ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (8)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (5)
  • Società Geologica Italiana  (6)
  • Geological Society of America  (4)
  • FIST- Epitome vol. 2/2007
  • MDPI Publishing
  • Nature Publishing Group
  • 2005-2009  (11)
Collection
Years
Year
  • 1
    Publication Date: 2012-02-03
    Description: We investigated quantitatively the propagation of a reactivated strike-slip fault through a sedimentary cover. To this end we prepared five simplified analogue models that reproduce a chain with its frontal allochtonous wedge overrunning the foreland. The foreland/ chain deformation follows the reactivation of an inherited strike-slip fault cutting the foreland domain. The observation and quantification of the effects of this reactivation, in particular on the orogenic wedge front, provide new insight on the evolution of this type of tectonic setting. We placed special emphasis on quantifying the structural features observed in the models to (1) interpret the kinematics of the reactivated shear zone, and (2) put forward hypotheses on areas indirectly affected by the reactivated fault. The interpretation of the models was based on an integrated analysis of surface and subsurface data. The results show that the geological setting is strongly influenced by the presence of a reactivated preexisting lineament, that ultimately controls the development and pattern of newly-formed faults. Finally, we present and discuss two natural examples (in Italy Molise-Gondola shear zone, Southern Apennines, and Scicli-Ragusa line, Sicily) in view of the modeling results.
    Description: Published
    Description: 107-122
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Fault reactivation ; foreland ; orogenic wedge ; sandbox models ; quantitative analysis ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Southern Apulia (Adriatic foreland, Italy), has long been considered a «stable area» lying in between two active orogens, but in fact its tectonic framework is poorly known. To learn more about this topic, we carried out an original structural analysis on Pleistocene deposits. The results indicate that southern Apulia has been affected by mild but discernible brittle deformation throughout the Middle and Late Pleistocene. Joints prevail, whereas faults are rare and all characterized by small displacement. Horizontal extension dominates throughout the entire study area; the SW-NE to SSW-NNE direction is the most widespread. WNW-ESE extension prevails in the Adriatic side portion of the study area, but the dispersion of the measured plane directions is high, suggesting that the local strain field is not characterized by a strongly predominant trend. A Middle and Late Pleistocene, SW-NE to SSW-NNE–oriented maximum extension is not surprising for the study area, as it is compatible with most of the available geodynamic models, whereas the different state of deformation affecting the Adriatic side of the study area requires further investigations. We tentatively interpreted this anomaly as reflecting some regional variation of the general geodynamic frame, for instance as the farthest evidence of ongoing compressional deformation across the W-verging Albanide-Hellenide foldand- thrust belt.
    Description: Published
    Description: 33-46
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: active tectonics ; brittle deformation ; Pleistocene ; Salento ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Data from high-density seismic networks deployed between 2000 and 2007 in the north-central Apennines (Italy) yield unprecedented images of an active orogenic wedge. Earthquake foci from the northern Apennines define a Benioff zone deepening westward from the Adriatic foreland down to ~60 km depth below the chain. The seismicity shows that only the lowermost ~10 km of the Adriatic foreland crust is subducted, whereas the uppermost ~20 km is incorporated into the orogenic wedge. Farther west, an aseismic mantle with markedly negative P-wave-velocity (Vp) anomalies is interpreted as asthenosphere flowing toward an Adriatic slab in retrograde motion. Three crustal layers with different Vp and seismicity characteristics are imaged below the northern Apennines: an uppermost 10-km-thick fast layer affected by extensional faulting, a slow layer with diffuse seismicity down to ~15 km depth, and a lowermost fast and aseismic layer resting directly above the asthenosphere. We interpret the latter layer as having formed by anhydrous crust undergoing granulitization, whereas trapped CO2 (either from the underlying granulites or from the subducting Adriatic crust) is inferred to have been responsible for both low Vp and diffuse seismicity in the middle crust. Trapped CO2 is released along the easternmost normal fault systems breaking the Apennine upper crust, consistent with geochemical and seismotectonic evidence. Compressive earthquakes at 20–25 km depth along the external front suggest offscraping of the subducting foreland crust and show that asthenospheric flow represents the primary source of ongoing shortening along the belt front.
