ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Propulsion and Power  (682)
  • Engineering
  • Inorganic Chemistry
  • LUNAR AND PLANETARY EXPLORATION
  • 2005-2009  (740)
Collection
Language
Years
Year
  • 1
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Electronics ; Engineering ; Nanotechnology
    ISBN: 9783540283089
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Biochemistry ; Chemistry, Physical organic ; Engineering ; Life sciences ; Nanotechnology ; Physical optics
    ISBN: 9783540284727
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Electromagnetism ; Engineering ; Laser physics ; Remote sensing
    ISBN: 9781402065033
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Optical materials ; Surfaces (Physics)
    ISBN: 9783540264620
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Engineering ; Optical materials ; Particles (Nuclear physics) ; Physical optics ; Polymers
    ISBN: 9783540719236
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Engineering ; Materials ; Materials ; Materials ; Mechanics ; Nuclear engineering
    ISBN: 9781402053290
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Analytical biochemistry ; Biotechnology ; Engineering ; Food science ; Medical laboratories
    ISBN: 9783540457435
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Chemistry, inorganic ; Engineering ; Materials
    ISBN: 9783540687580
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Building construction ; Engineering ; Materials ; Physics
    ISBN: 9781852334277
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Electronics ; Engineering ; Nanotechnology ; Optical materials ; System safety
    ISBN: 9783540269458
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Keywords: Chemistry ; Engineering ; Magnetism ; Materials ; Optical materials
    ISBN: 9781402087967
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Keywords: Condensed matter ; Engineering ; Materials ; Nanotechnology ; Optical materials
    ISBN: 9781402089039
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Unknown
    Totowa, NJ : Humana Press
    Keywords: Biochemical engineering ; Biotechnology ; Chemical engineering ; Engineering ; Environmental sciences ; Microbiology
    ISBN: 9781592599967
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Chemistry, Physical organic ; Condensed matter ; Engineering ; Optical materials
    ISBN: 9783540712954
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Nanotechnology
    ISBN: 9783540726753
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Unknown
    Dordrecht : Springer
    Keywords: Chemicals ; Safety measures ; Engineering ; Materials ; Polymers
    ISBN: 9781402053566
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Keywords: Engineering ; Materials
    ISBN: 9781402085840
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Unknown
    Boston, MA : Kluwer Academic Publishers
    Keywords: Engineering ; Materials
    ISBN: 9781402081330
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Unknown
    New York, NY : Springer
    Keywords: Engineering ; Optical materials ; Physical optics
    ISBN: 9780387748016
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Chemistry ; Mathematics ; Engineering ; Operations research ; Systems theory
    ISBN: 9783540488804
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Keywords: Electronics ; Engineering ; Optical materials ; Spectrum analysis
    ISBN: 9783540274124
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Unknown
    Boston, MA : Springer US
    Keywords: Chemistry ; Engineering ; Materials ; Mechanical engineering ; Surfaces (Physics)
    ISBN: 9780387476858
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Keywords: Engineering ; Optical materials ; Physical optics
    ISBN: 9781402084256
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Keywords: Computer science ; Engineering ; Materials ; Nuclear engineering ; Thermodynamics
    ISBN: 9781402084225
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Unknown
    Boston, MA : Springer
    Keywords: Engineering ; Machinery ; Materials
    ISBN: 9780387725284
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Keywords: Engineering ; Laser physics ; Microwaves ; Optical materials ; Physical optics
    ISBN: 9780387686172
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Chemistry, Physical organic ; Engineering ; Nanotechnology ; Surfaces (Physics)
    ISBN: 9783540745518
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Engineering ; Optical materials ; Particles (Nuclear physics) ; Physical optics
    ISBN: 9783540745297
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Engineering ; Nanotechnology ; Particles (Nuclear physics)
    ISBN: 9783540745570
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Keywords: Condensed matter ; Engineering ; Optical materials
    ISBN: 9783540734567
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Keywords: Electronics ; Engineering ; Nanotechnology ; Thermodynamics
    ISBN: 9783540736073
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Keywords: Condensed matter ; Engineering ; Materials ; Nanotechnology ; Optical materials
    ISBN: 9781402035623
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Materials ; Nanotechnology ; Optical materials
    ISBN: 9783540401865
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Engineering ; Magnetism ; Nanotechnology ; Optical materials
    ISBN: 9783540493365
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Computer engineering ; Engineering ; Nanotechnology ; Optical materials ; Physical optics ; Quantum optics
    ISBN: 9783540469360
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Keywords: Chemistry, Physical organic ; Engineering ; Nanotechnology ; Optical materials ; Physics
    ISBN: 9783540687528
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Magnetism ; Materials ; Nanotechnology
    ISBN: 9783540495765
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Crystallography ; Engineering ; Particles (Nuclear physics) ; Surfaces (Physics)
    Edition: Third Edition
    ISBN: 9783540738862
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Analytical biochemistry ; Chemistry ; Chemistry, Physical organic ; Engineering
    ISBN: 9783540745983
