ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,445)
  • Annual Reviews  (3,445)
  • 2000-2004  (1,575)
  • 1980-1984  (995)
  • 1975-1979  (654)
  • 1950-1954  (221)
  • Medicine  (3,445)
Collection
  • Articles  (3,445)
Years
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 53-86 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The bacterial pathogen Salmonella enterica has evolved a very sophisticated functional interface with its vertebrate hosts. At the center of this interface is a specialized organelle, the type III secretion system, that directs the translocation of bacterial proteins into the host cell. Salmonella spp. encode two such systems that deliver a remarkable array of bacterial proteins capable of modulating a variety of cellular functions, including actin cytoskeleton dynamics, nuclear responses, and endocytic trafficking. Many of these bacterial proteins operate by faithful mimicry of host proteins, in some cases representing the result of extensive molecular tinkering and convergent evolution. The coordinated action of these type III secreted proteins secures the replication and survival of the bacteria avoiding overt damage to the host. The study of this remarkable pathogen is not only illuminating general paradigms in microbial pathogenesis but is also providing valuable insight into host cell functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 87-132 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Vertebrate limb buds are embryonic structures for which much molecular and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anterior-posterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, specific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways operated by secreted factors of the HH, TGF-beta/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 133-157 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cells in the immune and nervous systems communicate through informational synapses. The two-dimensional chemistry underlying the process of synapse formation is beginning to be explored using fluorescence imaging and mechanical techniques. Early analysis of two-dimensional kinetic rates (kon and koff) and equilibrium constants (Kd) provides a number of biological insights. First, there are two regimes for adhesion-one disordered with slow kon and the other self-ordered with 104-fold faster kon. Despite huge variation in two-dimensional kon, the two-dimensional koff is like koff in solution, and two-dimensional koff is more closely related to intrinsic properties of the interaction than the two-dimensional kon. Thus difference in koff can be used to set signaling thresholds. Early signaling complexes are compartmentalized to generate synergistic signaling domains. Immune antigen receptor components have a role in neural synapse editing. This suggests significant parallels in informational synapse formation based on common two-dimensional chemistry and signaling strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 159-187 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Pollen tubes and root hairs are highly elongated, cylindrically shaped cells whose polarized growth permits them to explore the environment for the benefit of the entire plant. Root hairs create an enormous surface area for the uptake of water and nutrients, whereas pollen tubes deliver the sperm cells to the ovule for fertilization. These cells grow exclusively at the apex and at prodigious rates (in excess of 200 nm/s for pollen tubes). Underlying this rapid growth are polarized ion gradients and fluxes, turnover of cytoskeletal elements (actin microfilaments), and exocytosis and endocytosis of membrane vesicles. Intracellular gradients of calcium and protons are spatially localized at the growing apex; inward fluxes of these ions are apically directed. These gradients and fluxes oscillate with the same frequency as the oscillations in growth rate but not with the same phase. Actin microfilaments, which together with myosin generate reverse fountain streaming, undergo rapid turnover in the apical domain, possibly being regulated by key actin-binding proteins, e.g., profilin, villin, and ADF/cofilin, in concert with the ion gradients. Exocytosis of vesicles at the apex, also dependent on the ion gradients, provides precursor material for the continuously expanding cell wall of the growing cell. Elucidation of the interactions and of the dynamics of these different components is providing unique insight into the mechanisms of polarized growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 189-214 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Developing organisms may contain billions of cells destined to differentiate in numerous different ways. One strategy organisms use to simplify the orchestration of development is the separation of cell populations into distinct functional units. Our expanding knowledge of boundary formation and function in different systems is beginning to reveal general principles of this process. Fields of cells are subdivided by the interpretation of morphogen gradients, and these subdivisions are then maintained and refined by local cell-cell interactions. Sharp and stable separation between cell populations requires special mechanisms to keep cells segregated, which in many cases appear to involve the regulation of cell affinity. Once cell populations become distinct, specialized cells are often induced along the borders between them. These boundary cells can then influence the patterning of surrounding cells, which can result in progressively finer subdivisions of a tissue. Much has been learned about the signaling pathways that establish boundaries, but a key challenge for the future remains to elucidate the cellular and molecular mechanisms that actually keep cell populations separated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 25-51 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The amyloid precursor protein and the proteases cleaving this protein are important players in the pathogenesis of Alzheimer's disease via the generation of the amyloid peptide. Physiologically, the amyloid precursor protein is implied in axonal vesicular trafficking and the proteases are implicated in developmentally important signaling pathways, most significantly those involving regulated intramembrane proteolysis or RIP. We discuss the cell biology behind the amyloid and tangle hypothesis for Alzheimer's disease, drawing on the many links to the fields of cell biology and developmental biology that have been established in the recent years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 107-133 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The type III mechanism of protein secretion is a pathogenic strategy shared by a number of gram-negative pathogens of plants and animals that has evolved in order to inject virulence proteins into the cytosol of target eukaryotic cells. The pathogens of the Yersinia genus represent a model system where much progress has been made in understanding this secretion pathway. Herein, we review what has been recently learned in yersiniae about the various environmental signals that induce type III secretion, how the synthesis of secretion substrates is regulated, and how such a diverse group of proteins is recognized as a substrate for secretion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 135-161 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The host cytoskeleton plays important roles in the entry, replication, and egress of viruses. An assortment of viruses hijack cellular motor proteins to move on microtubules toward the cell interior during the entry process; others reverse this transport during egress to move assembling virus particles toward the plasma membrane. Polymerization of actin filaments is sometimes used to propel viruses from cell to cell, while many viruses induce the destruction of select cytoskeletal filaments apparently to effect efficient egress. Indeed, the tactics used by any given virus to achieve its infectious life cycle are certain to involve multiple cytoskeletal interactions. Understanding these interactions, and their orchestration during viral infections, is providing unexpected insights into basic virology, viral pathogenesis, and the biology of the cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 193-219 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Spindle microtubules interact with mitotic chromosomes, binding to their kinetochores to generate forces that are important for accurate chromosome segregation. Motor enzymes localized both at kinetochores and spindle poles help to form the biologically significant attachments between spindle fibers and their cargo, but microtubule-associated proteins without motor activity contribute to these junctions in important ways. This review examines the molecules necessary for chromosome-microtubule interaction in a range of well-studied organisms, using biological diversity to identify the factors that are essential for organized chromosome movement. We conclude that microtubule dynamics and the proteins that control them are likely to be more important for mitosis than the current enthusiasm for motor enzymes would suggest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 221-245 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chlamydiae, bacterial obligate intracellular pathogens, are the etiologic agents of several human diseases. A large part of the chlamydial intracellular survival strategy involves the formation of a unique organelle called the inclusion that provides a protected site within which they replicate. The chlamydial inclusion is effectively isolated from endocytic pathways but is fusogenic with a subset of exocytic vesicles that deliver sphingomyelin from the Golgi apparatus to the plasma membrane. A combination of host and parasite functions contribute to the biogenesis of this compartment. Establishment of the mature inclusion is accompanied by the insertion of multiple chlamydial proteins, suggesting that chlamydiae actively modify the inclusion to define its interactions with the eukaryotic host cell. Despite being sequestered within a membrane-bound vacuole, chlamydiae clearly communicate with and manipulate the host cell from within this privileged intracellular niche.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 463-493 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Epithelial morphogenesis comprises the various processes by which epithelia contribute to organ formation and body shape. These complex and diverse events play a central role in animal development and regeneration. Recently, the characterization of some of the molecular mechanisms involved in epithelial morphogenesis has provided an abundance of new information on the role and regulation of the cytoskeleton, cell-cell adhesion, and cell-matrix adhesion in these processes. In this review, we discuss our current understanding of the molecular mechanisms driving cell shape changes, cell intercalation, fusion of epithelia, ingression, egression, and cell migration. Our discussion is mostly focused on results from Drosophila and mammalian tissue culture but also draws on the insights gained from other organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 379-420 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Golgi inheritance proceeds via sequential biogenesis and partitioning phases. Although little is known about Golgi growth and replication (biogenesis), ultrastructural and fluorescence analyses have provided a detailed, though still controversial, perspective of Golgi partitioning during mitosis in mammalian cells. Partitioning requires the fragmentation of the juxtanuclear ribbon of interconnected Golgi stacks into a multitude of tubulovesicular clusters. This process is choreographed by a cohort of mitotic kinases and an inhibition of heterotypic and homotypic Golgi membrane-fusion events. Our model posits that accurate partitioning occurs early in mitosis by the equilibration of Golgi components on either side of the metaphase plate. Disseminated Golgi components then coalesce to regenerate Golgi stacks during telophase. Semi-intact cell and cell-free assays have accurately recreated these processes and allowed their molecular dissection. This review attempts to integrate recent findings to depict a more coherent, synthetic molecular picture of mitotic Golgi fragmentation and reassembly. Of particular importance is the emerging concept of a highly regulated and dynamic Golgi structural matrix or template that interfaces with cargo receptors, Golgi enzymes, Rab-GTPases, and SNAREs to tightly couple biosynthetic transport to Golgi architecture. This structural framework may be instructive for Golgi biogenesis and may encode sufficient information to ensure accurate Golgi inheritance, thereby helping to resolve some of the current discrepancies between different workers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 593-618 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: During brain development, neurons migrate great distances from proliferative zones to generate the cortical gray matter. A series of studies has identified genes that are critical for migration and targeting of neurons to specific brain regions. These genes encode three basic groups of proteins and produce three distinct phenotypes. The first group encodes cytoskeletal molecules and produces graded and dosage-dependent effects, with a significant amount of functional redundancy. This group also appears to play important roles during the initiation and ongoing progression of neuronal movement. The second group encodes signaling molecules for which homozygous mutations lead to an inverted cortex. In addition, this group is responsible for movement of neurons through anatomic boundaries to specific cortical layers. The third group encodes