proximity testing of a generic bimese wing-body configuration is on-going in the transonic (Mach numbers 0.6, 1.05, and 1.1), supersonic (Mach numbers 2.3, 3.0, and 4.5) and hypersonic (Mach numbers 6 and 10) speed regimes in four wind tunnel facilities at the NASA Langley Research Center. An overset grid, Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of the bimese configuration. Steady-state predictions with this solver were in excellent agreement with wind tunnel data at Mach 3 as were predictions via a Cartesian-grid Euler solver. Experimental and computational data have been used to evaluate multi-body enhancements to the widely-used Aerodynamic Preliminary Analysis System, an engineering methodology, and to develop a new software package, SepSim, for the simulation and visualization of vehicle motions in a stage separation scenario. Web-based software will be used for archiving information generated from this research program into a database accessible to the user community. Thus, a framework has been established to study stage separation problems using coordinated experimental, computational, and engineering tools.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2004-2595 , 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference; 28 Jun. 1 Jul. 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis. The ARES Instrument analyzed the material through torsion. The second machine, TA Instruments apparatus, applied a bending force to the specimen. These experiments were used to explore the effects of temperature and strain rate on the stiffness and strength of the resins. The two different types of loading allowed us to verify our results. An axial-torsional load frame, manufactured by MTS Systems, Inc., was used to conduct the tensile, compression, and torsional testing. These tests were used to determine the stress-strain curves for the resins. The elastic and plastic deformation data was provided to another team member for characterization of high fidelity material property predictions. This information was useful in having a better understanding of the polymers so that the fan cases could be as sturdy as possible. Deformation studies are the foundation for the computational modeling that provides the structural design of a composite engine case as well as detailed analysis of the blade impact event.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research Symposium II
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The first findings from a year of WMAP satellite operations provide a detailed full sky map of the cosmic microwave background radiation. The observed temperature anisotropy, combined with the associated polarization information, encodes a wealth of cosmological information. The results have implications for the history, content, and evolution of the universe, and its large scale properties. These and other aspects of the mission will be discussed.
    Keywords: Astrophysics
    Type: Beyond Einstein; May 11, 2004 - May 16, 2004; Stanford, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Uninhabited Aerial Vehicles (UAVs) provide ideal sampling platforms for atmospheric missions. In this presentation, I will: 1) review the atmospheric science missions that have used UAVs, 2) review and describe UAVs, 3) discuss the future of UAVs in atmospheric science missions.
    Keywords: Aircraft Design, Testing and Performance
    Type: ISSAOS 2004; Sep 19, 2004 - Sep 24, 2004; L''Aquilla; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-18
    Description: Observations of the multi-TeV spectra of the nearby BL Lac objects Mkn 421 and Mkn 501 exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with IR photons having a flux level as determined by various astronomical observations. After correcting for such intergalactic absorption, these spectra can be explained within the framework of synchrotron self-Compton emission models. Stecker & Glashow have shown that the existence of this annihilation via electron-positron pair production puts strong constraints on Lorentz violation. We will show that such constraints have important implications for some quantum gravity models and large extra dimension models. We will also discuss the potentially important effects of a smaller Lorentz violation which is consistent with these constraints on the propagation and spectra of ultrahigh energy cosmic rays.
    Keywords: Astrophysics
    Type: APS Meeting; Aug 25, 2004 - Sep 01, 2004; Riverside, CA; United States|AAS 2004; Sep 08, 2004 - Sep 11, 2004; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.
    Keywords: Astrophysics
    Type: 2nd International Planetary Probe Workshop; Aug 23, 2004 - Aug 27, 2004; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: In this talk I will briefly review the observational motivation and evidence for mass loss from disks around hot stars. Direct evidence for these outflows comes from line profiles in, eg. young stellar objects. Indirect evidence comes from the implied mass loss rates and wind speeds, along with dynamical models which can account for these properties. Mechanisms for disk wind driving include thermal, radiation pressure, and MHD. These will be reviewed and discussed, as will the relation to non-disk winds, and to disk winds in other contexts.