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Keywords: Condensed matter ; Engineering ; Engineering design ; Materials ; Physics
    ISBN: 9780387345659
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Keywords: Chemistry, Physical organic ; Chemistry, inorganic ; Condensed matter ; Engineering ; Materials ; Structural control (Engineering)
    ISBN: 9781402034718
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Nanotechnology ; Surfaces (Physics)
    ISBN: 9783540343158
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Chemistry, inorganic ; Condensed matter ; Engineering ; Nanotechnology ; Surfaces (Physics)
    ISBN: 9783540368076
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Condensed matter ; Engineering ; Nanotechnology
    ISBN: 9783540375784
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Unknown
    Berlin, Heidelberg : Springer
    Keywords: Electronics ; Engineering ; Optical materials ; Physical optics
    ISBN: 9783540718925
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-12-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schiermeier, Quirin -- England -- Nature. 2008 Nov 27;456(7221):540-1. doi: 10.1038/nj7221-540a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19112617" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources/trends ; *Ecosystem ; Employment/statistics & numerical data ; Engineering ; Greenhouse Effect ; Industry/manpower ; Marine Biology/manpower/trends ; Oceanography/education/*manpower/*trends ; Oceans and Seas ; Petroleum ; Physics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2009-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tollefson, Jeff -- England -- Nature. 2009 Feb 19;457(7232):942-3. doi: 10.1038/457942b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Engineering ; *Federal Government ; Fishes ; *Greenhouse Effect ; History, 20th Century ; History, 21st Century ; Hobbies/history ; Marine Biology ; Physics ; *Research Personnel ; United States ; United States Government Agencies/*organization & administration ; Wine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teich, Al -- White, Wendy D -- New York, N.Y. -- Science. 2006 May 5;312(5774):657.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675666" target="_blank"〉PubMed〈/a〉
    Keywords: Engineering ; *Foreign Professional Personnel ; Humans ; *International Cooperation ; *Security Measures ; *Students ; Travel ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-14
    Description: We have used 19.9 million papers over 5 decades and 2.1 million patents to demonstrate that teams increasingly dominate solo authors in the production of knowledge. Research is increasingly done in teams across nearly all fields. Teams typically produce more frequently cited research than individuals do, and this advantage has been increasing over time. Teams now also produce the exceptionally high-impact research, even where that distinction was once the domain of solo authors. These results are detailed for sciences and engineering, social sciences, arts and humanities, and patents, suggesting that the process of knowledge creation has fundamentally changed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wuchty, Stefan -- Jones, Benjamin F -- Uzzi, Brian -- New York, N.Y. -- Science. 2007 May 18;316(5827):1036-9. Epub 2007 Apr 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Northwestern Institute on Complexity (NICO), Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431139" target="_blank"〉PubMed〈/a〉
    Keywords: *Authorship ; Bibliometrics ; Biomedical Research/statistics & numerical data/trends ; Databases as Topic/statistics & numerical data ; Engineering ; Humanities ; *Knowledge ; *Patents as Topic ; Publishing/statistics & numerical data/*trends ; Research/statistics & numerical data/*trends ; Sociology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-11-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bolon, Craig -- New York, N.Y. -- Science. 2008 Nov 21;322(5905):1187. doi: 10.1126/science.322.5905.1187a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023062" target="_blank"〉PubMed〈/a〉
    Keywords: Engineering ; Lawyers ; *Occupations ; Physicians ; Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Travis, John -- New York, N.Y. -- Science. 2008 Mar 28;319(5871):1750-2. doi: 10.1126/science.319.5871.1750.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369115" target="_blank"〉PubMed〈/a〉
    Keywords: *Awards and Prizes ; *Commerce ; *Diffusion of Innovation ; Drug Industry ; Engineering ; *Internet ; *Problem Solving ; Research ; *Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, John D -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):344-6. doi: 10.1126/science.1168085.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242, USA. jdlee@engineering.uiowa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372419" target="_blank"〉PubMed〈/a〉
    Keywords: *Attention ; *Automobile Driving ; Engineering ; Feedback ; Humans ; Risk ; *Safety ; *Technology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharjee, Yudhijit -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1722-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961635" target="_blank"〉PubMed〈/a〉
    Keywords: Authorship ; *Aviation ; Commerce ; *Editorial Policies ; Engineering ; International Cooperation ; Iran ; Publishing ; Security Measures ; *Societies, Scientific ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-02-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattick, John S -- Gagen, Michael J -- New York, N.Y. -- Science. 2005 Feb 11;307(5711):856-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia. j.mattick@imb.uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705831" target="_blank"〉PubMed〈/a〉
    Keywords: Computers ; Engineering ; Gene Expression Regulation ; Industry ; *Mathematics ; Software ; *Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):584.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068235" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conservation of Natural Resources ; *Ecosystem ; Engineering ; *Environment ; Geologic Sediments ; *Rivers ; *Salmon ; Trees ; Washington
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):582-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068234" target="_blank"〉PubMed〈/a〉
