ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects  (4)
  • Immunocytochemistry
  • pharmacokinetics
  • wheat
  • Springer-Verlag  (2)
  • Taylor and Francis  (1)
  • Tipografia Universitaria Catania  (1)
  • University of Patras, Greece
  • 2005-2009  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Mount Etna is a huge volcano in the Mediterranean basin and is located in the eastern part of Sicily. It is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. Volcanic volatiles and aerosol emitted into the atmosphere fall on the Earth’s surface as wet or dry deposition, and can influence the environment both at local and regional scale. To estimate the environmental impact of magma-derived trace metals and their depositions processes, bulk deposition samples have been collected approximately fortnightly, using a network of 5 rain gauges located at various altitudes on the upper flanks close to the summit craters, from April 2006 to December 2007. Samples were analyzed for the main chemicalphysical parameters (electric conductivity and pH) and for major and trace elements concentrations. The data obtained clearly show that the volcanic contribution is always prevailing in the sampling site closest to the summit craters (∼1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanogenic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction), after an ash deposition event high concentration of lithophiles elements (Si, Al, Fe, Ti) have been measured. Sulphur, Chlorine and Fluorine, represent the main constituents that characterize the volcanic contribution in the bulk deposition on Mt. Etna, although high concentrations of many trace elements (Si, Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag) display, in the site most exposed to the volcanic emissions, average concentrations of about two orders of magnitude higher than those measured in the background site (Mount Intraleo).
    Description: Published
    Description: Catania, Italy
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The aim of this paper is to show the feasibility of evaluating the sulphur dioxide (SO2) flux emitted by Mt Etna volcano, using remotely sensed data of Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) in the thermal infrared (TIR). ASTER is one of the instruments on board the first Earth Observation System (EOS) satellite launched on 18 December 1999. To simulate the ASTER data, Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) images, acquired during the ‘Sicily ’97’ campaign, were used. The SO2 column abundance maps shown in this paper have been obtained by means of a simple algorithm based on the split-window technique. The parameters of the algorithm were computed using Moderate Resolution Atmospheric Radiance and Transmittance Model (MODTRAN) simulations performed with atmospheric profiles acquired during MIVIS flights. The mean SO2 flux on 12 and 16 June 1997, obtained using the ASTER simulated images, results in 42 and 33 kg s−1 respectively; these values are in good agreement with the results obtained by the inversion procedure used by Teggi et al. (1999) applied to the MIVIS data and with the Correlation Spectrometer (COSPEC) measurements performed during the campaign by other teams.
    Description: Published
    Description: 1207–1218
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Remote sensing ; ASTER measurements ; SO2 retrieval ; MODTRAN RTM ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this paper, an algorithm is developed based on the split-window technique, to estimate the SO2 abundance in the plume of Mt. Etna volcano using the multispectral infrared and visible imaging spectrometer (MIVIS). The MIVIS data were remotely sensed in the thermal infrared (TIR) during the Sicily-1997 Campaign. In this study, the MODTRAN 3.5 code has been used to simulate the radiance at the sensor; the radiative transfer model was input along with the data of radio-sounding performed simultaneously with the MIVIS flight using a mobile radio-theodolite. From the SO2 map, derived from the MIVIS image, the SO2 flux along the axis of the plume was computed knowing the wind speed at the plume altitude. The SO2 flux is variable along the plume axis. The average SO2 flux (about 45 kg s–1 on 12 June and about 30 kg s–1 on 16 June) emitted from the vents is compared with the correlation spectrometer (COSPEC) measurements carried out by other teams (from the ground and from a light aircraft flying under the plume) during the MIVIS flight. Finally, by means of this algorithm it should be easier, with respect to the previously described procedure to monitor the SO2 flux of a specific volcano such as Mt. Etna.
    Description: Published
    Description: 328–337
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: MIVIS ; Remote sensins ; SO2 retrieval ; Split Window ; Volcanic gas emission ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: This study presents baseline data for future geochemical monitoring of the active Tacaná volcano– hydrothermal system (Mexico–Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500–2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal (T from 25.7°C to 63.0°C) HCO3–SO4 waters are thought to have formed by the absorption of a H2S/SO2–CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as −128 and −19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of −3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio (RA)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 RA, respectively). The L/S (5.9 ± 0.5) and (L + S)/M ratios (9.2 ± 0.7) for the same gases are almost identical to the ones calculated for gases in El Salvador, suggesting an enhanced slab contribution as far as the northern extreme of the Central American Volcanic Arc, Tacaná.
    Description: This study was financially supported by DGAPA UNAM #IN101706 and INGVPalermo.
    Description: Published
    Description: 319-335
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Tacaná volcano ; Fluid geochemistry ; Volcano–hydrothermal system ; Bubbling gases ; Fumaroles ; Isotopes ; Volcanic surveillance ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...