ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (102,333)
  • American Meteorological Society  (83,344)
  • Canadian Science Publishing  (18,989)
  • Geosciences  (102,333)
Collection
Years
Journal
  • 1
    Publication Date: 2020-09-01
    Description: Efforts to date have not advanced Indigenous participation, capacity building and knowledge in Arctic environmental science in Canada because Arctic environmental science has yet to acknowledge, or truly practice decolonizing research. The expanding literature on decolonizing and Indigenous research provides guidance towards these alternative research approaches, but less has been written about how you do this in practice and the potential role for non-Indigenous research partners in supporting Inuit self-determination in research. This paper describes the decolonizing methodology of a non-Indigenous researcher partner and presents a co-developed approach, called the Sikumiut model, for Inuit and non-Indigenous researchers interested in supporting Inuit self-determination. In this model the roles of Inuit and non-Indigenous research partners were redefined, with Inuit governing the research and non-Indigenous research partners training and mentoring Inuit youth to conduct the research themselves. The Sikumiut model shows how having Inuit in decision-making positions ensured Inuit data ownership, accessibility, and control over how their Inuit Qaujimajatuqangit is documented, communicated, and respected for its own scientific merit. It examines the benefits and potential to build on the existing research capacity of Inuit youth and describes the guidance and lessons learned from a non-Indigenous researcher in supporting Inuit self-determination in research. Pinasuktaujut maannamut pivaallirtittisimangimmata nunaqarqaarsimajunik ilautitauninginnik, pijunnarsivallianirmik ammalu qaujimajaujunik ukiurtartumi avatilirinikkut kiklisiniarnikkut kanata pijjutigillugu ukiurtartumi avatilirinikkut kiklisiniarnikkut ilisarsisimangimmata, uvaluunniit piliringimmata issaktausimangittunik silataanit qaujisarnirmut. Uqalimaagait issaktausimangittunit silataanit ammalu nunaqarqaarsimajut qaujisarningit piviqartittikmata tukimuagutaujunnarlutik asiagut qaujisarnikkut, kisiani titirartauqattanginnirsaukmat qanuq pilirigajarmangaata ammalu ilautitauningit nunaqarqaarsimangittut qaujisarnirmut ikajurtuilutik Inuit nangminiq qaujisaqattarnirmut. Taanna titirarsimajuq uqausiqartuq issaktausimangillutik iliqusiujumik nunaqarqaarsimangittut qaujisartiujut ammalu saqittillutik ikajurtigiiklutik pigiartittinirmik, taijaujuq sikumiut aturtanga, inungnut ammalu nunaqarqaarsimangittunut qaujisartinut pijumajunut ikajurtuilutik Inuit nangminiq qaujisarnirmut. Tavani aturtaujumi piliriaksangit Inuit ammalu nunaqarqaarsimangittut qaujisartiujut tukisinarsititaullutik, Inuit aulattillutik qaujisarnirmik ammalu nunaqarqaarsimangittut qausartit ilinniartittillutik ammalu pilimmaksaillutik makkuktunik inungnik nangminiq qaujisarunnarniarmata. Sikumiunut aturtaujuq takuksaujuq qanuq Inuit aaqiksuijiullutik Inuit pisimajiuniarlutik tinngirartaujunik, takujaujunnarningit ammalu aulatauningit qanuq inuit qaujimajatuqangit titirartaukmangaata, tusaumajjutaukmangaata ammaluikpigijaulutik kiklisiniarnikkut atuutiqarninginnik. Takunangniujuq pivaalliutaujunnartunik ammalu pirurpalliagajartunik maanna qaujisarniujumik pijunnarsiqullugit makkuktut Inuit ammalu uqausiulluni tukimuagutaujunnartut ammalu ilitausimajut nunaqarqaarsimangittunit qausartinit ikajurtuilutik inuit nangminiq qaujisarnirmut.