    Keywords: California ; Conservation of Natural Resources ; *Ecosystem ; Engineering ; *Environment ; *Fresh Water ; Plant Development ; Rivers ; Water Movements ; Water Supply
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, Briahna -- New York, N.Y. -- Science. 2006 Sep 8;313(5792):1382-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16959987" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Science Disciplines ; *Biomimetic Materials ; Biomimetics ; Computer Simulation ; Engineering ; *Fishes/physiology ; Interdisciplinary Communication ; Mathematics ; Pressure ; *Sense Organs/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alberts, Bruce -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1435. doi: 10.1126/science.1168790.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056942" target="_blank"〉PubMed〈/a〉
    Keywords: Engineering ; *Government ; *Public Policy ; *Science ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2005-11-02
    Description: The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-12
    Description: Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-12
    Description: Development of Liquid Rocket Engines is expensive. Extensive testing at large scales usually required. In order to verify engine lifetime, large number of tests required. Limited Resources available for development. Sub-scale cold-flow and hot-fire testing is extremely cost effective. Could be a necessary (but not sufficient) condition for long engine lifetime. Reduces overall costs and risk of large scale testing. Goal: Determine knowledge that can be gained from sub-scale cold-flow and hot-fire evaluations of LRE injectors. Determine relationships between cold-flow and hot-fire data.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-12
    Description: Major Causes: Limited Initial Materials Properties. Limited Structural Models - especially fatigue. Limited Thermal Models. Limited Aerodynamic Models. Human Errors. Limited Component Test. High Pressure. Complicated Control.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-12
    Description: The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-12
    Description: Contents include the following: SLI initiated under NASA Research Announcement (NRA) 8-30. Strategic Objectives. Make spaceflight safer (1 in 10000 mission LOV). Make spaceflight cheaper ($1000/lb payload). Two prototype LOX/LH2 engine systems funded under Cycle-1 of NRA8-30. COBRA (Pratt & Whitney / Aerojet). RS-83 (Rocketdyne).
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-12
    Description: A) MSFC funded an internal study on Altitude Compensating Nozzles: 1) Develop an ACN design and performance prediction tool. 2) Design, build and test cold flow ACN nozzles. 3) An annular aerospike nozzle was designed and tested. 4) Incorporated differential throttling to assess Thrust Vector Control. B) Objective of the test hardware: 1) Provide design tool verification. 2) Provide benchmark data for CFD calculations. 3) Experimentally measure side force, or TVC, for a differentially throttled annular aerospike.
    Keywords: Spacecraft Propulsion and Power
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-12
    Description: It is well known that under some operating conditions, rocket engines (using solid or liquid fuels) exhibit unstable modes of operation that can lead to engine malfunction and shutdown. The sources of these instabilities are diverse and are dependent on fuel, chamber geometry and various upstream sources such as pumps, valves and injection mechanism. It is believed that combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system [1, 2]. Giammar and Putnam [3] performed a comprehensive study of noise generated by gasfired industrial burners and made several key observations; flow noise was sometimes more intense than combustion roar, which tended to have a characteristic frequency spectrum. Turbulence was amplified by the flame. The noise power varied directly with combustion intensity and also with the product of pressure drop and heat release rate. Karchmer [4] correlated the noise emitted from a turbofan jet engine with that in the combustion chamber. This is important, since it quantified how much of the noise from an engine originates in the combustor. A physical interpretation of the interchange of energy between sound waves and unsteady heat release rates was given by Rayleigh [5] for inviscid, linear perturbations. Bloxidge et al [6] extended Rayleigh s criterion to describe the interaction of unsteady combustion with one-dimensional acoustic waves in a duct. Solutions to the mass, momentum and energy conservation equations in the pre- and post-flame zones were matched by making several assumptions about the combustion process. They concluded that changes in boundary conditions affect the energy balance of acoustic waves in the combustor. Abouseif et al [7] also solved the one-dimensional flow equations, but they used a onestep reaction to evaluate the unsteady heat release rate by relating it to temperature and velocity perturbations. Their analysis showed that oscillations arise from coupling between entropy waves produced at the flame and pressure waves originating from the nozzle. Yang and Culick [8] assumed a thin flame sheet, which is distorted by velocity and pressure oscillations. Conservation equations were expressed in integral form and solutions for the acoustic wave equations and complex frequencies were obtained. The imaginary part of the frequency indicated stability regions of the flame. Activation energy asymptotics together with a one-step reaction were used by McIntosh [9] to study the effects of acoustic forcing and feedback on unsteady, one-dimensional flames. He found that the flame stability was altered by the upstream acoustic feedback. Shyy et al [10] used a high-accuracy TVD scheme to simulate unsteady, one-dimensional longitudinal, combustion instabilities. However, numerical diffusion was not completely eliminated. Recently, Prasad [11] investigated numerically the interactions of pressure perturbations with premixed flames. He used complex chemistry to study responses of pressure perturbations in one-dimensional combustors. His results indicated that reflected and transmitted waves differed significantly from incident waves.