    Keywords: Astrophysics
    Type: Disks Around Hot Stars; Jul 08, 2004 - Jul 09, 2004; Johnson City, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Thirty-five years after the discovery of pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. The fact that even detailed pulse profiles cannot identlfy the origin of the emission in a magnetosphere that extends fiom the neutron star surface to plasma moving at relativistic speeds near the light cylinder compounds the problem. I will discuss the role of special and general relativistic effects on pulsar emission, fiom inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics.
    Keywords: Astrophysics
    Type: 22nd Texas Symposium on Relativistic Astrophysics; Dec 13, 2004 - Dec 17, 2004; Stanford, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Since the first TeV blazar Markarian (Mrk) 421 was detected in 1992, the number of established TeV gamma-ray emitting BL Lac objects has grown to 6, with redshifts ranging from 0 031 (Mrk 421) to 0.129 (H 1426+428). The intensive study of these sources has had a major impact on our understanding of the blazar phenomenon. The most notable observational results have been extremely fast large amplitude flux and spectral variability on hour time scales, and a pronounced X-ray - TeV gamma-ray flux correlation. In this paper, we discuss recent observational results and report on progress in their theoretical interpretation.
    Keywords: Astrophysics
    Type: New Astronomy Reviews (ISSN 1387-6473); 48; 367-373
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-18
    Description: An intense dayside proton aurora was observed by IMAGE FUV for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September, 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF $B-y$ variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by DMSP above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more intense energetic ions were detected over the equatorward part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from SuperDARN radar measurements showed a 4-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-18
    Description: We present a detailed gravitational mass measurement based on the XMM-Newton imaging spectroscopy analysis of the lensing cluster of galaxies CL0024+17 at $z = 0.395$. The emission appears approximately symmetric. However, on the scale of $r\sim3.3'$, some indication of elongation is visible in the northwest-southeast direction from the hardness ratio map. Within $3'$, we measure a global gas temperature of $3.52\pm0.17$ keV, metallicity of $0.22\pm0.07$, and a bolometric luminosity of $2.9\pm0. l\times10(exp 44)$ erg/s. We derive a temperature distribution with an isothermal temperature of 3.9 keV up to a radius of $1.5'$ and a strong temperature gradient in the outskirts ($1.3' less than r less than 3.3'$). Under the assumption of hydrostatic equilibrium, we measure the gravitational mass and gas mass fraction to be $M-{200} = 2.0\pm0.3\times 10(exp 14)$ solar masses and $f-{gas} = 0.20\pm0.03$ at $r-{200} = 1.05$ Mpc (all for a Hubble constant of 70 km/sec/Mpc) using the observed gas temperature profile. The complex core structure is the key to explaining the discrepancy between the gravitational mass determined from the XMM-Newton observations and HST optical lensing measurements.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The first findings from a year of WMAP satellite operations provide a detailed full sky map of the cosmic microwave background radiation. The observed temperature anisotropy, combined with the associated polarization information, encodes a wealth of cosmological information. The results have implications for the history, content, and evolution of the universe, and its large scale properties. These and other aspects of the mission will be discussed.
    Keywords: Astrophysics
    Type: American Physical Society Conference; Apr 30, 2004 - May 04, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emit&ng hundreds of predominantly soft (kT=30 kev), short (0.1-100 ms long) events. Their quiescent source x-ray light ewes exhibit puhlions rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10^14- 10^l5 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence were obtained in 1998 for two of these sources. I will discuss here the history of Soft Gamma Repeaters, and their spectral, timing and flux characteristics both in the persistent and their burst emission.
    Keywords: Astrophysics
    Type: XXII Texas Symposium on Relativistic Astrophysics; Dec 13, 2004 - Dec 17, 2004; Stanford, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.
