ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (2)
  • Computational seismology  (1)
  • Blackwell Publishing Ltd  (2)
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • Annual Reviews
  • 2005-2009  (3)
Collection
Years
  • 2005-2009  (3)
Year
  • 1
    Publication Date: 2017-04-04
    Description: Most of the ancient town of Tindari (NE, Sicily) was settled on a plateau the most surficial layer of which was made of unconsolidated material. Ongoing excavations at the archaeological site at Tindari uncovered a large portion of the decumanus which suffered deformations preliminarily assigned to coseismic effects. An analysis of the local dynamic response through the simulation of strong seismic shaking to the bedrock and modelling of spectral ratios of the bedrock-soft soil was carried out to verify the susceptibility of superficial terrains of the promontory to coseismic deformations. To perform this simulation the finite element method (FEM) was used. Four accelerometric recordings of three earthquakes of medium-high magnitude, recorded on rocky sites, were chosen to simulate the seismic shaking, using a constitutive law for the materials composing the promontory layers both of linear-elastic type and of elastoplastic type. The analysis of the linear-elastic field allowed the definition of the frequencies for which the spectral ratios of the accelerations recorded the highest amplifications; in particular the frequency range 31.5–37.2 Hz can be combined with deformation of the paved floor of the decumanus. The analysis in the elastoplastic field highlighted the zones of promontory more susceptible to suffer plasticization process. The results show that the topmost layer of the decumanus is the most susceptible to suffer plasticization. Therefore, the performed analysis lends greater support to the hypothesis that the deformations were produced by seismic shaking.
    Description: Published
    Description: 213-222
    Description: 3.10. Sismologia storica e archeosismologia
    Description: JCR Journal
    Description: reserved
    Keywords: Fourier analysis ; Elasticity and anelasticity ; Earthquake ground motions ; Site effects ; Computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-03
    Description: We analyse P-wave traveltimes for the Mediterranean area, using both teleseismic and regional arrivals for shallow earthquakes reported in the Bulletins of the International Seismological Centre. We model delays between pairs of 0.5° × 0.5° cells, obtaining a detailed representation of the P traveltime heterogeneities. Examination of these anomalies shows the clear presence of geographically coherent patterns—consistent with known geological features—due to significant structure in the upper mantle. We present a scheme, based on an empirical heterogeneity correction (EHC) to P-wave traveltimes, to improve earthquake location. This method provides similar benefits to those of a location procedure based on ray tracing in a 3-D model, but it is simpler and computationally more efficient. The definition of the traveltime heterogeneity model, being based on a statistical procedure, bypasses most of the critical points and possible instabilities involved in model inversion. EHC relocation, applied to Mediterranean earthquakes, allows one to predict about 70 per cent of the estimated signal due to heterogeneity and produces epicentral and origin time-shifts of, respectively, 4.22 km and 0.35 s (rms). From a synthetic experiment, in which we use the proposed algorithm to retrieve known source locations, we estimate that the rms improvement achieved by the EHC relocation over a simpler, standard, 1-D location is more than 20 per cent for both epicentral mislocation and origin time-shifts.
    Description: Published
    Description: 232-254
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake location ; Mediterranean ; P waves ; traveltime ; upper mantle ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2017-04-04
    Description: This paper is an innovative interpretation of the geodynamics of the active margins in a framework different from the plate tectonics one. Large scale subduction do not appears a necessary concept, if the detected new phenomena and correlations are considered. South American Pacific margin is found to be the key region to investigate in greater detail the active margins geodynamics.
    Description: The similarity of the vertical displacements shown by case-history extreme-magnitude earthquakes are scrutinised (Chile 1960, Alaska 1964, Sumatra 2004, . . . ). A common interpretation – an uprising of lithospheric material – can be found, which is supported by the irregularities of the hypocentres distribution along the Wadati-Benioff zones. In the case of major South American earthquakes, a volcanic eruptions-earthquakes correlation is recognisable. Further support to this interpretation is the displacement of the Earth’s instantaneous rotation pole – 3.0 mas (10 cm), observed at ASI of Matera, Italy – the seismic data (USGS)in the two days following the main shock, the geomorphologic data, and the satellite data of uplift/subsidence of the coasts (IGG) make possible a new interpretation of the Great Sumatran earthquake (26 December 2004) based on the second conjugate – nearly vertical – CMT fault plane solution. All this converges toward different causes of seismogenetic processes, strongly supporting a deep origin of disturbances, fluxes of materials leading to more or less sudden movements of masses, and phase changes, which lead to either earthquakes or silent-slow events in Wadati-Benioff zones. A reinterpretation of the geodynamics of the active margins and mountain building is proposed with a heuristic model that does not resort to large-scale subduction, but only to isostatic uplift of deep material intruding between two decoupling plates in a tensional environment. Concomitant phase changes toward less-packed lattice and buoyancy effect caused by the Clapeyron slope can help the extrusion of material over the m.s.l., constituting an orogenic process. The phenomena expected to occur in the model directly and harmoniously contribute to the building up of the surface geophysical and geomorphological features of the orogenic zones.
    Description: INGV
    Description: Published
    Description: 41-57
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: reserved
    Keywords: Wadati-Benioff zones ; Earthquakes and volcanoes correlations ; Geodynamics of active margins ; Expanding Earth ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...