    Keywords: Spacecraft Propulsion and Power
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XV-1 - XV-24; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-12
    Description: Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle interiors fabricated from carbon phenolic composite exhibit "ply lift" when hot fired. The composite surface is smooth when fabricated, but the individual plies separate and lift away from the surface when exposed to high temperature and high-pressure exhaust gas. It shows a cross section of a post-fired composite in which ply lift is evident as dark fissures. Surface charring is also visible as a darker band about 0.2 inches thick. Charring is normal, but ply lift is not desirable since the fissures could possibly initiate an abnormal exhaust path from the RSRM. The underlying mechanisms of ply lift are under investigation as part of the Shuttle Return-To-Flight Program.
    Keywords: Spacecraft Propulsion and Power
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XII-1 - XII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-12
    Description: When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.
    Keywords: Spacecraft Propulsion and Power
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXIV-1 - XXIV-7; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-11
    Description: In this paper, we will describe the electronic propulsion technologies of interest and our role in developing and interjecting these technologies into JPL missions.
    Keywords: Spacecraft Propulsion and Power
    Type: 2005 AIAA Joint Propulsion Conference; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This Final Report serves as an executive summary of the Prometheus Project's activities and deliverables from November 2002 through September 2005. It focuses on the challenges from a technical and management perspective, what was different and innovative about this project, and identifies the major options, decisions, and accomplishments of the Project team as a whole. However, the details of the activities performed by DOE NR and its contractors will be documented separately in accordance with closeout requirements of the DOE NR and consistent with agreements between NASA and NR.
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-11
    Description: A bismuth feed system was developed for the VHITAL Program to deliver 8-12 mg/s of bismuth vapor at a few Torr to the VHITAL-160. A carbon vaporizer developed to control vapor flow rates to the thruster.
    Keywords: Spacecraft Propulsion and Power
    Type: International Electric Propulsion Conference 2005
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This study has advanced state-of-the-art dishcarge modeling and revealed important aspects of discharge plasma processes.
    Keywords: Spacecraft Propulsion and Power
    Type: Joint Propulsion Conference
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-11
    Description: The power, Isp and thrust of ion thrusters are constrained by ther fixed grid gap in the ion accellerator, which limits performance and life to a limited range in Isp and thrust.
    Keywords: Spacecraft Propulsion and Power
    Type: 2005 AIAA Joint Propulsion Conference; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Most ongoing US activities related to space nuclear power and propulsion are sponsored by NASA. NASA-spons0red space nuclear work is currently focused on evaluating potential fission surface power (FSP) systems and on radioisotope power systems (RPS). In addition, significant efforts related to nuclear thermal propulsion (NTP) systems have been completed and will provide a starting point for potential future NTP work.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-12
    Description: This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.
    Keywords: Spacecraft Propulsion and Power
    Type: 2007 Space Nuclear Conference
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-12
    Description: With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used to get propellants off the ground to be burned later. A modem launch vehicle is usually able to put no more than 1.5%-3% of its total liftoff weight into low earth orbit.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-12
    Description: Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing. The advantages of this scheme are: 1) Because only a fraction of the power is processed through the dc-dc converter, the single- stage conversion efficiency is 94 to 98 percent; 2) Costly, high-efficiency dc-dc converters are not necessary for high end-to-end system efficiency; 3) The system is highly fault tolerant because the bypass connection will still deliver power if the dc-dc converter fails; and 4) The converters can easily be connected in parallel, allowing higher power systems to be built from a common building block. This new technology will be spaceflight tested in the Photovoltaic Regulator Kit Experiment (PRKE) on TRW's Small Spacecraft Technology Initiative (SSTI) satellite scheduled for launch in 1996. This experiment uses commercial dc-dc converters (28 to 15 Vdc) and additional control circuitry to regulate current to a battery load. The 60-W, 87- percent efficiency converters can control 180 W of power at an efficiency of 94 percent in the new configuration. The power density of the Photovoltaic Regulator Kit Experiment is about 200 W/kg.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The J-2 engine was unique in many respects. Technology was not nearly as well-developed in oxygen/hydrogen engines at the start of the J-2 project. As a result, it experienced a number of "teething" problems. It was used in two stages on the Saturn V vehicle in the Apollo Program, as well as on the later Skylab and Apollo/Soyuz programs. In the Apollo Program, it was used on the S-II stage, which was the second stage of the Saturn V vehicle. There were five J-2 engines at the back end of the S-II Stage. In the S-IV-B stage, it was a single engine, but that single engine had to restart. The Apollo mission called for the entire vehicle to reach orbital velocity in low Earth orbit after the first firing of the Saturn-IV-B stage and, subsequently, to fire a second time to go on to the moon. The engine had to be man-rated (worthy of transporting humans). It had to have a high thrust rate and performance associated with oxygen/hydrogen engines, although there were some compromises there. It had to gimbal for thrust vector control. It was an open-cycle gas generator engine delivering up to 230,000 pounds of thrust.