    Keywords: Astrophysics
    Type: 5th International LISA Symposium; Jul 12, 2004 - Jul 15, 2004; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Astrophysics of cosmic rays and gamma rays depends very much on the quality of the data, which become increasingly accurate each year and therefore more constraining. While direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way, the Galactic diffuse gamma-ray emission provides insights into the spectra of cosmic rays in distant locations, therefore complementing the local cosmic-ray studies. This connection, however, requires extensive modeling and is yet to be explored in detail. The GLAST mission, which is scheduled for launch in 2007 and is capable of measuring gamma-rays in the range 20 MeV - 300 GeV, will change the status quo dramatically. The detailed spectra and skymaps of the Galactic diffuse gamma-ray emission gathered by GLAST will require adequate theoretical models. The efforts will be rewarded by the wealth of information on cosmic ray spectra and fluxes in remote locations. In its turn, a detailed cosmic ray propagation model will provide a reliable basis for other studies such as search for dark matter signals in cosmic rays and diffuse gamma rays, spectrum and origin of the extragalactic gamma-ray'emission, theories of nucleosynthesis and evolution of elements etc. In this talk, I will discuss what we can learn studying the cosmic ray propagation and diffuse gamma-ray emission.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-18
    Description: PAH spectral features are now being used as new probes of the ISM. PAH ionization states reflect the ionization balance of the medium while PAH size and structure reflect the energetic and chemical history of the medium. This paper will focus on recent applications of the NASA Ames PAH IR spectral Database to interpret astronomical observations made by the Spitzer Space telescope and other space based infrared instruments. Examples will be given showing how changes in the spectral characteristics of different objects reveal interstellar PAH characteristics such as structure, size and composition, as well as provide insight into the chemical history and physical nature of the emission zones.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-18
    Description: We have investigated the NUV part of the Eta Car spectrum, using data with high spatial and high spectral resolving power obtained with the HST/STIS under the Treasury Program. The NUV spectrum of Eta Car Shows a great contribution of absorption features from neutral and singly ionized elements along the line-of-sight. A large number of velocity systems have been observed. The two most prominent, with Doppler shifts corresponding to -146 and -513 km/s respectively, are shown to be useful for investigations of the gaseous environments responsible for the absorption. The -146 and the -513 km/s velocity systems display different characteristics regarding the ionization state and spectral line width, which suggest that they originate at different distances from the central object. We have investigated the absorption structures before the spectroscopic minimum, occurring during the summer of 2003, with a standard curve-of-growth. We have independently derived the column density and the b-value for the Fe II (-146 km/s) and Ti II (-513 km/s) velocity systems. The excitation temperature has been determined for the -146 km/s velocity system using the photo-ionization code \textsc(cloudy). The -146 km/s velocity structure shows noticeable variation over the spectroscopic minimum. The sudden appearance and disappearance of Ti II and V II are astonishing. We have made an attempt to analyze these variations with the curve-of-growth method and will present preliminary results.
    Keywords: Astrophysics
    Type: American Astronomical Society Meeting; Jan 04, 2004 - Jan 08, 2004; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Swift is a MIDEX mission that is in development for launch in October 2004. It is a multiwavelength transient observatory for GRB astronomy. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. A wide-field gamma-ray camera will detect mare than 100 GRBs per year to -3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 75 sec by an autonomously controlled spacecraft. Far each burst, aresec positions will be determined and optical/UV/X-ray/gamma-say spectrophotometry performed. Measurements of redshift will be made for many burstes. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approx. 0.5 square meter) CdZnTe detector array. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift. The talk vi11 describe the mission statue and give a summary of plans for GRB operations. It is likely that Swift will have just been launched at the time of the conference.
    Keywords: Astrophysics
    Type: Gamma Ray Burst Symposium; Oct 18, 2004 - Oct 22, 2004; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The first findings from a year of WMAP satellite operations provide a detailed full sky map of the cosmic microwave background radiation. The observed temperature anisotropy, combined with the associated polarization information, encodes a wealth of cosmological information. The results have implications for the history, content, and evolution of the universe, and its large scale properties. These and other aspects of the mission will be discussed.