enzymatic regulators of glycosylation and appears to delineate where neuronal migration will arrest. There is significant cross-talk among these different groups of molecules, suggesting possible points of pathway convergence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 725-757 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The principles underlying regeneration in planarians have been explored for over 100 years through surgical manipulations and cellular observations. Planarian regeneration involves the generation of new tissue at the wound site via cell proliferation (blastema formation), and the remodeling of pre-existing tissues to restore symmetry and proportion (morphallaxis). Because blastemas do not replace all tissues following most types of injuries, both blastema formation and morphallaxis are needed for complete regeneration. Here we discuss a proliferative cell population, the neoblasts, that is central to the regenerative capacities of planarians. Neoblasts may be a totipotent stem-cell population capable of generating essentially every cell type in the adult animal, including themselves. The population properties of the neoblasts and their descendants still await careful elucidation. We identify the types of structures produced by blastemas on a variety of wound surfaces, the principles guiding the reorganization of pre-existing tissues, and the manner in which scale and cell number proportions between body regions are restored during regeneration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 481-504 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Plant membrane trafficking shares many features with other eukaryotic organisms, including the machinery for vesicle formation and fusion. However, the plant endomembrane system lacks an ER-Golgi intermediate compartment, has numerous Golgi stacks and several types of vacuoles, and forms a transient compartment during cell division. ER-Golgi trafficking involves bulk flow and efficient recycling of H/KDEL-bearing proteins. Sorting in the Golgi stacks separates bulk flow to the plasma membrane from receptor-mediated trafficking to the lytic vacuole. Cargo for the protein storage vacuole is delivered from the endoplasmic reticulum (ER), cis-Golgi, and trans-Golgi. Endocytosis includes recycling of plasma membrane proteins from early endosomes. Late endosomes appear identical with the multivesiculate prevacuolar compartment that lies on the Golgi-vacuole trafficking pathway. In dividing cells, homotypic fusion of Golgi-derived vesicles forms the cell plate, which expands laterally by targeted vesicle fusion at its margin, eventually fusing with the plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 285-308 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: We review the current status of research in dorsal-ventral (D-V) patterning in vertebrates. Emphasis is placed on recent work on Xenopus, which provides a paradigm for vertebrate development based on a rich heritage of experimental embryology. D-V patterning starts much earlier than previously thought, under the influence of a dorsal nuclear -Catenin signal. At mid-blastula two signaling centers are present on the dorsal side: The prospective neuroectoderm expresses bone morphogenetic protein (BMP) antagonists, and the future dorsal endoderm secretes Nodal-related mesoderm-inducing factors. When dorsal mesoderm is formed at gastrula, a cocktail of growth factor antagonists is secreted by the Spemann organizer and further patterns the embryo. A ventral gastrula signaling center opposes the actions of the dorsal organizer, and another set of secreted antagonists is produced ventrally under the control of BMP4. The early dorsal -Catenin signal inhibits BMP expression at the transcriptional level and promotes expression of secreted BMP antagonists in the prospective central nervous system (CNS). In the absence of mesoderm, expression of Chordin and Noggin in ectoderm is required for anterior CNS formation. FGF (fibroblast growth factor) and IGF (insulin-like growth factor) signals are also potent neural inducers. Neural induction by anti-BMPs such as Chordin requires mitogen-activated protein kinase (MAPK) activation mediated by FGF and IGF. These multiple signals can be integrated at the level of Smad1. Phosphorylation by BMP receptor stimulates Smad1 transcriptional activity, whereas phosphorylation by MAPK has the opposite effect. Neural tissue is formed only at very low levels of activity of BMP-transducing Smads, which require the combination of both low BMP levels and high MAPK signals. Many of the molecular players that regulate D-V patterning via regulation of BMP signaling have been conserved between Drosophila and the vertebrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 455-480 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Macrophages are essential modulators of lipid metabolism and the innate immune system. Lipid and inflammatory pathways induced in activated macrophages are central to the pathogenesis of human diseases including atherosclerosis. Recent work has shown that expression of genes involved in lipid uptake and cholesterol efflux in macrophages is controlled by peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). Other studies have implicated these same receptors in the modulation of macrophage inflammatory gene expression. Together, these observations position PPARs and LXRs at the crossroads of lipid metabolism and inflammation and suggest that these receptors may serve to integrate these pathways in the control of macrophage gene expression. In this review, we summarize recent work that has advanced our understanding of the roles of PPARs and LXRs in macrophage biology and discuss the implication of these results for cardiovascular physiology and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 87-123 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The endoplasmic reticulum (ER) and the Golgi comprise the first two steps in protein secretion. Vesicular carriers mediate a continuous flux of proteins and lipids between these compartments, reflecting the transport of newly synthesized proteins out of the ER and the retrieval of escaped ER residents and vesicle machinery. Anterograde and retrograde transport is mediated by distinct sets of cytosolic coat proteins, the COPII and COPI coats, respectively, which act on the membrane to capture cargo proteins into nascent vesicles. We review the mechanisms that govern coat recruitment to the membrane, cargo capture into a transport vesicle, and accurate delivery to the target organelle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 427-453 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The one-cell Caenorhabditis elegans embryo divides asymmetrically into a larger and smaller blastomere, each with a different fate. How does such asymmetry arise? The sperm-supplied centrosome establishes an axis of polarity in the embryo that is transduced into the establishment of anterior and posterior cortical domains. These cortical domains define the polarity of the embryo, acting upstream of the PAR proteins. The PAR proteins, in turn, determine the subsequent segregation of fate determinants and the plane of cell division. We address how cortical asymmetry could be established, relying on data from C. elegans and other polarized cells, as well as from applicable models. We discuss how cortical polarity influences spindle position to accomplish an asymmetric division, presenting the current models of spindle orientation and anaphase spindle displacement. We focus on asymmetric cell division as a function of the actin and microtubule cytoskeletons, emphasizing the cell biology of polarity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 695-723 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The study of the epithelium of the adult mammalian intestine touches upon many modern aspects of biology. The epithelium is in a constant dialogue with the underlying mesenchyme to control stem cell activity, proliferation in transit-amplifying compartments, lineage commitment, terminal differentiation and, ultimately, cell death. There are spatially distinct compartments dedicated to each of these events. The Wnt, TGF-beta, BMP, Notch, and Par polarity pathways are the major players in homeostatic control of the adult epithelium. Several hereditary cancer syndromes deregulate these same signaling cascades through mutational (in)activation. Moreover, these mutations often also occur in sporadic tumors. Thus symmetry exists between the roles that these signaling pathways play in physiology and in cancer of the intestine. This is particularly evident for the Wnt/APC pathway, for which the mammalian intestine has become one of the most-studied paradigms. Here, we integrate recent knowledge of the molecular inner workings of the prototype signaling cascades with their specific roles in intestinal epithelial homeostasis and in neoplastic transformation of the epithelium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 1-18 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Ethylene regulates a multitude of plant processes, ranging from seed germination to organ senescence. Of particular economic importance is the role of ethylene as an inducer of fruit ripening. Ethylene is synthesized from S-adenosyl-L-methionine via 1-aminocyclopropane-1-carboxylic acid (ACC). The enzymes catalyzing the two reactions in this pathway are ACC synthase and ACC oxidase. Environmental and endogenous signals regulate ethylene biosynthesis primarily through differential expression of ACC synthase genes. Components of the ethylene signal transduction pathway have been identified by characterization of ethylene-response mutants in Arabidopsis thaliana. One class of mutations, exemplified by etr1, led to the identification of the ethylene receptors, which turned out to be related to bacterial two-component signaling systems. Mutations that eliminate ethylene binding to the receptor yield a dominant, ethylene-insensitive phenotype. CTR1 encodes a Raf-like Ser/Thr protein kinase that acts downstream from the ethylene receptor and may be part of a MAP kinase cascade. Mutants in CTR1 exhibit a constitutive ethylene-response phenotype. Both the ethylene receptors and CTR1 are negative regulators of ethylene responses. EIN2 and EIN3 are epistatic to CTR1, and mutations in either gene lead to ethylene insensitivity. Whereas the function of EIN2 in ethylene transduction is not known, EIN3 is a putative transcription factor involved in regulating expression of ethylene-responsive genes. Biotechnological modifications of ethylene synthesis and of sensitivity to ethylene are promising methods to prevent spoilage of agricultural products such as fruits, whose ripening is induced by ethylene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 19-49 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 113-143 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The ezrin-radixin-moesin (ERM) family of proteins have emerged as key regulatory molecules in linking F-actin to specific membrane proteins, especially in cell surface structures. Merlin, the product of the NF2 tumor suppressor gene, has sequence similarity to ERM proteins and binds to some of the same membrane proteins, but lacks a C-terminal F-actin binding site. In this review we discuss how ERM proteins and merlin are negatively regulated by an intramolecular association between their N- and C-terminal domains. Activation of at least ERM proteins can be accomplished by C-terminal phosphorylation in the presence of PIP2. We also discuss membrane proteins to which ERM and merlin bind, including those making an indirect linkage through the PDZ-containing adaptor molecules EBP50 and E3KARP. Finally, the function of these proteins in cortical structure, endocytic traffic, signal transduction, and growth control is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 145-171 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Adipogenesis, or the development of fat cells from preadipocytes, has been one of the most intensely studied models of cellular differentiation. In part this has been because of the availability of in vitro models that faithfully recapitulate most of the critical aspects of fat cell formation in vivo. More recently, studies of adipogenesis have proceeded with the hope that manipulation of this process in humans might one day lead to a reduction in the burden of obesity and diabetes. This review explores some of the highlights of a large and burgeoning literature devoted to understanding adipogenesis at the molecular level. The hormonal and transcriptional control of adipogenesis is reviewed, as well as studies on a less well known type of fat cell, the brown adipocyte. Emphasis is placed, where possible, on in vivo studies with the hope that the results discussed may one day shed light on basic questions of cellular growth and differentiation in addition to possible benefits in human health.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 173-189 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Enteropathogenic Escherichia coli (EPEC) is a gram-negative bacterial pathogen that adheres to human intestinal epithelial cells, resulting in watery, persistent diarrhea. It subverts the host cell cytoskeleton, causing a rearrangement of cytoskeletal components into a characteristic pedestal structure underneath adherent bacteria. In contrast to other intracellular pathogens that affect the actin cytoskeleton from inside the host cytoplasm, EPEC remains extracellular and transmits signals through the host cell plasma membrane via direct injection of virulence factors by a "molecular syringe," the bacterial type III secretion system. One injected factor is Tir, which functions as the plasma membrane receptor for EPEC adherence. Tir directly links extracellular EPEC through the epithelial membrane and firmly anchors it to the host cell actin cytoskeleton, thereby initiating pedestal formation. In addition to stimulating actin nucleation and polymerization in the host cell, EPEC activates several other signaling pathways that lead to tight junction disruption, inhibition of phagocytosis, altered ion secretion, and immune responses. This review summarizes recent developments in our understanding of EPEC pathogenesis and discusses similarities and differences between EPEC pedestals, focal contacts, and Listeria monocytogenes actin tails.