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 29-40, 115-124; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The ascent engine was the last one from the moon, and I want to focus on the idea of redundancy and teams in regard to the engine. By teams, I mean teamwork - not just within Rocketdyne. It was teamwork within Rocketdyne; it was teamwork within Grumman; it was teamwork within NASA. These were all important elements leading to the successful development of the lunar excursion module (LEM) engine. Communication, rapid response, and cooperation were all important. Another aspect that went into the development of the ascent engine was the integration of technology and of lessons learned. We pushed all the above, plus technology and lessons learned, into a program, and that led to a successful result. One of the things that I like to think about - again in retrospect - is how it is very "in" now to have integrated product and process teams. These are buzzwords for teamwork in all program phases. That s where you combine a lot of groups into a single organization to get a job done. The ascent engine program epitomized that kind of integration and focus, and because this was the mid- to late-1960s; this was new ground for Rocketdyne, Grumman, and NASA. Redundancy was really a major hallmark of the Apollo Program. Everything was redundant. Once you got the rocket going, you could even lose one of the big F-1 engines, and it would still make it to orbit. And once the first stage separated from the rest of the vehicle, the second stage could do without an engine and still make a mission. This redundancy was demonstrated when an early Apollo launch shut down a J-2 second-stage engine. Actually, they shut down two J-2 engines on that flight. Even the third stage, with its single J-2 engine, was backed up because the first two stages could toss it into a recoverable orbit. If the third stage didn't work, you were circling the earth, and you had time to recover the command module and crew. Remember how on the Apollo 13 flight, there was sufficient system redundancy even when we lost the service module. That was a magnificent effort. TRW Inc. really ought to be proud of their engine for that. (See Slide 2, Appendix I) We had planned for redundancy; we had landed on the moon. However, weight restrictions in the architecture said, "You can t have redundancy for ascent from the moon. You've got one engine. It s got to work. There is no second chance. If that ascent engine doesn't work, you re stuck there." It would not have looked good for NASA. It wouldn't have looked good for the country. There was a letter written that President Richard Nixon would read if the astronauts got stuck on the moon, expressing how sorry we were and so forth. It was a scary letter, really. The ascent engine was an engine that had to work. (See Slide 3, Appendix I).
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 89-97, 173-180; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: As we went through the program, what we determined, and what we all agreed on, was that the thrust coefficient (Cf) of the nozzle, after you get past a certain point, is really an engineering parameter. It s not a fundamental parameter that is going to be highly variable. Once we knew what the contour of the nozzle was, and once we knew what its characteristic was out to 2:1, we could calculate what the 48:1 thrust coefficient was going to be. In every case that we made a test, the calculation was precise. We weren't looking for a problem out at 48:1. Once we crushed the nozzle and said, "Yeah, we can land on the boulder," and once we had the thermal profile of that columbium nozzle, we did not require a lot of effort there. The real characterization was done in throttling over the 10:1 with the injector and controlling the mixture ratio on that - the whole head-end assembly - out to 2:1. I think everybody at NASA and Grumman agreed that flying like you test is great, particularly if you are using an aircraft engine. But, in this case, the thrust coefficient of the nozzle was not an issue. We had the tandem configuration of the service module, the command module, and the LEM sitting out there, and we were to fire the LEM. On Apollo 5, we were firing the LEM to show how it would work. There was a problem. I can t remember where the problem was, but something caused a problem before that engine had finished its burn. It was not in the engine, but there was some other problem, and NASA made a controlled shutdown. Then, they came to us and asked, "Hey, we re up there. We want to finish this test program. Is it okay if we restart that engine again in space with this tandem configuration?" We said, "As long as it has been more than forty minutes since you shut down, our analysis says that you will be okay in terms of the thermal characteristics of the inside of that chamber." They restarted it and pushed that system around in orbit on Apollo 5. It turned out, that when it came to Apollo 13, we went back into the record, and said, "Hey, we have pushed this system around up there on Apollo 5, and we have also restarted this tandem configuration." The requirements on Apollo 13 were to put it back into play. The spacecraft was out of free return to the earth at the time of the accident. It would not have come back. NASA said, "Okay, we ll use the descent engine to put the spacecraft in a free trajectory; it will go around the moon and be on free trajectory back to Earth." Then, as it came around the far side of the moon, the guys found out that they had an oxygen problem. As you remember, things were getting pretty bad in there. They said, "We ve got to get it back as fast as we can. Is it okay if we re-fire the engine? Now, we re in a free trajectory, so we want to put as much delta-v (or change in velocity) in as we can. Can we re-fire right now?" We said, "Yes, the data says it has been this period of time." We could re-fire the engine, run the rest of the duty cycle up as far as we needed while preserving enough fluids to make the final correction as the spacecraft got near Earth, and restart the engine. It was pretty fortuitous that we could give them those answers.