    Description: Published
    Description: 95-104
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: reserved
    Keywords: Northern Apennines ; subduction ; orogenic wedge ; seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-03
    Description: The outermost, NE-verging fronts of the Northern Apennines (Italy) are overlain by a thick syntectonic sedimentary wedge filling up the basin beneath the Po Plain. Due to fast sedimentation rates and comparatively low tectonic rates, the fronts are generally buried. Evidence for their activity includes scattered historical and instrumental earthquakes and drainage anomalies controlled by growing buried anticlines. The largest earthquakes, up to Mw 5.8, are associated with active compression with a GPS-documented shortening rate 〈1 mm/a. We used geological, structural and morphotectonic data to draw a N-S–striking section between Bologna and Ferrara, aimed at analyzing whether and how the deformation is partitioned among the frontal thrusts of the Northern Apennines and identifying the potential sources of damaging earthquakes. We pointed out active anticlines based on the correspondence among drainage anomalies, historical seismicity and buried ramps. We also analyzed the evolution of the Plio-Quaternary deformation by modeling in a sandbox the geometry, kinematics and growth patterns of the thrust fronts. Our results (i) confirm that some of the main Quaternary thrusts are still active and (ii) highlight the partitioning of deformation in the overlap zones. We remark that the extent and location of some of the active thrusts are compatible with the location and size of the main historical earthquakes and discuss the hypothesis that they may correspond to their causative seismogenic faults.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Fold-and-thrust belt ; active tectonics ; seismogenic sources ; Po Plain ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Southern Apulia (Adriatic foreland, Italy), has long been considered a “stable area” lying in between two active orogens, but in fact its tectonic framework is poorly known. To learn more about this topic, we carried out an original structural analysis on Pleistocene deposits. The results indicate that southern Apulia has been affected by mild but discernible brittle deformation throughout the Middle and Late Pleistocene. Joints prevail, whereas faults are rare and all characterized by small displacement. Horizontal extension dominates throughout the entire study area; the SW-NE to SSW-NNE direction is the most widespread. WNW-ESE extension prevails in the Adriatic side portion of the study area, but the dispersion of the measured plane directions is high, suggesting that the local strain field is not characterized by a strongly predominant trend. A Middle and Late Pleistocene, SW-NE to SSW-NNE– oriented maximum extension is not surprising for the study area, as it is compatible with most of the available geodynamic models, whereas the different state of deformation affecting the Adriatic side of the study area requires further investigations. We tentatively interpreted this anomaly as reflecting some regional variation of the general geodynamic frame, for instance as the farthest evidence of ongoing compressional deformation across the W-verging Albanide-Hellenide foldand- thrust belt.
    Description: Study supported by a MIUR-COFIN 2004 Project (Bari RU: G. Mastronuzzi resp.; Lecce RU: P. Sansò resp.) and by the Project S2 funded in the framework of the 2004-2006 agreement between the Italian Department of Civil Protection and INGV (Research Units 2.4 and 2.11).
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: active tectonics ; brittle deformation ; Pleistocene ; Salento ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-03
    Description: In September 2002, a series of tectonic earthquakes occurred north of Sicily, Italy, followed by three events of volcanic unrest within 150 km. On October 28, 2002, Mt. Etna erupted; on November 3, 2002, submarine degassing occurred near Panarea Island; and on December 28, 2002, Stromboli Island erupted. All of these events were considered unusual: the Mt. Etna NE-rift eruption was the largest in 55 yr, the Panarea degassing was one of the strongest ever detected there, and the Stromboli eruption, which produced a landslide and tsunami, was the largest effusive eruption in 17 yr. Here, we investigate the synchronous occurrence of these clustered unrest events, and develop a possible explanatory model. We compute short-term earthquake-induced dynamic strain changes and compare them to long-term tectonic effects. Results suggest that the earthquake-induced strain changes exceeded annual tectonic strains by at least an order of magnitude. This agitation occurred in seconds, and may have induced fluid and gas pressure migration within the already active hydrothermal and magmatic systems.
    Description: In press
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: earthquake trigger ; magma and gas eruptions ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This paper presents the interpretation of a set of seismic reflection profiles, crossing the Auletta, Diano and Agri basins, in the axial zone of the Southern Apennines. Seismic data reveal that the genesis and evolution of the investigated basins have been controlled possibly since Late Pliocene by a system of NW-SE trending, normal faults, bordering the basins, and related to SW-NE extension, still active in this region, as indicated by seismological (earthquake focal mechanisms), geological (stress indicators, active fault patterns) and geodetic data.