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 191-220 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Early development of the vertebrate skeleton depends on genes that pattern the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations at sites of future skeletal elements. Within these condensations, cells differentiate to chondrocytes or osteoblasts and form cartilages and bones under the control of various transcription factors. In most of the skeleton, organogenesis results in cartilage models of future bones; in these models cartilage is replaced by bone by the process of endochondral ossification. Lastly, through a controlled process of bone growth and remodeling the final skeleton is shaped and molded. Significant and exciting insights into all aspects of vertebrate skeletal development have been obtained through molecular and genetic studies of animal models and humans with inherited disorders of skeletal morphogenesis, organogenesis, and growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 221-241 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Stomatal guard cells are unique as a plant cell model and, because of the depth of present knowledge on ion transport and its regulation, offer a first look at signal integration in higher plants. A large body of data indicates that Ca2+ and H+ act independently, integrating with protein kinases and phosphatases, to control the gating of the K+ and Cl- channels that mediate solute flux for stomatal movements. Oscillations in the cytosolic-free concentration of Ca2+ contribute to a signaling cassette, integrated within these events through an unusual coupling with membrane voltage for solute homeostasis. Similar cassettes are anticipated to include control pathways linked to cytosolic pH. Additional developments during the last two years point to events in membrane traffic that play equally important roles in stomatal control. Research in these areas is now adding entirely new dimensions to our understanding of guard cell signaling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 243-271 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract During the past decade, much progress has been made in understanding how the adult fly is built. Some old concepts such as those of compartments and selector genes have been revitalized. In addition, recent work suggests the existence of genes involved in the regionalization of the adult that do not have all the features of selector genes. Nevertheless, they generate morphological distinctions within the body plan. Here we re-examine some of the defining criteria of selector genes and suggest that these newly characterized genes fulfill many, but not all, of these criteria. Further, we propose that these genes can be classified according to the domains in which they function. Finally, we discuss experiments that address the molecular mechanisms by which selector and selector-like gene products function in the fly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 273-300 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramon y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 301-332 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract M cells are distinctive epithelial cells that occur only in the follicle-associated epithelia that overlie organized mucosa-associated lymphoid tissues. They are structurally and functionally specialized for transepithelial transport, delivering foreign antigens and microorganisms to organized lymphoid tissues within the mucosae of the small and large intestines, tonsils and adenoids, and airways. M cell transport is a double-edged sword: Certain pathogens exploit the features of M cells that are intended to promote uptake for the purpose of immunological sampling. Eludication of the molecular architecture of M cell apical surfaces is important for understanding the strategies that pathogens use to exploit this pathway and for utilizing M cell transport for delivery of vaccines to the mucosal immune system. This article reviews the functional and biochemical features that distinguish M cells from other intestinal cell types. In addition it synthesizes the available information on development and differentiation of organized lymphoid tissues and the specialized epithelium associated with these immune inductive sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 483-519 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Dynamin, a 100-kDa GTPase, is an essential component of vesicle formation in receptor-mediated endocytosis, synaptic vesicle recycling, caveolae internalization, and possibly vesicle trafficking in and out of the Golgi. In addition to the GTPase domain, dynamin also contains a pleckstrin homology domain (PH) implicated in membrane binding, a GTPase effector domain (GED) shown to be essential for self-assembly and stimulated GTPase activity, and a C-terminal proline-rich domain (PRD), which contains several SH3-binding sites. Dynamin partners bind to the PRD and may either stimulate dynamin's GTPase activity or target dynamin to the plasma membrane. Purified dynamin readily self-assembles into rings or spirals. This striking structural property supports the hypothesis that dynamin wraps around the necks of budding vesicles where it plays a key role in membrane fission. The focus of this review is on the relationship between the GTPase and self-assembly properties of dynamin and its cellular function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 459-481 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cholesterol balance is maintained by a series of regulatory pathways that control the acquisition of cholesterol from endogenous and exogenous sources and the elimination of cholesterol, facilitated by its conversion to bile acids. Over the past decade, investigators have discovered that a family of membrane-bound transcription factors, sterol regulatory element-binding proteins (SREBPs), mediate the end-product repression of key enzymes of cholesterol biosynthesis. Recently orphan members of another family of transcription factors, the nuclear hormone receptors, have been found to regulate key pathways in bile acid metabolism, thereby controlling cholesterol elimination. The study of these orphan nuclear receptors suggests their potential as targets for new drug therapies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 521-555 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Voltage-gated Ca2+ channels mediate Ca2+ entry into cells in response to membrane depolarization. Electrophysiological studies reveal different Ca2+ currents designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-activated Ca2+ channels that have been characterized biochemically are complexes of a pore-forming alpha1 subunit of ~190-250 kDa; a transmembrane, disulfide-linked complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. Ten alpha1 subunits, four alpha2delta complexes, four beta subunits, and two gamma subunits are known. The Cav1 family of alpha1 subunits conduct L-type Ca2+ currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alpha1 subunits conduct N-type, P/Q-type, and R-type Ca2+ currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alpha1 subunits conduct T-type Ca2+ currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca2+ current types. The distinct structures and patterns of regulation of these three families of Ca2+ channels provide a flexible array of Ca2+ entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca2+ entry by second messenger pathways and interacting proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 557-589 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Green fluorescent protein chimerae acting as reporters for protein localization and trafficking within the secretory membrane system of living cells have been used in a wide variety of applications, including time-lapse imaging, double-labeling, energy transfer, quantitation, and photobleaching experiments. Results from this work are clarifying the steps involved in the formation, translocation, and fusion of transport intermediates; the organization and biogenesis of organelles; and the mechanisms of protein retention, sorting, and recycling in the secretory pathway. In so doing, they are broadening our thinking about the temporal and spatial relationships among secretory organelles and the membrane trafficking pathways that operate between them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 591-626 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract SUMO (small ubiquitin-related modifier) is the best-characterized member of a growing family of ubiquitin-related proteins. It resembles ubiquitin in its structure, its ability to be ligated to other proteins, as well as in the mechanism of ligation. However, in contrast to ubiquitination-often the first step on a one-way road to protein degradation-SUMOlation does not seem to mark proteins for degradation. In fact, SUMO may even function as an antagonist of ubiquitin in the degradation of selected proteins. While most SUMO targets are still at large, available data provide compelling evidence for a role of SUMO in the regulation of protein-protein interactions and/or subcellular localization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 627-651 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Because many viruses replicate in the nucleus of their host cells, they must have ways of transporting their genome and other components into and out of this compartment. For the incoming virus particle, nuclear entry is often one of the final steps in a complex transport and uncoating program. Typically, it involves recognition by importins (karyopherins), transport to the nucleus, and binding to nuclear pore complexes. Although all viruses take advantage of cellular signals and factors, viruses and viral capsids vary considerably in size, structure, and in how they interact with the nuclear import machinery. Influenza and adenoviruses undergo extensive disassembly prior to genome import; herpesviruses release their genome into the nucleus without immediate capsid disassembly. Polyoma viruses, parvoviruses, and lentivirus preintegration complexes are thought to enter in intact form, whereas the corresponding complexes of onco-retroviruses have to wait for mitosis because they cannot infect interphase nuclei.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 1-23 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Oligosaccharides play a crucial role in many of the recognition, signaling, and adhesion events that take place at the surface of cells. Abnormalities in the synthesis or presentation of these carbohydrates can lead to misfolded and inactive proteins, as well as to several debilitating disease states. However, their diverse structures, which are the key to their function, have hampered studies by biologists and chemists alike. This review presents an overview of techniques for examining and manipulating cell surface oligosaccharides through genetic, enzymatic, and chemical strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 653-699 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 25-51 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Thrombospondins are secreted, multidomain macromolecules that act as regulators of cell interactions in vertebrates. Gene knockout mice constructed for two members of this family demonstrate roles in the organization and homeostasis of multiple tissues, with particularly significant activities in the regulation of angiogenesis. This review discusses the functions of thrombospondins with regard to their cellular mechanisms of action and highlights recent advances in understanding how multifactorial molecular interactions, at the cell surface and within extracellular matrix, produce cell-type-specific effects on cell behavior and the organization of matrix and tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 387-403 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Multipotent stem cells are clonal cells that self-renew as well as differentiate to regenerate adult tissues. Whereas stem cells and their fates are known by unique genetic marker studies, the fate and function of these cells are best studied by their prospective isolation. This review is about the properties of various highly purified tissue-specific multipotent stem cells and purified oligolineage progenitors. We contend that unless the stem or progenitor cells in question have been purified to near homogeneity, one cannot know whether their generation of expected (or unexpected) progeny is a property of a known cell type. It is interesting that in the hematopoietic system the only long-term self-renewing cells in the stem and progenitors pool are the hematopoietic stem cells. This fact is discussed in the context of normal and leukemic hematopoiesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 435-462 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Mouse embryonic stem cells are continuous cell lines derived directly from the fetal founder tissue of the preimplantation embryo. They can be expanded in culture while retaining the functional attributes of pluripotent early embryo cells. In particular, they can participate fully in fetal development when reintroduced into the embryo. The capacity