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 75-88, 153-172; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The general configuration of the SPS engine was 20,000 pounds of thrust, with a chamber pressure of 100 psi and specific impulse (Isp) of 314.5. The very large nozzle had an area ratio of 62.5:1 (exit area to throat area). The propellants were nitrogen tetroxide (also known as N2O4 and nitrous oxide) and A-50. A-50 was a hydrazine family fuel. Aerojet developed it for the Titan Missile Program when they went with Titan II, to store it in the launch silos. They wanted the highest performance they could get. N2H4 was just pure hydrazine, which doesn't take low temperature very well. In fact, it freezes about like water. We started adding unsymmetrical-dimethylhydrazine (UDMH) to the hydrazine until such time as it would meet the environmental specifications the Air Force needed for Titan II. It turned out it s roughly a fifty-fifty mix. We still had to be careful with that fuel because the two fluids didn't mix very well chemically. We had to spray the two fluids through some special nozzles to get them to emulsify with each other into a single fluid. If we ever got it too cold or froze it, the hydrazine separated back out. Then, if we tried to run the engine, things could go boom in the night. The inlet pressure was only 165 pounds per square inch absolute (psia), but we needed at least forty psi pressure drop across the injector just to get some kind of stable flow. It was a whole new game for some of us. We didn't have much supply pressure to work with. It had the aluminum injector to keep the weight down. That was a couple feet in diameter, and we didn't have a lot of propellant to cool it. In fact, we had to use both propellants to keep the injector cool. There were twenty-two ring channels in the injector. Specification required 750 seconds duration, or fifty engine restarts during a flight. There were several first flight things we accomplished with the engine. It was the first ablative thrust chamber of any size to fly. (See Slide 6, Appendix G) There were no liners in it. It was just straight ablative material. It took us a while to figure that out. It was a throat-gimbaled engine, and it was the first engine to fly with columbium (also known as niobium, used as an alloying element in steels and superalloys) in the nozzle.
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 61-74, 145-152; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Before I go into the history of F-1, I want to discuss the F-1 engine s role in putting man on the moon. The F-1 engine was used in a cluster of five on the first stage, and that was the only power during the first stage. It took the Apollo launch vehicle, which was 363 feet tall and weighed six million pounds, and threw it downrange fifty miles, threw it up to forty miles of altitude, at Mach 7. It took two and one-half minutes to do that and, in the process, burned four and one-half million pounds of propellant, a pretty sizable task. (See Slide 2, Appendix C) My history goes back to the same year I started working at Rocketdyne. That s where the F-1 had its beginning, back early in 1957. In 1957, there was no space program. Rocketdyne was busy working overtime and extra days designing, developing, and producing rocket engines for weapons of mass destruction, not for scientific reasons. The Air Force contracted Rocketdyne to study how to make a rocket engine that had a million pounds of thrust. The highest thing going at the time had 150,000 pounds of thrust. Rocketdyne s thought was the new engine might be needed for a ballistic missile, not that it was going to go on a moon shot.
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 17-28, 105-113; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The 70-pound SE-7 engine is very similar with its two valves, ablative material, a silicon carbide liner, a silicon carbide throat, and overall configuration. There were different wraps. One had a ninety-degree ablative material orientation. That is important because it caused problems with the SE-8, but not for this application. It was not overly stressed. It was a validation of the off-the-shelf application approach. There were two SE-7 engines located on the stage near the bottom. They had their own propellant tanks. That was the application. All it did was give a little bit of gravity by firing to push the propellants to the bottom of the tanks for start or restart. It was not a particularly complicated setup. (See Slides 6 and 7, Appendix F) What had we learned? This was a proven engine in a space environment. There weren't any development issues. Off-the-shelf seemed to work. There were no operational issues, which made the SE-7 very cost-effective. Besides NASA, the customer for this application was the Douglas Aircraft Company. Douglas decided the off-the-shelf idea was cost-effective. With the Gemini Program, the company was McDonnell Aircraft Corporation, which was part of the reason the off-the-shelf idea was applied to the Apollo. (See Slide 8, Appendix F) However, here are some differences between Apollo and Gemini vehicles. For one thing, the Apollo vehicle was really moving at high speed when it re-entered the atmosphere. Instead of a mere 17,000 miles per hour, it was going 24,000 miles per hour. That meant the heat load was four times as high on the Apollo vehicle as on the Gemini craft. Things were vibrating a little more. We had two redundant systems. Apollo was redundant where it could be as much as possible. That was really a keystone or maybe an anchor point for Apollo. We decided to pursue the off-the-shelf approach. However, the prime contractor was a different entity - the North American Space Division. They thought they ought to tune up this off-the-shelf setup. It was a similar off-the-shelf application, but at a higher speed. They wanted to improve it. What they wanted to improve was the material performance of silicon carbide. They were uncomfortable with the cracks they were seeing. They were uncomfortable with the cracks in the throat, and feeling that the environment was a little tougher, that maybe it was going to rattle, perhaps something would fall out, and they would have a problem. They wanted to eliminate the ceramic liner, and they wanted a different throat material. (See Slides 9 and 10, Appendix F) The Rocketdyne solutions were to replace silicon carbide material with a more forgiving ceramic material. Also, due to the multiple locations within the vehicle, the shape of the nozzles varied. Some nozzles were long, and some nozzles were short. We came up with a single engine design with variable nozzle extensions and configurations to fit particular vehicle locations. (See Slides 10 and 11, Appendix F)