    Keywords: Astrophysics
    Type: American Association for the Advancement of Science; Feb 11, 2004 - Feb 16, 2004; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Motivated by the possible presence of scalar fields on astrophysical scales, suggested by the apparent acceleration of the universe implied by the supernovae surveys, we present models of neutron star structure including the contribution of a (massless) scalar field to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein -- scalar field -- hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter--scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field affects both the maximum neutron star mass and Its radius, the latter increasing with the value of the above coupling constant. We also compute particle and photon geodesics in the geometry of these neutron stars as well as to the geometry of black holes with different values of the scalar field. Our results may be testable with timing observations of accreting neutron stars.
    Keywords: Astrophysics
    Type: 8th AAS High Energy Astrophysics Division Meeting; Sep 08, 2004 - Sep 11, 2004; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Because gamma-ray astrophysics profits in powerful ways from multi-wavelength studies, the GLAST Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch. Many aspects of this program are of direct interest to observers using VERITAS and other atmospheric Cerenkov telescopes, whose capabilities complement those of GLAST. This talk with describe some of the current developmental concepts for GLAST LAT multiwavelength work, including release of data for transient sources, nearly-continuous monitoring of selected time-variable sources, pulsar timing, follow-on observations for source identification, coordinated blazar campaigns, and cross-calibration with other high-energy telescopes. Although few details are firm at this stage of preparation for GLAST, the LAT Collaboration looks forward to cooperation with a broad cross-section of the multiwave-length community. The GLAST Large Area Telescope is an international effort, with U.S. funding provided by the Department of Energy and NASA.
    Keywords: Astrophysics
    Type: High Energy Astrophysics Meeting; Sep 07, 2004 - Sep 11, 2004; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-18
    Description: The Gamma Ray Large Area Space Telescope (GLAST), currently set for launch in the first quarter of 2007, will consist of two instruments, the GLAST Burst Monitor (GBM) and the Large Area Telescope (LAT). One of the goals of the GBM is to identify and locate gamma-ray bursts using on-board software. The GLAST observatory can then be re-oriented to allow observations by the LAT. A Bayesian analysis will be used to distinguish gamma-ray bursts from other triggering events, such as solar flares, magnetospheric particle precipitation, soft gamma repeaters (SGRs), and Cygnus X-1 flaring. The trigger parameters used in the analysis are the burst celestial coordinates, angle from the Earth's horizon, spectral hardness, and the spacecraft geomagnetic latitude. The algorithm will be described and the results of testing will be presented.
    Keywords: Astrophysics
    Type: Meeting of the High Energy Astrophysics Division of the American Astronomical Society; Sep 08, 2004 - Sep 11, 2004; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-18
    Description: Dipolarization and the release of stored magnetic energy is strongly evident in the energized plasma sheet electrons and ions injected earthward from the magnetotail. While some of these plasma are presumed lost into the dayside magnetosheath, much of the energy is dissipated into the ionosphere through electric currents, through collisions into low energy plasma, and into plasma waves, which then go on to heat and energize plasma of the inner magnetosphere. Many mechanisms for the transfer of energy and the consequences to inner magnetospheric plasma populations have been proposed. The sophistication of theoretical models to represent the interdependencies between plasma populations is rapidly increasing. However without the restraint and reality imposed on theory by relevant measurements, the degree to which specific mechanisms participate in the exchange of energy as a function of location and time cannot be known. ORBITALS offers this capability. Some of the outstanding problems in inner magnetospheric physics and the opportunities presented by the ORBITAL concept to solve problems will be discussed.
    Keywords: Astrophysics
    Type: Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) Workshop; Sep 23, 2004 - Sep 24, 2004; Banff, Alberta; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-18
    Description: Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
    Keywords: Astrophysics
    Type: Rept-5050 , Workshop on Relativistic Plasma in Magnetic Field; Aug 16, 2004 - Aug 18, 2004; Stanford, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-18
    Description: Motivated by the possible presence of scalar fields on astrophysical scales, suggested by the recent measurement of the deceleration parameter by supernovae surveys, we present models of neutron star structure under the assumption that a scalar field makes a significant contribution to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein - scalar field - hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter-scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field does affect both the maximum neutron star mass and its radius, the latter increasing with the value of the above coupling constant. Our results may be testable with the recent timing observations of accreting neutron stars.