for multilineage differentiation is reproduced in culture where embryonic stem cells can produce a wide range of well-defined cell types. This has stimulated interest in the isolation of analogous cells of human origin. Such human pluripotent stem cells could constitute a renewable source of more differentiated cells that could be employed to replace diseased or damaged tissue by cellular transplantation. In this review, the relationships between mouse embryonic stem cells, resident pluripotent cells in the embryo, and human embryo-derived cell lines are evaluated, and the prospects and challenges of embryo stem cell research are considered. This review is dedicated to Rosa Beddington FRS, a great developmental biologist, a wonderful colleague, and an inspirational advocate of human stem cell research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 463-516 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor-binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 517-568 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract There has recently been considerable progress in understanding the regulation of clathrin-coated vesicle (CCV) formation and function. These advances are due to the determination of the structure of a number of CCV coat components at molecular resolution and the identification of novel regulatory proteins that control CCV formation in the cell. In addition, pathways of (a) phosphorylation, (b) receptor signaling, and (c) lipid modification that influence CCV formation, as well as the interaction between the cytoskeleton and CCV transport pathways are becoming better defined. It is evident that although clathrin coat assembly drives CCV formation, this fundamental reaction is modified by different regulatory proteins, depending on where CCVs are forming in the cell. This regulatory difference likely reflects the distinct biological roles of CCVs at the plasma membrane and trans-Golgi network, as well as the distinct properties of these membranes themselves. Tissue-specific functions of CCVs require even more-specialized regulation and defects in these pathways can now be correlated with human diseases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 779-805 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract A distinctive and essential feature of the vertebrate body is a pronounced left-right asymmetry of internal organs and the central nervous system. Remarkably, the direction of left-right asymmetry is consistent among all normal individuals in a species and, for many organs, is also conserved across species, despite the normal health of individuals with mirror-image anatomy. The mechanisms that determine stereotypic left-right asymmetry have fascinated biologists for over a century. Only recently, however, has our understanding of the left-right patterning been pushed forward by links to specific genes and proteins. Here we examine the molecular biology of the three principal steps in left-right determination: breaking bilateral symmetry, propagation and reinforcement of pattern, and the translation of pattern into asymmetric organ morphogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 215-253 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Circadian rhythms are found in most eukaryotes and some prokaryotes. The mechanism by which organisms maintain these roughly 24-h rhythms in the absence of environmental stimuli has long been a mystery and has recently been the subject of intense research. In the past few years, we have seen explosive progress in the understanding of the molecular basis of circadian rhythms in model systems ranging from cyanobacteria to mammals. This review attempts to outline these primarily genetic and biochemical findings and encompasses work done in cyanobacteria, Neurospora, higher plants, Drosophila, and rodents. Although actual clock components do not seem to be conserved between kingdoms, central clock mechanisms are conserved. Somewhat paradoxically, clock components that are conserved between species can be used in diverse ways. The different uses of common components may reflect the important role that the circadian clock plays in adaptation of species to particular environmental niches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 53-80 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Co-option occurs when natural selection finds new uses for existing traits, including genes, organs, and other body structures. Genes can be co-opted to generate developmental and physiological novelties by changing their patterns of regulation, by changing the functions of the proteins they encode, or both. This often involves gene duplication followed by specialization of the resulting paralogous genes into particular functions. A major role for gene co-option in the evolution of development has long been assumed, and many recent comparative developmental and genomic studies have lent support to this idea. Although there is relatively less known about the molecular basis of co-option events involving developmental pathways, much can be drawn from well-studied examples of the co-option of structural proteins. Here, we summarize several case studies of both structural gene and developmental genetic circuit co-option and discuss how co-option may underlie major episodes of adaptive change in multicellular organisms. We also examine the phenomenon of intraspecific variability in gene expression patterns, which we propose to be one form of material for the co-option process. We integrate this information with recent models of gene family evolution to provide a framework for understanding the origin of co-optive evolution and the mechanisms by which natural selection promotes evolutionary novelty by inventing new uses for the genetic toolkit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 81-105 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract In flowering plants, pollen grains germinate to form pollen tubes that transport male gametes (sperm cells) to the egg cell in the embryo sac during sexual reproduction. Pollen tube biology is complex, presenting parallels with axon guidance and moving cell systems in animals. Pollen tube cells elongate on an active extracellular matrix in the style, ultimately guided by stylar and embryo sac signals. A well-documented recognition system occurs between pollen grains and the stigma in sporophytic self-incompatibility, where both receptor kinases in the stigma and their peptide ligands from pollen are now known. Complex mechanisms act to precisely target the sperm cells into the embryo sac. These events initiate double fertilization in which the two sperm cells from one pollen tube fuse to produce distinctly different products: one with the egg to produce the zygote and embryo and the other with the central cell to produce the endosperm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 163-192 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The Arabidopsis genome sequence has revealed that plants contain a much larger complement of receptor kinase genes than other organisms. Early analysis of these genes revealed involvement in a diverse array of developmental and defense functions that included gametophyte development, pollen-pistil interactions, shoot apical meristem equilibrium, hormone perception, and cell morphogenesis. Amino acid sequence motifs and binding studies indicate that the ectodomains are capable of binding, either directly or indirectly, various classes of molecules including proteins, carbohydrates, and steroids. Genetic and biochemical approaches have begun to identify other components of several signal transduction pathways. Some receptor-like kinases (RLKs) appear to function with coreceptors lacking kinase domains, and genome analysis suggests this might be true for many RLKs. The KAPP protein phosphatase functions as a negative regulator of at least two RLK systems, and in vitro studies suggest it could be a common component of more. Whether plant signaling systems display a modularity similar to animal systems remains to be determined. Future efforts will reveal unknown functions of other RLKs and elucidate the relationships among their signaling networks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 247-288 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Eukaryotic cells use actin polymerization to change shape, move, and internalize extracellular materials by phagocytosis and endocytosis, and to form contractile structures. In addition, several pathogens have evolved to use host cell actin assembly for attachment, internalization, and cell-to-cell spread. Although cells possess multiple mechanisms for initiating actin polymerization, attention in the past five years has focused on the regulation of actin nucleation-the formation of new actin filaments from actin monomers. The Arp2/3 complex and the multiple nucleation-promoting factors (NPFs) that regulate its activity comprise the only known cellular actin-nucleating factors and may represent a universal machine, conserved across eukaryotic phyla, that nucleates new actin filaments for various cellular structures with numerous functions. This review focuses on our current understanding of the mechanism of actin nucleation by the Arp2/3 complex and NPFs and how these factors work with other cytoskeletal proteins to generate structurally and functionally diverse actin arrays in cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 289-314 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Membrane fusion is a fundamental biochemical reaction and the final step in all vesicular trafficking events. It is crucial for the transfer of proteins and lipids between different compartments and for exo- and endocytic traffic of signaling molecules and receptors. It leads to the reconstruction of organelles such as the Golgi or the nuclear envelope, which decay into fragments during mitosis. Hence, controlled membrane fusion reactions are indispensible for the compartmental organization of eukaryotic cells; for their communication with the environment via hormones, neurotransmitters, growth factors, and receptors; and for the integration of cells into multicellular organisms. Intracellular pathogenic bacteria, such as Mycobacteria or Salmonellae, have developed means to control fusion reactions in their host cells. They persist in phagosomes whose fusion with lysosomes they actively suppress-a means to ensure survival inside host cells. The past decade has witnessed rapid progress in the elucidation of parts of the molecular machinery involved in these membrane fusion reactions. Whereas some elements of the fusion apparatus are remarkably similar in several compartments, there is an equally striking divergence of others. The purpose of this review is to highlight common features of different fusion reactions and the concepts that emerged from them but also to stress the differences and challenge parts of the current hypotheses. This review covers only the endoplasmic fusion reactions mentioned above, i.e., reactions initiated by contacts of membranes with their cytoplasmic faces. Ectoplasmic fusion events, which depend on an initial contact of the fusion partners via the membrane surfaces exposed to the surrounding medium are not discussed, nor are topics such as the entry of enveloped viruses, formation of syncytia, gamete fusion, or vesicle scission (a fusion reaction that leads to the fission of, e.g., transport vesicles).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 315-344 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Bacterial pathogens utilize several strategies to modulate the organization of the actin cytoskeleton. Some bacterial toxins catalyze the covalent modification of actin or the Rho GTPases, which are involved in the control of the actin cytoskeleton. Other bacteria produce toxins that act as guanine nucleotide exchange factors or GTPase-activating proteins to modulate the nucleotide state of the Rho GTPases. This latter group of toxins provides a temporal modulation of the actin cytoskeleton. A third group of bacterial toxins act as adenylate cyclases, which directly elevate intracellular cAMP to supra-physiological levels. Each class of toxins gives the bacterial pathogen a selective advantage in modulating host cell resistance to infection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 345-378 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The mammalian cell continuously adjusts its sterol content by regulating levels of key sterol synthetic enzymes and levels of LDL receptors that mediate uptake of cholesterol-laden particles. Control is brought about by sterol-regulated transcription of relevant genes and by regulated degradation of the committed step enzyme HMG-CoA reductase (HMGR). Current work has revealed that proteolysis is at the heart of each of these mechanistically distinct axes. Transcriptional control is effected by regulated cleavage of the membrane-bound transcription factor sterol regulatory element binding protein (SREBP), and HMGR degradation is brought about by ubiquitin-mediated degradation. In each case, ongoing cell biological processes are being harnessed to bring about regulation. The secretory pathway plays a central role in allowing sterol-mediated control of transcription. The constitutively active endoplasmic reticulum (ER) quality control apparatus is employed to bring about regulated destruction of HMGR. This review describes the methods and results of various studies to understand the mechanisms and molecules involved in these distinct but interrelated aspects of sterol regulation and the intriguing similarities that appear to exist at the levels of protein sequence and cell biology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 29-59 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Plasmodium sporozoites display complex phenotypes including