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 53-60, 135-143; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: All the engines were both qualification and acceptance tested at Marquardt s facilities. After we won the Apollo Program contract, we went off and built two vacuum test facilities, which simulated altitude continuous firing for as long as we wanted to run an engine. They would run days and days with the same capability we had on steam ejection. We did all of the testing in both for the qualification and the acceptance test. One of them was a large ball, which was an eighteen-foot diameter sphere, evacuated again with a big steam ejector system that could be used for system testing; that s where we did the Lunar Excursion Module testing. We put the whole cluster in there and tested the entire cluster at the simulated altitude conditions. The lowest altitude we tested at - typically an acceptance test - was 105,000 feet simulated altitude. The big ball - because people were interested in what they called goop formation, which is an unburned hydrazine product migrating to cold surfaces on different parts of spacecraft - was built to address those kinds of issues. We ran long-life tests in a simulated space environment with the entire inside of the test cell around the test article, liquid nitrogen cooled, so it could act as getter for any of the exhaust products. That particular facility could pull down to about 350,000 feet (atmosphere) equivalent altitude, which was pushing pretty close to the thermodynamic triple point of the MMH. It was a good test facility. Those facilities are no longer there. When the guys at Marquardt sold the company to what eventually became part of Aerojet, all those test facilities were cut off at the roots. I think they have a movie studio there at this point. That part of it is truly not recoverable, but it did some excellent high-altitude, space-equivalent testing at the time. Surprisingly, we had very few problems while testing in the San Fernando Valley. In the early 1960s, nobody had ever seen dinitrogen tetroxide (N2O4), so that wasn't too big a deal. We really did only make small, red clouds. In all the hundreds of thousands of tests and probably well over one million firings that I was around that place for, in all that thirty-something years, we had a total of one serious injury associated with rocket engine testing and propellants. Because we were trying to figure out what propellants would really be good, we tried all of the fun stuff like the carbon tetrafluoride, chlorine pentafluoride, and pure fluorine. The materials knowledge wasn't all that great at the time. On one test, the fluorine we had didn't react well with the copper they were using for tubing, and it managed to cause another unscheduled disassembly of the facility. It was very serious. It's like one of those Korean War stories. The technician happened to be walking past the test facility when it decided to blow itself up. A piece of copper tubing pierced one cheek and came out the other. That was the only serious accident in all of the engines handled in all those years. Now, we did have a problem with the EPA later because they figured out what the brown clouds were about. We built a whole bunch of exhaust mitigation scrubbers to take care of engine testing in the daytime. In general, we operated the big shuttle (RCS) engine, the 870- pounder at nominal conditions; they scrubbed the effluents pretty well. If you operated that same 870-pound force engine at a level where you get a lot of excess oxidizer, yeah, there s a brown cloud. But, you know, it doesn't show up well in the dark. They did do some of that. But, that s gone; it was addressed one way or another. RELEASED -
    Keywords: Spacecraft Propulsion and Power
    Type: Remembering the Giants: Apollo Rocket Propulsion Development; 41-52, 125-134; NASA/SP-2009-4545
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-11
    Description: Planar laser-induced fluorescence visualisation is used to investigate nonuniformities in the flow of a hypersonic conical nozzle. Possible causes for the nonuniformity are outlined and investigated, and the problem is shown to be due to a small step at the nozzle throat. Entrainment of cold boundary layer gas is postulated as the cause of the signal nonuniformity.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center initiated baseline testing of ultracapacitors to obtain empirical data in determining the feasibility of using ultracapacitors for the Next Generation Launch Transportation (NGLT) Project. There are large transient loads associated with NGLT that require a very large primary energy source or an energy storage system. The primary power source used for this test was a proton-exchange-membrane (PEM) fuel cell. The energy storage system can consist of batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. NASA Glenn has a wealth of experience in ultracapacitor technology through the Hybrid Power Management (HPM) Program, which the Avionics, Power and Communications Branch of Glenn s Engineering Development Division initiated for the Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-ofthe- art power devices in optimal configurations for space and terrestrial applications. The appropriate application and control of the various advanced power devices (such as ultracapacitors and fuel cells) significantly improves overall system performance and efficiency. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-05
    Description: Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-05
    Description: A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-05
    Description: NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-05
    Description: The Forward Technology Solar Cell Experiment (FTSCE) is a space solar cell experiment built as part of the Fifth Materials on the International Space Station Experiment (MISSE-5): Data Acquisition and Control Hardware and Software. It represents a collaborative effort between the NASA Glenn Research Center, the Naval Research Laboratory, and the U.S. Naval Academy. The purpose of this experiment is to place current and future solar cell technologies on orbit where they will be characterized and validated. This is in response to recent on-orbit and ground test results that raised concerns about the in-space survivability of new solar cell technologies and about current ground test methodology. The various components of the FTSCE are assembled into a passive experiment container--a 2- by 2- by 4-in. folding metal container that will be attached by an astronaut to the outer structure of the International Space Station. Data collected by the FTSCE will be relayed to the ground through a transmitter assembled by the U.S. Naval Academy. Data-acquisition electronics and software were designed to be tolerant of the thermal and radiation effects expected on orbit. The experiment has been verified and readied for flight on STS-114.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-05
    Description: Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-05
    Description: The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.