    Keywords: Astrophysics
    Type: Beyond Einstein Conference; May 12, 2004 - May 15, 2004; Stanford, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: TeV emission from a class of BL Lacertae (BL) objects is commonly modeled as radiation from relativistically moving homogeneous plasma blobs. In the context of these models, the blob Lorentz factors needed to reproduce the (corrected for absorption by the IR background) TeV emission are large ($\delta \gtrsim 50$) are required to reproduce via Synchrotron-Self Compton (SSC) the observed TeV emission. The main reason for this is that stronger beaming eases the problem of the lack of $\sim$ IR-UV synchrotron seed photons needed to produce the de-absorbed $\sim$ few TeV peak of the spectral energy distribution (SED). However, such high Doppler factors are in strong disagreement with the unified scheme, according to which BLs are FR I radio galaxies with their jets closely aligned to the line of sight. Here, motivated by the detection of sub-luminal velocities in the sub-pc scale jets of the best studied TeV blazars, MKN 421 and MKN 501. we examine the possibility that the relativistic flow in the TeV BLs is longitudinally decelerating. In this case, the problem of the missing seed photons is solved due to Upstream Compton (UC) scattering, a process in which the upstream energetic electrons from the fast base of the flow 'see' the synchrotron seed photons produced in the slow part of the flow relativistically beamed. Modest Lorentz factors ($\Gamma kim 15s). decelerating down to values compatible with the recent radio interferometric observations, reproduce the $\sim$ few TeV peak energy of these sources. Furthermore, such decelerating flows are shown to be in agreement with the BL - FR I unification.
    Keywords: Astrophysics
    Type: International Symposium on High Energy Gamma-Ray Astronomy; Jul 26, 2004 - Jul 30, 2004; Heidelberg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-18
    Description: The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.
    Keywords: Astrophysics
    Type: 35th COSPAR Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-18
    Description: The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA s Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST - formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel support also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Swift is a NASA MIDEX mission that is in development for launch in 2004. It is a multiwavelength observatory for transient astronomy. The goals of the mission are to determine the origin of gamma-ray bursts and their afterglows and use bursts to probe the early Universe. The mission will also perform a hard x-ray survey at the 1 milliCrab level and will continuously monitor the sky for transients. A wide- field gamma-ray camera will detect more than a hundred GRBs per year to 3 times fainter than BATSE. Sensitive narrow-field X-ray and Uv/optical telescopes will be pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions will be determined and optical/W/X-ray/gamma-ray spectrophotometry performed. The instrumentation is a combination of existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UX and Italy and development of a coded-aperture camera with a large-area (-0.5 square meter) CdZnTe detector array. The ground station in Malindi is contributed by the Italian Space Agency. The instruments have now completed their fabrication phase and are currently being integrated on the observatory for final testing. up and outreach programs to engage the astronomical community and public in Swift.
    Keywords: Astrophysics
    Type: Beyond Einstein Meeting; May 11, 2004 - May 14, 2004; Stanford, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-18
    Description: The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k ret~rr? ~llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Space 2004 Conference and Exposition; Sep 28, 2004 - Sep 30, 2004; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: We derive a semi-empirical effective galactic initial mass function (IMF), which represents the IMF averaged over the age of the galactic disk, from observational constraints. We assume that the star formation rate in a galaxy can be expressed as the product of the IMF,psi(m), which is a smooth function of mass m (in units of solar mass), and a time and space dependent rate zeta(sub *1). The mass dependence of the proposed IMF is determined by four parameters: the low-mass slope gamma, the high-mass slope -Gamma, the characteristic mass m(sub ch) at which the IMF turns over, and the upper limit on the mass, m(sub u).