gliding motility and invasion of and transmigration through cells in the mosquito vector and the vertebrate host. Sporozoite studies have been difficult to perform because of technical concerns. Nevertheless, they have already provided insights into several aspects of sporozoite biology, shared in part with other apicomplexan invasive stages. Structure/function analysis of the thrombospondin-related anonymous protein paved the way to the understanding of the molecular mechanisms of apicomplexan gliding motility and host cell invasion. Functional studies of circumsporozoite protein revealed its role in Plasmodium sporozoite morphogenesis in addition to its well-known function in host cell invasion. Transcriptional surveys, which facilitate the investigation of gene expression programs that control sporozoite phenotypes, have revealed a high degree of previously unappreciated complexity and novel proteins that mediate sporozoite host cell infection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 1-28 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Nucleation of microtubules by eukaryotic microtubule organizing centers (MTOCs) is required for a variety of functions, including chromosome segregation during mitosis and meiosis, cytokinesis, fertilization, cellular morphogenesis, cell motility, and intracellular trafficking. Analysis of MTOCs from different organisms shows that the structure of these organelles is widely varied even though they all share the function of microtubule nucleation. Despite their morphological diversity, many components and regulators of MTOCs, as well as principles in their assembly, seem to be conserved. This review focuses on one of the best-characterized MTOCs, the budding yeast spindle pole body (SPB). We review what is known about its structure, protein composition, duplication, regulation, and functions. In addition, we discuss how studies of the yeast SPB have aided investigation of other MTOCs, most notably the centrosome of animal cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 125-151 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: knox genes encode homeodomain-containing transcription factors that are required for meristem maintenance and proper patterning of organ initiation. In plants with simple leaves, knox genes are expressed exclusively in the meristem and stem, but in dissected leaves, they are also expressed in leaf primordia, suggesting that they may play a role in the diversity of leaf form. This hypothesis is supported by the intriguing phenotypes found in gain-of-function mutations where knox gene misexpression affects leaf and petal shape. Similar phenotypes are also found in recessive mutations of genes that function to negatively regulate knox genes. KNOX proteins function as heterodimers with other homeodomains in the TALE superclass. The gibberellin and lignin biosynthetic pathways are known to be negatively regulated by KNOX proteins, which results in indeterminate cell fates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 619-647 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The nervous system of higher organisms exhibits extraordinary cellular diversity owing to complex spatial and temporal patterning mechanisms. The role of spatial patterning in generating neuronal diversity is well known; here we discuss how neural progenitors change over time to contribute to cell diversity within the central nervous system (CNS). We focus on five model systems: the vertebrate retina, cortex, hindbrain, spinal cord, and Drosophila neuroblasts. For each, we address the following questions: Do multipotent progenitors generate different neuronal cell types in an invariant order? Do changes in progenitor-intrinsic factors or progenitor-extrinsic signals regulate temporal identity (i.e., the sequence of neuronal cell types produced)? What is the mechanism that regulates temporal identity transitions; i.e., what triggers the switch from one temporal identity to the next? By applying the same criteria to analyze each model system, we try to highlight common themes, point out unique attributes of each system, and identify directions for future research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 337-366 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The Adenomatous Polyposis coli (APC) gene is mutated or lost in most colon cancers, and the APC protein has emerged as a multifunctional protein that is not only involved in the Wnt-regulated degradation of -catenin, but also regulates cytoskeletal proteins and thus plays a role in cell migration, cell adhesion, and mitosis. The gut epithelium is uniquely dependent on an intricate balance between a number of fundamental cellular processes including migration, differentiation, adhesion, apoptosis, and mitosis. In this review, I discuss the molecular mechanisms that govern the various functions of APC and their relationship to the role of APC in colon cancer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 867-894 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Microtubules are dynamic polymers required for many aspects of eukaryotic cell function. The interphase microtubule network is essential for intracellular transport, organization, and cell polarization, whereas the mitotic spindle is required for chromosome segregation and cell division. Studies in different areas such as cell migration, mitosis, and asymmetric cell division have shown that Ran, Rho, and heterotrimeric G proteins regulate many aspects of microtubule functions. This review surveys how G protein-signaling coordinates microtubule polymerization and organization with specific cellular activities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 51-87 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The inner membranes of eubacteria and mitochondria, as well as the chloroplast thylakoid membrane, contain essential proteins that function in oxidative phosphorylation and electron transport processes or in photosynthesis. Because most of the organellar proteins are nuclear encoded, they are synthesized in the cytoplasm and subsequently imported into the organelle before they are inserted into the membrane. This review focuses on the pathways of protein insertion into the inner membrane of eubacteria and mitochondria and into the chloroplast thylakoid membrane. In many respects, insertion of proteins into the inner membrane of bacteria is a process similar to that used by proteins of the thylakoid membrane. In both of these systems a signal recognition particle (SRP) and a SecYE-translocase are involved, as in translocation into the endoplasmic reticulum. The pathway of proteins into the mitochondrial membranes appears to be different in that it involves no SecYE-like components. A conservative pathway, recently identified in mitochondria, involves the Oxa1 protein for the insertion of proteins from the matrix. The presence of Oxa1 homologues in eubacteria and chloroplasts suggests that this pathway is evolutionarily conserved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 89-111 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The microtubule cytoskeleton is a highly regulated system. At different times in the cell cycle and positions within the organism, microtubules can be very stable or highly dynamic. Stability and dynamics are regulated by interaction with a large number of proteins that themselves may change at specific points in the cell cycle. Exogenous ligands can disrupt the normal processes by either increasing or decreasing microtubule stability and inhibiting their dynamic behavior. The recent determination of the structure of tubulin, the main component of microtubules, makes it possible now to begin to understand the details of these interactions. We review here the structure of the tubulin dimer, with particular regard to how proteins and drugs may bind and modulate microtubule dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 333-364 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Many bisexual flowering plants possess a reproductive strategy called self-incompatibility (SI) that enables the female tissue (the pistil) to reject self but accept non-self pollen for fertilization. Three different SI mechanisms are discussed, each controlled by two separate, highly polymorphic genes at the S-locus. For the Solanaceae and Papaveraceae types, the genes controlling female function in SI, the S-RNase gene and the S-gene, respectively, have been identified. For the Brassicaceae type, the gene controlling male function, SCR/SP11, and the gene controlling female function, SRK, have been identified. The S-RNase based mechanism involves degradation of RNA of self-pollen tubes; the S-protein based mechanism involves a signal transduction cascade in pollen, including a transient rise in [Ca2+]i and subsequent protein phosphorylation/dephosphorylation; and the SRK (a receptor kinase) based mechanism involves interaction of a pollen ligand, SCR/SP11, with SRK, followed by a signal transduction cascade in the stigmatic surface cell.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 365-392 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Retinylidene proteins, containing seven membrane-embedded alpha-helices that form an internal pocket in which the chromophore retinal is bound, are ubiquitous in photoreceptor cells in eyes throughout the animal kingdom. They are also present in a diverse range of other organisms and locations, such as archaeal prokaryotes, unicellular eukaryotic microbes, the dermal tissue of frogs, the pineal glands of lizards and birds, the hypothalamus of toads, and the human brain. Their functions include light-driven ion transport and phototaxis signaling in microorganisms, and retinal isomerization and various types of photosignal transduction in higher animals. The aims of this review are to examine this group of photoactive proteins as a whole, to summarize our current understanding of structure/function relationships in the best-studied examples, and to report recent new developments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 393-421 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cell walls separate individual plant cells. To enable essential intercellular communication, plants have evolved membrane-lined channels, termed plasmodesmata, that interconnect the cytoplasm between neighboring cells. Historically, plasmodesmata were viewed as facilitating traffic of low-molecular weight growth regulators and nutrients critical to growth. Evidence for macromolecular transport via plasmodesmata was solely based on the exploitation of plasmodesmata by plant viruses during infectious spread. Now plasmodesmata are revealed to transport endogenous proteins, including transcription factors important for development. Two general types of proteins, non-targeted and plasmodesmata-targeted, traffic plasmodesmata channels. Size and subcellular location influence non-targeted protein transportability. Superimposed on cargo-specific parameters, plasmodesmata themselves fluctuate in aperture between closed, open, and dilated. Furthermore, plasmodesmata alter their transport capacity temporally during development and spatially in different regions of the plant. Plasmodesmata are exposed as major gatekeepers of signaling molecules that facilitate or regulate developmental programs, maintain physiological status, and respond to pathogens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 423-457 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The closely related bacterial pathogens Neisseria gonorrhoeae (gonococci, GC) and N. meningitidis (meningococci, MC) initiate infection at human mucosal epithelia. Colonization begins at apical epithelial surfaces with a multistep adhesion cascade, followed by invasion of the host cell, intracellular persistence, transcytosis, and exit. These activities are modulated by the interaction of a panoply of virulence factors with their cognate host cell receptors, and signals are sent from pathogen to host and host to pathogen at multiple stages of the adhesion cascade. Recent advances place us on the verge of understanding the colonization process at a molecular level of detail. In this review we describe the Neisseria virulence factors in the context of epithelial cell biology, placing special emphasis on the signaling functions of type IV pili, pilus-based twitching motility, and the Opa and Opc outermembrane adhesin/invasin proteins. We also summarize what is known about bacterial intracellular trafficking and growth. With the accelerated integration of tools from cell biology, biochemistry, biophysics, and genomics, experimentation in the next few years should bring unprecedented insights into the interactions of Neisseriae with their host.