    Electronic ISSN: 2368-7460
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-25
    Description: A total of 344 soil cores were taken in annually cropped fields of Alberta, Saskatchewan, Manitoba, and Ontario from 2011 to 2013 in areas where the field shapes, or obstacles within fields, required the driving pattern of farm operations to overlap. Soil nitrate-N concentrations in overlapping areas were 60% greater, soil Olsen-P concentrations were 23% greater, and pH was 0.5 units greater at 0–15 cm depth compared with non-overlapping areas, suggesting smaller nutrient use efficiency and potential for greater nutrient loss.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-25
    Description: Differences in soil water retention (SWR) characteristics between soil types and the factors driving those differences provide important information for land management, particularly in regions such as the Colombian Andes, which have limited water-storage infrastructure and where soils provide plant-available water and other ecosystem services. The objective of this study was to explore relationships between SWR and physical, chemical, and mineralogical properties of Andisols and Inceptisols through a case study of two watersheds in the Colombian Andes. This study identified a complex relationship between total carbon (TC), short-range order (SRO) minerals, and SWR. Both soil types had high SWR, with volumetric water content at permanent wilting point between 39% and 53%. Principal component analysis showed association of SWR with TC, SRO minerals, and % clay in both soil types. The Andisols of this study were coarse textured, allophanic (rich in allophane and imogolite — up to 17% in the B horizon), and with up to 15% TC in the A horizon. In contrast, the Inceptisols were fine textured (〉30% clay) and higher in ferrihydrite than the Andisols. The formation of organo-metallic complexes was observed in A horizons; however, TC was lower under pasture than forest in both soil types. The addition of organic matter to soils with SRO minerals, such as the soils of this study, may foster the formation of organo-metallic complexes, stabilize soil C, and enhance SWR. Consequently, both study sites may benefit from management practices that increase soil organic matter.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-26
    Description: A unique automated planetary boundary layer (PBL) retrieval algorithm is proposed as a common cross-platform method for use with commercially available ceilometers for implementation under the redesigned U.S. Environmental Protection Agency Photochemical Assessment Monitoring Stations program. This algorithm addresses instrument signal quality and screens for precipitation and cloud layers before the implementation of the retrieval methodology using the Haar wavelet covariance transform method. Layer attribution for the PBL height is supported with the use of continuation and time-tracking parameters, and uncertainties are calculated for individual PBL height retrievals. Commercial ceilometer retrievals are tested against radiosonde PBL height and cloud-base height during morning and late afternoon transition times, critical to air quality model prediction and when retrieval algorithms struggle to identify PBL heights. A total of 58 radiosonde profiles were used and retrievals for nocturnal stable layers, residual layers and mixing layers were assessed. Overall good agreement was found for all comparisons with one system showing limitations for the cases of nighttime surface stable layers and daytime mixing layer. It is recommended that nighttime shallow stable layer retrievals be performed with a recommended minimum height or with additional verification. Retrievals of residual layer heights and mixing layer comparisons revealed overall good correlations to radiosonde heights (correlation coefficients, r2, ranging from 0.89 – 0.96 and bias ranging from ~ -131 to +63 m, and r2 from 0.88 – 0.97 and bias from -119 to +101 m, respectively).
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-01
    Description: When cumulonimbus clouds aggregate, developing into a single entity with precipitation covering a horizontal scale of hundreds of kilometers, they are called mesoscale convective systems (MCSs). They account for much of Earth’s precipitation, generate severe weather events and flooding, produce prodigious cirriform anvil clouds, and affect the evolution of the larger-scale circulation. Understanding the inner workings of MCSs has resulted from developments in observational technology and modeling. Time–space conversion of ordinary surface and upper-air observations provided early insight into MCSs, but deeper understanding has followed field campaigns using increasingly sophisticated radars, better aircraft instrumentation, and an ever-widening range of satellite instruments, especially satellite-borne radars. High-resolution modeling and theoretical insights have shown that aggregated cumulonimbus clouds induce a mesoscale circulation consisting of air overturning on a scale larger than the scale of individual convective up- and downdrafts. These layers can be kilometers deep and decoupled from the boundary layer in elevated MCSs. Cooling in the lower troposphere and heating aloft characterize the stratiform regions of MCSs. As a result, long-lived MCSs with large stratiform regions have a top-heavy heating profile that generates potential vorticity in midlevels, thus influencing the larger-scale circulation within which the MCSs occur. Global satellite data show MCSs varying in structure, depending on the prevailing large-scale circulation and topography. These patterns are likely to change with global warming. In addition, environmental pollution affects MCS structure and dynamics subtly. Feedbacks of MCSs therefore need to be included or parameterized in climate models.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-01