    Keywords: Spacecraft Propulsion and Power
    Type: Aviation Week and Space Technology (ISSN 0005-2175); Volume 163; No. 2; 59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: A briefing on the propulsion system modification of the STS-114 Discovery is presented. June Malone, NASA Public Affairs, introduces the panel who consists of: Sandy Coleman, External Tank Project Manager, Neil Otte, External Tank Chief Engineer, and Tom Williams, Solid Rocket Booster, Deputy Project Manager. Neil Otte presents charts on new requirements for foam debris reduction on the external tank. He also presents charts describing the Forward Bipod Redesign, LO2 Feedline Bellows Location, LH2 Intertank Flange Location, and In-Flight Imagery. Tom Williams presents charts describing Solid Rocket Booster Activities and Return to Flight efforts.
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Mars has greatly intrigued scientists and the general public for many years because, of all the planets, its environment is most like Earth's. Many scientists believe that Mars once had running water, although surface water is gone today. The planet is very cold with a very thin atmosphere consisting mainly of CO2. Mariner 4, 6, and 7 explored the planet in flybys in the 1960s and by the orbiting Mariner 9 in 1971. NASA then mounted the ambitious Viking mission, which launched two orbiters and two landers to the planet in 1975. The landers found ambiguous evidence of life. Mars Pathfinder landed on the planet on July 4, 1997, delivering a mobile robot rover that demonstrated exploration of the local surface environment. Mars Global Surveyor is creating a highest-resolution map of the planet's surface. These prior and current missions to Mars have paved the way for a complex Mars Sample Return mission planned for 2003 and 2005. Returning surface samples from Mars will necessitate retrieval of material from Mars orbit. Sample mass and orbit are restricted to the launch capability of the Mars Ascent Vehicle. A small sample canister having a mass less than 4 kg and diameter of less than 16 cm will spend from three to seven years in a 600 km orbit waiting for retrieval by a second spacecraft consisting of an orbiter equipped with a sample canister retrieval system, and a Earth Entry Vehicle. To allow rapid detection of the on-orbit canister, rendezvous, and collection of the samples, the canister will have a tracking beacon powered by a surface mounted solar array. The canister must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the Satellite Orbit Analysis Program (SOAP).
    Keywords: Spacecraft Propulsion and Power
    Type: 16th Space Photovoltaic Research and Technology Conference; 238-241; NASA/CP-2001-210747/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-27
    Description: For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down-select iteration, and the final selection analysis. The knowledge base required for productive use of S4 consists of system design information and heritage experience together with a focus on components with health implications. The sensor suite down-selection is an iterative process for identifying a group of sensors that provide good fault detection and isolation for targeted fault scenarios. In the final selection analysis, a statistical evaluation algorithm provides the final robustness test for each down-selected sensor suite. NASA GRC has developed an approach to sensor data qualification that applies empirical relationships, threshold detection techniques, and Bayesian belief theory to a network of sensors related by physics (i.e., analytical redundancy) in order to identify the failure of a given sensor within the network. This data quality validation approach extends the state-of-the-art, from red-lines and reasonableness checks that flag a sensor after it fails, to include analytical redundancy-based methods that can identify a sensor in the process of failing. The focus of this effort is on understanding the proper application of analytical redundancy-based data qualification methods for onboard use in monitoring Upper Stage sensors.
    Keywords: Spacecraft Propulsion and Power
    Type: Responsive Access to Space Technology Exchange (RASTE); 19-23 May; Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-27
    Description: In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments
    Keywords: Spacecraft Propulsion and Power
    Type: Space Technology and Applications International Forum (STAIF) 2007 Conference; 12-15, Feb. 2007; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-27
    Description: This paper provides a summary of testing of Space Shuttle Main Engine (SSME) flowmeter bearings and cage material. These tests were con&cM over a several month period in 2004 at the Marshall Space Flight Center. The test program's primary objective was to compare the performance of bearings using the existing cage material and bearings using a proposed replacement cage material. In order to meet the test objectives for this program, a flowmeter test rig was designed and fabricated to measure both breakaway and running torque for a flowmeter assembly. Other test parameters,,such as motor current and shaft speed, were also recorded and provide a means of comparing bearing performance. The flowmeter and bearings were tested in liquid hydrogen to simulate the flowmeter's operating environment as closely as possible. Based on the results from this testing, the bearings with the existing cage material are equivalent to the bearings with the proposed replacement cage material. No major differences exist between the old and new cage materials. Therefore, the new cage material is a suitable replacement for the existing cage material.
    Keywords: Spacecraft Propulsion and Power
    Type: WTC2005-63299 , World Tribology Conference III; 12-16 Sept. 2005; Washington DC.; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...