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 351-386 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cytokinesis creates two daughter cells endowed with a complete set of chromosomes and cytoplasmic organelles. This conceptually simple event is mediated by a complex and dynamic interplay between the microtubules of the mitotic spindle, the actomyosin cytoskeleton, and membrane fusion events. For many decades the study of cytokinesis was driven by morphological studies on specimens amenable to physical manipulation. The studies led to great insights into the cellular structures that orchestrate cell division, but the underlying molecular machinery was largely unknown. Molecular and genetic approaches have now allowed the initial steps in the development of a molecular understanding of this fundamental event in the life of a cell. This review provides an overview of the literature on cytokinesis with a particular emphasis on the molecular pathways involved in the division of animal cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 405-433 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract A number of novel chemical methods for studying biological systems have recently been developed that provide a means of addressing biological questions not easily studied with other techniques. In this review, examples that highlight the development and use of such chemical approaches are discussed. Specifically, strategies for modulating protein activity or protein-protein interactions using small molecules are presented. In addition, methods for generating and utilizing novel biomolecules (proteins, oligonucleotides, oligosaccharides, and second messengers) are examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 615-675 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The phosphoinositide 3-kinase (PI3K) family of enzymes is recruited upon growth factor receptor activation and produces 3' phosphoinositide lipids. The lipid products of PI3K act as second messengers by binding to and activating diverse cellular target proteins. These events constitute the start of a complex signaling cascade, which ultimately results in the mediation of cellular activities such as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis. Therefore, PI3Ks play a central role in many cellular functions. The factors that determine which cellular function is mediated are complex and may be partly attributed to the diversity that exists at each level of the PI3K signaling cascade, such as the type of stimulus, the isoform of PI3K, or the nature of the second messenger lipids. Numerous studies have helped to elucidate some of the key factors that determine cell fate in the context of PI3K signaling. For example, the past two years has seen the publication of many transgenic and knockout mouse studies where either PI3K or its signaling components are deregulated. These models have helped to build a picture of the role of PI3K in physiology and indeed there have been a number of surprises. This review uses such models as a framework to build a profile of PI3K function within both the cell and the organism and focuses, in particular, on the role of PI3K in cell regulation, immunity, and development. The evidence for the role of deregulated PI3K signaling in diseases such as cancer and diabetes is reviewed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 677-699 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Seed development requires coordinated expression of embryo and endosperm and has contributions from both sporophytic and male and female gametophytic genes. Genetic and molecular analyses in recent years have started to illuminate how products of these multiple genes interact to initiate seed development. Imprinting or differential expression of paternal and maternal genes seems to be involved in controlling seed development, presumably by controlling gene expression in developing endosperm. Epigenetic processes such as chromatin remodeling and DNA methylation affect imprinting of key seed-specific genes; however, the identity of many of these genes remains unknown. The discovery of FIS genes has illuminated control of autonomous endosperm development, a component of apomixis, which is an important developmental and agronomic trait. FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes. These results define some exciting future areas of research in seed development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 1-24 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract A large number of protein toxins having enzymatically active A- and B-moieties that bind to cell surface receptors must be endocytosed before the A-moiety is translocated into the cytosol where it exerts its cytotoxic action. The accumulated information about the most well-studied toxins has provided a detailed picture of how they exploit the membrane trafficking systems of cells, and studies of toxin trafficking have revealed the existance of new pathways. The complexity of different endocytic mechanisms, as well as the multiple routes between endosomes and the Golgi apparatus and retrogradely to the endoplasmic reticulum (ER), are being unravelled by investigations of how toxins gain access to their targets. With increasing information about the internalization and intracellular trafficking of these opportunistic toxins, new avenues have been opened for their application in areas of medicine such as drug delivery and therapy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 255-296 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract This review provides a synthesis that combines data from classical experimentation and recent advances in our understanding of early eye development. Emphasis is placed on the events that underlie and direct neural retina formation and lens induction. Understanding these events represents a longstanding problem in developmental biology. Early interest can be attributed to the curiosity generated by the relatively frequent occurrence of disorders such as cyclopia and anophthalmia, in which dramatic changes in eye development are readily observed. However, it was the advent of experimental embryology at the turn of the century that transformed curiosity into active investigation. Pioneered by investigators such as Spemann and Adelmann, these embryological manipulations have left a profound legacy. Questions about early eye development first addressed using tissue manipulations remain topical as we try to understand the molecular basis of this process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 297-310 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The localization of mRNAs is used by various types of polarized cells to locally translate specific proteins, which restricts their distribution to a particular sub-region of the cytoplasm. This mechanism of protein sorting is involved in major biological processes such as asymmetric cell division, oogenesis, cellular motility, and synapse formation. With the finding of localized mRNAs in the yeast Saccharomyces cerevisiae, it is now possible to benefit from the powerful yeast laboratory tools to explore the molecular basis of RNA localization. Because mRNA transport and localization in yeast share many features with RNA localization in higher eukaryotes, including the formation of a large ribonucleoprotein (RNP) localization complex, the requirement of a polarized cytoskeleton and molecular motors, and the role of nuclear RNA-binding proteins in cytoplasmic localization, the yeast can be used as a paradigm for unraveling the molecular aspects of this process. This review summarizes the current knowledge on RNP transport and localization in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 311-350 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract In vertebrates, the paraxial mesoderm corresponds to the bilateral strips of mesodermal tissue flanking the notochord and neural tube and which are delimited laterally by the intermediate mesoderm and the lateral plate. The paraxial mesoderm comprises the head or cephalic mesoderm anteriorly and the somitic region throughout the trunk and the tail of the vertebrates. Soon after gastrulation, the somitic region of vertebrates starts to become segmented into paired blocks of mesoderm, termed somites. This process lasts until the number of somites characteristic of the species is reached. The somites later give rise to all skeletal muscles of the body, the axial skeleton, and part of the dermis. In this review I discuss the processes involved in the formation of the paraxial mesoderm and its segmentation into somites in vertebrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 569-614 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The intracellular localization of mRNA, a common mechanism for targeting proteins to specific regions of the cell, probably occurs in most if not all polarized cell types. Many of the best characterized localized mRNAs are found in oocytes and early embryos, where they function as localized determinants that control axis formation and the development of the germline. However, mRNA localization has also been shown to play an important role in somatic cells, such as neurons, where it may be involved in learning and memory. mRNAs can be localized by a variety of mechanisms including local protection from degradation, diffusion to a localized anchor, and active transport, and we consider the evidence for each of these processes, before discussing the cis-acting elements that direct the localization of specific mRNAs and the trans-acting factors that bind them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 753-777 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The replicated copies of each chromosome, the sister chromatids, are attached prior to their segregation in mitosis and meiosis. This association or cohesion is critical for each sister chromatid to bind to microtubules from opposite spindle poles and thus segregate away from each other at anaphase of mitosis or meiosis II. The cohesin protein complex is essential for cohesion in both mitosis and meiosis, and cleavage of one of the subunits is sufficient for loss of cohesion at anaphase. The localization of the cohesin complex and other cohesion proteins permits evaluation of the positions of sister-chromatid associations within the chromosome structure, as well as the relationship between cohesion and condensation. Recently, two key riddles in the mechanism of meiotic chromosome segregation have yielded to molecular answers. First, analysis of the cohesin complex in meiosis provides molecular support for the long-standing hypothesis that sister-chromatid cohesion links homologs in meiosis I by stabilizing chiasmata. Second, the isolation of the monopolin protein that controls kinetochore behavior in meiosis I defines a functional basis by which sister kinetochores are directed toward the same pole in meiosis I.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 701-752 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Fifteen years ago, we had a model of peroxisome biogenesis that involved growth and division of preexisting peroxisomes. Today, thanks to genetically tractable model organisms and Chinese hamster ovary cells, 23 PEX genes have been cloned that encode the machinery ("peroxins") required to assemble the organelle. Membrane assembly and maintenance requires three of these (peroxins 3, 16, and 19) and may occur without the import of the matrix (lumen) enzymes. Matrix protein import follows a branched pathway of soluble recycling receptors, with one branch for each class of peroxisome targeting sequence (two are well characterized), and a common trunk for all. At least one of these receptors, Pex5p, enters and exits peroxisomes as it functions. Proliferation of the organelle is regulated by Pex11p. Peroxisome biogenesis is remarkably conserved among eukaryotes. A group of fatal, inherited neuropathologies are recognized as peroxisome biogenesis diseases; the responsible genes are orthologs of yeast or Chinese hamster ovary peroxins. Future studies must address the mechanism by which folded, oligomeric enzymes enter the organelle, how the peroxisome divides, and how it segregates at cell division. Most pex mutants contain largely empty membrane "ghosts" of peroxisomes; a few mutants apparently lacking peroxisomes entirely have led some to propose the de novo formation of the organelle. However, there is evidence for residual peroxisome membrane vesicles ("protoperoxisomes") in some of these, and the preponderance of data supports the continuity of the peroxisome compartment in space and time and between generations of cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 421-462 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Autoinhibitory domains are regions of proteins that negatively regulate the function of other domains via intramolecular interactions. Autoinhibition is a potent regulatory mechanism that provides tight "on-site" repression. The discovery of autoinhibition generates valuable clues to how a protein is regulated within a biological context. Mechanisms that counteract the autoinhibition, including proteolysis, post-translational modifications, as well as addition of proteins or small molecules in trans, often represent central regulatory pathways. In this review, we document the diversity of instances in which autoinhibition acts in cell regulation. Seven well-characterized examples (e.g., sigma70, Ets-1, ERM, SNARE and WASP proteins, SREBP, Src) are covered in detail. Over thirty additional examples are listed. We present experimental approaches to characterize autoinhibitory domains and discuss the implications of this widespread phenomenon for biological regulation in both the normal and diseased states.