    Keywords: Astrophysics
    Type: IMF at 50; May 16, 2004 - May 20, 2004; Savteano; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-18
    Description: The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14,2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and or debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
    Keywords: Astrophysics
    Type: 204th Meeting of the American Astronomical Society; 30-May - 3 Jun. 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Hot white dwarfs may exhibit photospheric emission at X-ray wavelengths, but their X- ray emission should be soft, mutch less than 0.5 keV. Hard X-ray emission, at approx. 1 keV, is not expected from white dwarfs, unless they are in binary systems and the hard X-ray emission is produced by a late-type companion's coronal activity or by accretion of a companion's material onto the surface of the white dwarf. We proposed to use the ROSAT archive to search for hard X-ray emission from white dwarfs in order to determine whether hard X-ray emission may provide a sensitive diagnostic for the existence of a binary companion.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-18
    Description: In search of the counterpart to the brightest unidentified gamma-ray source 3EG J2020+4017 (2CG078+2) we report on new X-ray and radio observations of the gamma-Cygni field with the Chandra X-ray Observatory and with the Green Bank Telescope (GBT). We also report on reanalysis of archival ROSAT data. With Chandra it became possible for the first time to measure the position of the putative gamma-ray counterpart RX J2020.2+4026 with sub-arcsec accuracy and to deduce its X-ray spectra1 characteristics. These observations demonstrate that RX J2020.2+4026 is associated with a K field star and therefore is unlikely to be the counterpart of the bright gamma-ray source 2CG078+2 in the SNR G78.2+2.1 as had been previously suggested.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-18
    Description: The Stellar Imager (SI) is a "Vision" mission in the Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar magnetic activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and thus baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (less than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution will make it an invaluable resource for many other areas of astrophysics, including studies of AGN s, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.
    Keywords: Astrophysics
    Type: 204th Meeting fo the American Astronomical Society; May 30, 2004 - Jun 03, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Below are the publications which directly and indirectly evolved from this very successful program: 1) 'Search for millisecond periodicities in type I X-ray bursts of the Rapid Burster'; 2) 'High-Frequency QPOs in the 2000 Outburst of the Galactic Microquasar XTE J1550-564'; 3) 'Chandra and RXTE Spectroscopy of Galactic Microquasar XTE 51550-564 in Outburst'; 4) 'GX 339-4: back to life'; 5) 'Evidence for black hole spin in GX 339-4: XMM-Newton EPIC-PN and RXTE spectroscopy of the very high state'.
    Keywords: Astrophysics
    Type: MIT-6892096
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: This investigation focuses on the development of multibody analytical models to predict the dynamic response, aeroelastic stability, and blade loading of a soft-inplane tiltrotor wind-tunnel model. Comprehensive rotorcraft-based multibody analyses enable modeling of the rotor system to a high level of detail such that complex mechanics and nonlinear effects associated with control system geometry and joint deadband may be considered. The influence of these and other nonlinear effects on the aeromechanical behavior of the tiltrotor model are examined. A parametric study of the design parameters which may have influence on the aeromechanics of the soft-inplane rotor system are also included in this investigation.
    Keywords: Aircraft Design, Testing and Performance
    Type: AHS International 60th Annual Forum; Jun 08, 2004 - Jun 10, 2004; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 2004-1836 , 45th AIAA/ASME/ASCE/AHS/ASC SDM Conference; Apr 19, 2004 - Apr 22, 2004; Palm Springs, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The use of Portable Electronic Devices (PEDs) onboard commercial airliners is considered to be desirable for many passengers, However, the possibility of Electromagnetic Interference (EMI) caused by these devices may affect flight safety. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various navigation and communication radios onboard the aircraft. Interference Pathloss (IPL) is defined as the measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas. This paper first focuses on IPL measurements for GPS, taken on an out-of-service United Airlines B-737-200. IPL pattern symmetry is verified by analyzing data obtained on the windows of the Port as well as the Starboard side of the aircraft. Further graphical analysis is performed with the door and exit seams sealed with conductive tape in order to better understand the effects of shielding on IPL patterns. Shielding effects are analyzed from window data for VHF and LOC systems. In addition the shielding benefit of applying electrically conductive film to aircraft windows is evaluated for GPS and TCAS systems.
    Keywords: Aircraft Design, Testing and Performance
    Type: IEEE International Symposium in Electromagnetic Compatability; Aug 09, 2004 - Aug 13, 2004; Santa Clara, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...