    Description: We describe the historical evolution of the conceptualization, formulation, quantification, application, and utilization of “radiative forcing” (RF) of Earth’s climate. Basic theories of shortwave and longwave radiation were developed through the nineteenth and twentieth centuries and established the analytical framework for defining and quantifying the perturbations to Earth’s radiative energy balance by natural and anthropogenic influences. The insight that Earth’s climate could be radiatively forced by changes in carbon dioxide, first introduced in the nineteenth century, gained empirical support with sustained observations of the atmospheric concentrations of the gas beginning in 1957. Advances in laboratory and field measurements, theory, instrumentation, computational technology, data, and analysis of well-mixed greenhouse gases and the global climate system through the twentieth century enabled the development and formalism of RF; this allowed RF to be related to changes in global-mean surface temperature with the aid of increasingly sophisticated models. This in turn led to RF becoming firmly established as a principal concept in climate science by 1990. The linkage with surface temperature has proven to be the most important application of the RF concept, enabling a simple metric to evaluate the relative climate impacts of different agents. The late 1970s and 1980s saw accelerated developments in quantification, including the first assessment of the effect of the forcing due to the doubling of carbon dioxide on climate (the “Charney” report). The concept was subsequently extended to a wide variety of agents beyond well-mixed greenhouse gases (WMGHGs; carbon dioxide, methane, nitrous oxide, and halocarbons) to short-lived species such as ozone. The WMO and IPCC international assessments began the important sequence of periodic evaluations and quantifications of the forcings by natural (solar irradiance changes and stratospheric aerosols resulting from volcanic eruptions) and a growing set of anthropogenic agents (WMGHGs, ozone, aerosols, land surface changes, contrails). From the 1990s to the present, knowledge and scientific confidence in the radiative agents acting on the climate system have proliferated. The conceptual basis of RF has also evolved as both our understanding of the way radiative forcing drives climate change and the diversity of the forcing mechanisms have grown. This has led to the current situation where “effective radiative forcing” (ERF) is regarded as the preferred practical definition of radiative forcing in order to better capture the link between forcing and global-mean surface temperature change. The use of ERF, however, comes with its own attendant issues, including challenges in its diagnosis from climate models, its applications to small forcings, and blurring of the distinction between rapid climate adjustments (fast responses) and climate feedbacks; this will necessitate further elaboration of its utility in the future. Global climate model simulations of radiative perturbations by various agents have established how the forcings affect other climate variables besides temperature (e.g., precipitation). The forcing–response linkage as simulated by models, including the diversity in the spatial distribution of forcings by the different agents, has provided a practical demonstration of the effectiveness of agents in perturbing the radiative energy balance and causing climate changes. The significant advances over the past half century have established, with very high confidence, that the global-mean ERF due to human activity since preindustrial times is positive (the 2013 IPCC assessment gives a best estimate of 2.3 W m−2, with a range from 1.1 to 3.3 W m−2; 90% confidence interval). Further, except in the immediate aftermath of climatically significant volcanic eruptions, the net anthropogenic forcing dominates over natural radiative forcing mechanisms. Nevertheless, the substantial remaining uncertainty in the net anthropogenic ERF leads to large uncertainties in estimates of climate sensitivity from observations and in predicting future climate impacts. The uncertainty in the ERF arises principally from the incorporation of the rapid climate adjustments in the formulation, the well-recognized difficulties in characterizing the preindustrial state of the atmosphere, and the incomplete knowledge of the interactions of aerosols with clouds. This uncertainty impairs the quantitative evaluation of climate adaptation and mitigation pathways in the future. A grand challenge in Earth system science lies in continuing to sustain the relatively simple essence of the radiative forcing concept in a form similar to that originally devised, and at the same time improving the quantification of the forcing. This, in turn, demands an accurate, yet increasingly complex and comprehensive, accounting of the relevant processes in the climate system.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1986-12-01
    Description: Selected concentrations of ice crystal concentrations attributable to nucleation are compiled and summarized. The variability in the observations is discussed, and some conclusions related to natural precipitation formation and to seedability are discussed.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-04-01
    Description: The microphysical processes inside convective clouds play an important role in climate. They directly control the amount of detrainment of cloud hydrometeor and water vapor from updrafts. The detrained water substance in turn affects the anvil cloud formation, upper-tropospheric water vapor distribution, and thus the atmospheric radiation budget. In global climate models, convective parameterization schemes have not explicitly represented microphysics processes in updrafts until recently. In this paper, the authors provide a review of existing schemes for convective microphysics parameterization. These schemes are broadly divided into three groups: tuning-parameter-based schemes (simplest), single-moment schemes, and two-moment schemes (most comprehensive). Common weaknesses of the tuning-parameter-based and single-moment schemes are outlined. Examples are presented from one of the two-moment schemes to demonstrate the performance of the scheme in simulating the hydrometeor distribution in convection and its representation of the effect of aerosols on convection.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...