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 495-513 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract In Caenorhabditis elegans the timing of many developmental events is regulated by heterochronic genes. Such genes orchestrate the timing of cell divisions and fates appropriate for the developmental stage of an organism. Analyses of heterochronic mutations in the nematode C. elegans have revealed a genetic pathway that controls the timing of post-embryonic cell divisions and fates. Two of the genes in this pathway encode small regulatory RNAs. The 22 nucleotide (nt) RNAs downregulate the expression of protein-coding mRNAs of target heterochronic genes. Analogous variations in the timing of appearance of particular features have been noted among closely related species, suggesting that such explicit control of developmental timing may not be exclusive to C. elegans. In fact, some of the genes that globally pattern the temporal progression of C. elegans development, including one of the tiny RNA genes, are conserved and temporally regulated across much of animal phylogeny, suggesting that the molecular mechanisms of temporal control are ancient and universal. A very large family of tiny RNA genes called microRNAs, which are similar in structure to the heterochronic regulatory RNAs, have been detected in diverse animal species and are likely to be present in most metazoans. Functions of the newly discovered microRNAs are not yet known. Other examples of temporal programs during growth include the exquisitely choreographed temporal sequences of developmental fates in neurogenesis in Drosophila and the sequential programs of epidermal coloration in insect wing patterning. An interesting possibility is that microRNAs mediate transitions on a variety of time scales to pattern the activities of particular target protein-coding genes and in turn generate sets of cells over a period of time. Plasticity in these microRNA genes or their targets may lead to changes in relative developmental timing between related species, or heterochronic change. Instead of inventing new gene functions, even subtle changes in temporal expression of pre-existing control genes can result in speciation by altering the time at which they function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 515-539 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Signaling between cells is a widely used mechanism by which cell fate and tissue patterning is determined in development. We review the mechanisms by which signaling between cells is regulated so that a cell receives the right amount of signal, at the right time, to achieve its intended developmental fate and position. In nearly all cases, we find that the supply of signal factor (ligand) is the limiting step in initiating a signaling process. Ligand supply is regulated by the transcription and localization of RNA, the spread of ligand from a source, and by inhibitors that operate at several different levels. We emphasize the different regulatory strategies that operate for threshold as opposed to concentration-dependent (morphogen) signaling. Threshold signaling is extensively regulated by feedback mechanisms. Morphogen signaling is regulated quantitatively by receptor loading and transduction flow.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 575-599 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cells monitor the physiological load placed on their endoplasmic reticulum (ER) and respond to perturbations in ER function by a process known as the unfolded protein response (UPR). In metazoans the UPR has a transcriptional component that up-regulates expression of genes that enhance the capacity of the organelle to deal with the load of client proteins and a translational component that insures tight coupling between protein biosynthesis on the cytoplasmic side and folding in the ER lumen. Together, these two components adapt the secretory apparatus to physiological load and protect cells from the consequences of protein malfolding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 541-573 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The vasculature is one of the most important and complex organs in the mammalian body. The first functional organ to form during embryonic development, the intricately branched network of endothelial and supporting periendothelial cells is essential for the transportation of oxygen and nutrients to and the removal of waste products from the tissues. Serious disruptions in the formation of the vascular network are lethal early in post-implantation development, while the maintenance of vessel integrity and the control of vessel physiology and hemodynamics have important consequences throughout embryonic and adult life. A full understanding of the signaling pathways of vascular development is important not just for understanding normal development but because of the importance of reactivation of angiogenic pathways in disease states. Clinically there is a need to develop therapies to promote new blood vessel formation in situations of severe tissue ischemia, such as coronary heart disease. In addition, there is considerable interest in developing angiogenic inhibitors to block the new vessel growth that solid tumors promote in host tissue to enhance their own growth. Already studies on the signaling pathways of normal vascular development have provided new targets for therapeutic intervention in both situations. Further understanding of the complexities of the pathways should help refine such strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 601-635 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The actin cytoskeleton plays a major role in morphological development of neurons and in structural changes of adult neurons. This article reviews the myriad functions of actin and myosin in axon initiation, growth, guidance and branching, in morphogenesis of dendrites and dendritic spines, in synapse formation and stability, and in axon and dendrite retraction. Evidence is presented that signaling pathways involving the Rho family of small GTPases are key regulators of actin polymerization and myosin function in the context of different aspects of neuronal morphogenesis. These studies support an emerging theme: Different aspects of neuronal morphogenesis may involve regulation of common core signaling pathways, in particular the Rho GTPases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 637-706 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Striated muscle is an intricate, efficient, and precise machine that contains complex interconnected cytoskeletal networks critical for its contractile activity. The individual units of the sarcomere, the basic contractile unit of myofibrils, include the thin, thick, titin, and nebulin filaments. These filament systems have been investigated intensely for some time, but the details of their functions, as well as how they are connected to other cytoskeletal elements, are just beginning to be elucidated. These investigations have advanced significantly in recent years through the identification of novel sarcomeric and sarcomeric-associated proteins and their subsequent functional analyses in model systems. Mutations in these cytoskeletal components account for a large percentage of human myopathies, and thus insight into the normal functions of these proteins has provided a much needed mechanistic understanding of these disorders. In this review, we highlight the components of striated muscle cytoarchitecture with respect to their interactions, dynamics, links to signaling pathways, and functions. The exciting conclusion is that the striated muscle cytoskeleton, an exquisitely tuned, dynamic molecular machine, is capable of responding to subtle changes in cellular physiology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 707-746 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chromatin remodeling in plants has usually been discussed in relation to aspects of genome defense such as transgene silencing and the resetting of transposon activity. The role of remodeling in controlling development has been less emphasized, although well established in animal systems. This is because cell fate in plants is often held to be entirely specified on the basis of position, apparently excluding any significant role for cell ancestry and chromatin remodeling. We argue that chromatin remodeling is used to confer mitotically heritable cell fates at late stages in pattern formation. Several examples in which chromatin remodeling factors are used to confer a memory of transient events in plant development are discussed. Because the precise biochemical functions of most remodeling factors are obscure, and little is known of plant chromatin structure, the underlying mechanisms remain poorly understood.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 747-783 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Embryological and genetic studies of mouse, bird, zebrafish, and frog embryos are providing new insights into the regulatory functions of the myogenic regulatory factors, MyoD, Myf5, Myogenin, and MRF4, and the transcriptional and signaling mechanisms that control their expression during the specification and differentiation of muscle progenitors. Myf5 and MyoD genes have genetically redundant, but developmentally distinct regulatory functions in the specification and the differentiation of somite and head muscle progenitor lineages. Myogenin and MRF4 have later functions in muscle differentiation, and Pax and Hox genes coordinate the migration and specification of somite progenitors at sites of hypaxial and limb muscle formation in the embryo body. Transcription enhancers that control Myf5 and MyoD activation in muscle progenitors and maintain their expression during muscle differentiation have been identified by transgenic analysis. In epaxial, hypaxial, limb, and head muscle progenitors, Myf5 is controlled by lineage-specific transcription enhancers, providing evidence that multiple mechanisms control progenitor specification at different sites of myogenesis in the embryo. Developmental signaling ligands and their signal transduction effectors function both interactively and independently to control Myf5 and MyoD activation in muscle progenitor lineages, likely through direct regulation of their transcription enhancers. Future investigations of the signaling and transcriptional mechanisms that control Myf5 and MyoD in the muscle progenitor lineages of different vertebrate embryos can be expected to provide a detailed understanding of the developmental and evolutionary mechanisms for anatomical muscles formation in vertebrates. This knowledge will be a foundation for development of stem cell therapies to repair diseased and damaged muscles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 677-693 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The problem of organelle size control can be addressed most simply by considering cellular structures that are linear, so that their size can be defined by a single parameter: length. We compare existing studies on several linear biological structures including prokaryotic flagella and flagellar hooks, eukaryotic flagella, sarcomere thin filaments, and microvilli. In some cases, existing evidence strongly supports the idea that length control involves a molecular ruler, in which the size of the overall structure is compared with the size of an individual molecule. In other cases, length control is likely to involve a steady-state balance of assembly and disassembly, in which one or the other rate is inherently length dependent. The lessons learned from size control in linear structures should be applicable to organelles with more complex three-dimensional structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 309-335 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The mitochondrion has developed an elaborate translocation system for the import of nuclear-coded proteins and the export of proteins coded on the mitochondrial genome. Precursor proteins contain targeting and sorting information to reach the mitochondrion, whereas the translocons recognize the information and direct the precursor to the correct compartment. The outer membrane contains the TOM (translocase of the outer membrane) complex for translocation and the SAM (sorting and assembly machinery) complex for assembly of outer membrane proteins with complex topologies. At the inner membrane, the TIM23 (translocase of the inner membrane) mediates the import of mitochondrial proteins with a typical N-terminal targeting sequence, and the TIM22 complex mediates the import of polytopic inner membrane proteins. Based on its prokaryotic origin, the inner membrane also contains several components that mediate the export and assembly of proteins from within the matrix. Together the translocation and assembly complexes coordinate assembly of the mitochondrion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 525-558 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The synaptonemal complex (SC) is a protein lattice that resembles railroad tracks and connects paired homologous chromosomes in most meiotic systems. The two side rails of the SC, known as lateral elements (LEs), are connected by proteins known as transverse filaments. The LEs are derived from the axial elements of the chromosomes and play important roles in chromosome condensation, pairing, transverse filament assembly, and prohibiting double-strand breaks (DSBs) from entering into recombination pathways that involve sister chromatids. The proteins that make up the transverse filaments of the SC also play a much earlier role in committing a subset of DSBs into a recombination pathway, which results in the production of reciprocal meiotic crossovers. Sites of crossover commitment can be observed as locations where the SC initiates and as immunostaining foci for a set of proteins required for the processing of DSBs to mature crossovers. In most (but not all) organisms it is the establishment of sites marking such crossover-committed DSBs that facilitates completion of synapsis (full-length extension of the SC). The function of the mature full-length SC may involve both the completion of meiotic recombination at the DNA level and the exchange of the axial elements of the two chromatids involved in the crossover. However, the demonstration that the sites of crossover formation are designated prior to SC formation, and the finding that these sites display interference, argues against a role of the mature SC in mediating the process of interference. Finally, in at least some organisms, modifications of the SC alone are sufficient to ensure meiotic chromosome segregation in the complete absence of meiotic recombination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 811-838 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Gap junctions contain hydrophilic membrane channels that allow direct communication between neighboring cells through the diffusion of ions, metabolites, and small cell signaling