    Description: Published
    Description: 47-56
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Southern Apennines ; Intermountain basins ; seismotectonics ; seismic reflection profiles ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Fissure eruptions may provide important information on the shallow propagation of dikes at volcanoes. Somma-Vesuvius (Italy) consists of the active Vesuvius cone, bordered to the north by the remnants of the older Somma edifice. Historical chronicles are considered to define the development of the 37 fissure eruptions between A.D. 1631 and 1944. The 1631 fissure, which reopened the magmatic conduit, migrated upward and was the only one triggered by the subvertical propagation of a dike. The other 25 fissure eruptions migrated downward, when the conduit was open, through the lateral propagation of radial dikes. We suggest two scenarios for the development of the fissures. When the summit conduit is closed, the fissures are fed by vertically propagating dikes. When the summit conduit is open, the fissures are fed by laterally propagating dikes along the volcano slopes. Consistent behaviors are found at other composite volcanoes, suggesting a general application to our model, independent of the tectonic setting and composition of magma. At Vesuvius, the historical data set and our scenarios are used to predict the consequences of the emplacement of fissures after the opening of the conduit. The results suggest that, even though the probability of opening of vents within the inhabited south and west slopes is negligible, the possibility that these are reached by a lava flow remains significant.
    Description: Published
    Description: 673-676
    Description: reserved
    Keywords: fissures ; dike propagation ; conduit ; Vesuvius ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 308433 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The Archean western Superior province in Canada is the type area for proposed Archean plate tectonics. Seismic images from this region provide direct evidence for assembly of the craton by terrane accretion and for a large slab of remnant oceanic crust preserved at the base of the crust. This slab, with inferred garnet amphibolite composition, adds a critical piece of evidence to previous suggestions that Archean subduction was at a shallow angle and that some Neoarchean tonalite-trondhjemite-granodiorite suites, distinct from most modern-day suprasubduction magmas, are melts primarily derived directly from subducted slabs.
    Description: LITHOPROBE, Queen's University, Geological Survey of Canada
    Description: Published
    Description: 997–1000;
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Archean ; teconics ; seismic ; subduction ; accretion ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The influence of the structural setting of mountain slopes on the evolution of large scale gravitational deformations
    Description: Published
    Description: Rimini
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: structural setting of mountain slope ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Because of the close similarity of some Italian and Mediterranean tectonic situations to the East Asia tectonics – arcs, trenches, Wadati- Benioff zones, volcanic and seismic activities, and a typical horizontal bending of the alleged lithospheric slab –, many clues are examined in search of new interpretations of the Mediterranean geological and observational evidence, with the aim of finding solutions that are exportable to the problems of the circumpacific arc-trench zones. The facts coming from surface geology, magmatism, geochemistry, different method tomographies, etc., are at variance with the alleged Africa-Eurasia convergence. The clues for rifting prevail over those for compression, and many tectonic situations previously interpreted as due to plate collisions, are associated to or mixed to rifting evidence. The proposal is put forward that uprising of mantle material wedges between two separating lithospheric plates could be a new working hypothesis. On an expanding Earth the region interposed between Eurasia and Africa has always had a smaller latitudinal extension with respect to the large Paleo Tethys and Neo Tethys appearing on constant- radius paleogeographical reconstructions. It is then possible, in the expanding Earth view, also to identify as phases of opening the Paleo Tethys and Neo Tethys currently alleged ‘closure’, which has added to the Proterozoic nuclei the Variscan and Alpine terranes respectively. These phases and their orogens have to be considered as extensional phases, and the added terranes of African provenance (e.g. the Adriatic fragment) should be regarded as fragments left behind as continental Africa moved away. In this sense, considering the ongoing process of opening as having Proterozoic origin, it is possible to speak of the Mediterranean as a slowly nascent ocean, but also – paradoxically – as a very old ocean.
    Description: Published
    Description: 129-147
    Description: open
    Keywords: Continental and oceanic deep structures, ; Wadati-Benioff zones, expanding Earth. ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5190215 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...