molecules. They are made up of a hexameric array of polypeptides encoded by the connexin multi-gene family. Cell-cell communication mediated by connexins is crucial to various cellular functions, including the regulation of cell growth, differentiation, and development. Mutations in connexin genes have been linked to a variety of human diseases, including cardiovascular anomalies, peripheral neuropathy, deafness, skin disorders, and cataracts. In addition to their coupling function, recent studies suggest that connexin proteins may also mediate signaling. This could involve interactions with other protein partners that may play a role not only in connexin assembly, trafficking, gating and turnover, but also in the coordinate regulation of cell-cell communication with cell adhesion and cell motility. The integration of these cell functions is likely to be important in the role of gap junctions in development and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 153-191 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Clathrin-coated vesicles (CCVs) are responsible for the transport of proteins between various compartments of the secretory and endocytic systems. Clathrin forms a scaffold around these vesicles that is linked to membranes by clathrin adaptors. The adaptors simultaneously bind to clathrin and to transmembrane proteins and/or phospholipids and can also interact with each other and with other components of the CCV formation machinery. The result is a collection of proteins that can make multiple, moderate strength (M Kd) interactions and thereby establish the dynamic regulatable networks to drive vesicle genesis at the correct time and place in the cell. This review focuses on the structure of clathrin adaptors and how these structures provide functional information on the mechanism of CCV formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 559-591 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Cell polarity, as reflected by polarized growth and organelle segregation during cell division in yeast, appears to follow a simple hierarchy. On the basis of physical cues from previous cell cycles or stochastic processes, yeast cells select a site for bud emergence that also defines the axis of cell division. Once polarity is established, rho protein-based signal pathways set up a polarized cytoskeleton by activating localized formins to nucleate and assemble polarized actin cables. These serve as tracks for the transport of secretory vesicles, the segregation of the trans Golgi network, the vacuole, peroxisomes, endoplasmic reticulum, mRNAs for cell fate determination, and microtubules that orient the nucleus in preparation for mitosis, all by myosin-Vs encoded by the MYO2 and MYO4 genes. Most of the proteins participating in these processes in yeast are conserved throughout the kingdoms of life, so the emerging models are likely to be generally applicable. Indeed, several parallels to cellular organization in animals are evident.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 193-221 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Programmed cell death involves the removal of cell corpses by other cells in a process termed engulfment. Genetic studies of the nematode Caenorhabditis elegans have led to a framework not only for the killing step of programmed cell death but also for the process of cell-corpse engulfment. This work has defined two signal transduction pathways that act redundantly to control engulfment. Signals expressed by dying cells probably regulate these C. elegans pathways. Components of the cell-corpse recognition system of one of the C. elegans pathways include the CED-7 ABC transporter, which likely presents a death ligand on the surface of the dying cell; the CED-1 transmembrane receptor, which recognizes this signal; and the CED-6 adaptor protein, which may transduce a signal from CED-1. The second C. elegans pathway acts in parallel and involves a novel Rac GTPase signaling pathway, with the components CED-2 CrkII, CED-5 DOCK180, CED-12 ELMO, and CED-10 Rac. The cell-corpse recognition system that activates this pathway remains to be characterized. In C. elegans, and possibly in mammals, the process of cell-corpse engulfment promotes the death process itself. The known mechanisms for cell-corpse engulfment leave much to be discovered concerning this fundamental aspect of metazoan biology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 367-394 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Phagocytosis and phagolysosome biogenesis represent fundamental biological processes essential for proper tissue homeostasis, development, elimination of invading microorganisms, and antigen processing and presentation. Phagosome formation triggers a preprogramed pathway of maturation into the phagolysosome, a process controlled by Ca2+ and the regulators of organellar trafficking centered around the small GTP-binding proteins Rabs and their downstream effectors, including lipid kinases, organellar tethering molecules, and membrane fusion apparatus. Mycobacterium tuberculosis is a potent human pathogen parasitizing macrophages. It interferes with the Rab-controlled membrane trafficking and arrests the maturing phagosome at a stage where no harm can be done to the pathogen while the delivery of nutrients and membrane to the vacuole harboring the microorganism continues. This process, referred to as the M. tuberculosis phagosome maturation arrest or inhibition of phagosome-lysosome fusion, is critical for M. tuberculosis persistence in human populations. It also provides a general model system for dissecting the phagolysosome biogenesis pathways. Here we review the fundamental trafficking processes targeted by M. tuberculosis and the mycobacterial products that interfere with phagosomal maturation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 223-253 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Dictyostelium is an accessible organism for studies of signaling via chemoattractant receptors. Chemoattractant-mediated signaling events and components are reviewed and presented as a series of connected modules, including excitation, inhibition, G protein-independent responses, early gene expression, inositol lipids, PH domain-containing proteins, cyclic AMP signaling, polarization acquisition, actin polymerization, and cortical myosin. The network incorporates information from biochemical, genetic, and cell biological experiments carried out on living cells. The modules and connections represent current understanding, and future information is expected to modify and build upon this structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 839-866 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Considerable evidence shows that lateral inhomogeneities in lipid composition and physical properties exist in biological membranes. These membrane lipid domains are proposed to play important roles in processes such as signal transduction and membrane traffic. However, there is not at present an adequate description of the nature of these lipid domains in terms of their size, abundance, composition, or dynamics. We discuss the current analyses of the properties and function of membrane domains in cells and compare their properties with chemically simpler model membrane systems that can be understood in greater detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 759-779 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Dynactin is a multisubunit protein complex that is required for most, if not all, types of cytoplasmic dynein activity in eukaryotes. Dynactin binds dynein directly and allows the motor to traverse the microtubule lattice over long distances. A single dynactin subunit, p150Glued, is sufficient for both activities, yet dynactin contains several other subunits that are organized into an elaborate structure. It is currently believed that the bulk of the dynactin structure participates in interactions with a wide range of cellular structures, many of which are cargoes of the dynein motor. Genetic studies verify the importance of all elements of dynactin structure to its function. Although dynein can bind some membranous cargoes independently of dynactin, establishment of a fully functional dynein-cargo link appears to depend on dynactin. In this review, I summarize what is presently known about dynactin structure, the cellular structures with which it associates, and the intermolecular interactions that underlie and regulate binding. Although the molecular details of dynactin's interactions with membranous organelles and other molecules are complex, the framework provided here is intended to distill what is presently known and to be of use to dynactin specialists and beginners alike.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 781-810 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Tight control of cell-cell communication is essential for the generation of a normally patterned embryo. A critical mediator of key cell-cell signaling events during embryogenesis is the highly conserved Wnt family of secreted proteins. Recent biochemical and genetic analyses have greatly enriched our understanding of how Wnts signal, and the list of canonical Wnt signaling components has exploded. The data reveal that multiple extracellular, cytoplasmic, and nuclear regulators intricately modulate Wnt signaling levels. In addition, receptor-ligand specificity and feedback loops help to determine Wnt signaling outputs. Wnts are required for adult tissue maintenance, and perturbations in Wnt signaling promote both human degenerative diseases and cancer. The next few years are likely to see novel therapeutic reagents aimed at controlling Wnt signaling in order to alleviate these conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 505-523 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The cell body has classically been considered the exclusive source of axonal proteins. However, significant evidence has accumulated recently to support the view that protein synthesis can occur in axons themselves, remote from the cell body. Indeed, local translation in axons may be integral to aspects of synaptogenesis, long-term facilitation, and memory storage in invertebrate axons, and for growth cone navigation in response to environmental stimuli in developing vertebrate axons. Here we review the evidence supporting mRNA translation in axons and discuss the potential roles that local protein synthesis may play during development and subsequent neuronal function. We advance the view that local translation provides a rapid supply of nascent proteins in restricted axonal compartments that can potentially underlie long-term responses to transient stimuli.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 61-86 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Myostatin is a secreted protein that acts as a negative regulator of skeletal muscle mass. During embryogenesis, myostatin is expressed by cells in the myotome and in developing skeletal muscle and acts to regulate the final number of muscle fibers that are formed. During adult life, myostatin protein is produced by skeletal muscle, circulates in the blood, and acts to limit muscle fiber growth. The existence of circulating tissue-specific growth inhibitors of this type was hypothesized over 40 years ago to explain how sizes of individual tissues are controlled. Skeletal muscle appears to be the first example of a tissue whose size is controlled by this type of regulatory mechanism, and myostatin appears to be the first example of the long-sought chalone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 255-284 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Significant advances have been made in the application of genetics to probe the functions of basement membrane laminins. These studies have shown that different laminin subunits profoundly affect tissue morphogenesis, starting around the time of embryonic implantation and extending through organogenesis and into the postnatal period. Collectively they have revealed common functions that include the induction and maintenance of cell polarity, the establishment of barriers between tissue compartments, the organization of cells into tissues, and the protection of adherent cells from detachment-induced cell death, anoikis. Interpreted in light of what is known about laminin structure and self-assembly and binding activities, these advances have begun to provide insights into mechanisms of action. In this review we focus on the contributions of the laminins in invertebrate and vertebrate tissue morphogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 395-425 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Human immunodeficiency virus (HIV) and other retroviruses acquire their envelopes and spread infection by budding through the limiting membranes of producer cells. To facilitate budding, retroviruses usurp a cellular pathway that is normally used to create vesicles that bud into late endosomal compartments called multivesicular bodies (MVB). Research on yeast and human MVB biogenesis has led to the identification of 25 human proteins that are required for vesicle formation and for HIV-1 budding, and has produced a working model for sequential recruitment of these proteins during MVB vesicle formation. Retroviruses can redirect this machinery to the plasma membrane and leave the cell in a single step or, alternatively, can bud directly into MVB compartments and then exit cells via the exosome pathway. Remarkably, virus release from both the plasma membrane and MVB compartments can occur directionally into specialized sites of cell-to-cell contact called virological synapses. Thus retroviruses have evolved elaborate mechanisms for escaping the cell and maximizing their chances of infecting a new host.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...