ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions  (9)
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (7)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress  (6)
  • American Geophysical Union  (18)
  • Wabern : Federal Office of Topography, Swiss Geological Survey
  • 2005-2009  (18)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Morphostructural data derived from Lidar (Light detection and ranging) surveys carried out on Mount Etna in 2005 and 2007 are compared with earlier aerophotogrammetric surveys in 1986 and 1998. These data render an unprecedentedly clear and quantitative image of morphostructural and volumetric changes that have affected the summit area of the volcano in the past two decades and permit the production of a new topographic map. The computed volume gain during the 1986–2007 period amounts to 112 ± 12 106 m3, at a mean annual rate of 5.3 106 m3. The comparison of the various surveys furthermore emphasizes the levels of accuracy and resolution of the different techniques applied. The Lidar technology used in 2007 allows production of high-precision maps in near-real-time, facilitating work concerning environmental hazards such as numerical simulations of, e.g., lava flows.
    Description: Published
    Description: L09305
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: Lidar ; Etna ; morphostructural changes ; lava flows ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The soil CO2 flux on Mt. Etna as recorded by the ETNAGAS network (an automatic system for measuring soil CO2 flux and meteorological parameters) started to increase strongly about 5 months prior to the onset of the 2004–2005 eruption and decreased a few months before the end of the eruption. Time delays in the occurrences of anomalies in soil CO2 flux at different sites in the geochemical network constrain the relationship between soil CO2 flux distributions and the tectonic framework of Etna volcano. The anomalies observed before the 2004–2005 eruption support the intrusion of new undegassed magma into the upper feeding system of the volcano (〈20 km below sea level). Magma subsequently rose slowly in the volcano conduits, thereby triggering the onset of the 2004–2005 eruption. The time delays in the occurrences of anomalies in combination with spectral analysis indicate the importance of tectonic and volcanotectonic structures in driving the ascent of deep gases within the crust. Moreover, greatest amplitude pulsations of the low-frequency components of the CO2 flux signals were correlated with the paroxystic activities of the 2004–2005 eruption. This study confirms that CO2 flux variation is a useful indicator for volcanic activity in the surveillance of the Mt. Etna and similar basaltic volcanoes.
    Description: Dipartimento Protezione Civile Ministero degli Interni
    Description: Published
    Description: B09206
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux ; Continuous monitoring of soil CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The eruption of Stromboli 2002-03, thanks to its complex scenario (flank instability, tsunami, necessity to rapidly upgrade monitoring networks) has provided an important opportunity to verify the response of the national system of civil protection to volcanic emergencies. In particular, it has tested and validated the model of collaboration, in use by Italian law, between the Department of Civil Protection and the National Institute of Geophysics and Volcanology. This synergy has enabled a better understanding and ability to tackle the eruptive crisis from its first stages, as well as implement monitoring systems both dependably and swiftly. In this work, the numerous first monitoring tasks carried out during the critical initial stages of the eruption are described, and the activities and planned action are reported over the course of the eruption that has made Stromboli one of the best monitored volcanoes not only in Italy but throughout the world.
    Description: Published
    Description: 387-398
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: eruptive crisis management ; Stromboli volcano ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Repeated phenomena of flank instability accompanied the 28 December 2002 to 21 July 2003 eruption of Stromboli volcano. The major episodes were two tsunamigenic landslides on 30 December 2002, 2 d after the volcano unrest. After 30 December, sliding processes remodeled the area affected by slope instability.We propose analyses of 565 sliding episodes taking place from December 2002 to February 2003.We try to shed light on their main seismic features and links with the ongoing seismic and volcanic activity using variogram analysis as well. A characterization of the seismic signals in the time and frequency domains is presented for 185 sliding episodes. Their frequency content is between 1 Hz and 7 Hz. On the basis of the dominant peaks and shape of the spectrum, we identify three subclasses of signals, one of which has significant energy below 2 Hz. Low-frequency signatures were also found in the seismic records of the landslides of 30 December, which affected the aerial and submarine northwestern flank of the volcano. Accordingly, we surmise that spectral analysis might provide evidence of sliding phenomena with submarine runouts.We find no evidence of sliding processes induced by earthquakes. Additionally, a negative statistical correlation between sliding episodes and explosion quakes is highlighted by variogram analysis. Variograms indicate a persistent behavior, memory, of the flank instability from 5 to 10 d.We interpret the climax in the occurrence rate of the sliding processes between 24 and 29 January 2003 as the result of favorable conditions to slope instability due to the emplacement of NW-SE aligned, dike-fed vents located near the scarp of the landslide area. Afterward, the stabilizing effect of the lava flows over the northwestern flank of the volcano limited erosive phenomena to the unstable, loose slope not covered by lava.
    Description: This work was supported financially by Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento per la Protezione Civile, project INGV-DPC V4/02.
    Description: Published
    Description: Q04022
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: rockfalls ; seismicity ; volcanoes ; volcano collapses ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-24
    Description: Measurements of 220Rn and 222Rn activity and of CO2 flux in soil and fumaroles were carried out on Mount Etna volcano in 2005–2006, both in its summit area and along active faults on its flanks. We observe an empirical relationship between (220Rn/222Rn) and CO2 efflux. The higher the flux of CO2, the lower the ratio between 220Rn and 222Rn. Deep sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. Excess 220Rn highlights sites of ongoing shallow rock fracturing that could be affected by collapse, as in the case of the rim of an active vent. Depletion both in 220Rn and in CO2 seems to be representative of residual degassing along recently active eruptive vents.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia (S.G., M.N.) and by the Dipartimento per la Protezione Civile (Italy), projects V3_6/28-Etna (M.N.) and V5/08-Diffuse degassing in Italy (S.G.), and NSF EAR 063824101 (K.W.W.S.).
    Description: Published
    Description: Q10001
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: radon ; thoron ; carbon dioxide ; rock stress ; gas transport ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The FLOWGO thermo-rheological model links heat loss, core cooling, crystallization, rheology and flow dynamics for lava flowing in a channel. We fit this model to laser altimeter (LIDAR) derived channel width data, as well as effusion rate and flow velocity measurements, to produce a best-fit prediction of thermal and rheological conditions for lava flowing in a ~1.6 km long channel active on Mt. Etna (Italy) on 16th September 2004. Using, as a starting condition for the model, the mean channel width over the first 100 m (6 m) and a depth of 1 m we obtain an initial velocity and instantaneous effusion rate of 0.3–0.6 m/s and ~3 m3/s, respectively. This compares with field- and LIDAR-derived values of 0.4 m/s and 1–4 m3/s. The best fit between model-output and LIDAR-measured channel widths comes from a hybrid run in which the proximal section of the channel is characterised by poorly insulated flow and the medial-distal section by well-insulated flow. This best-fit model implies that flow conditions evolve down-channel, where hot crusts on a free flowing channel maximise heat losses across the proximal section, whereas thick, stable, mature crusts of ′a′a clinker reduce heat losses across the medial-distal section. This results in core cooling per unit distance that decreases from ~0.02–0.015°C m−1 across the proximal section, to ~0.005°C m−1 across the medial-distal section. This produces an increase in core viscosity from ~3800 Pa s at the vent to ~8000 Pa s across the distal section.
    Description: Published
    Description: L01301
    Description: 3.6. Fisica del vulcanismo
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Kava Channel ; LIDAR ; thermal modeling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-03
    Description: The present-day stress field and its recent tectonic evolution in the Northern Apennines are reconstructed from borehole breakout analysis and focal mechanisms of crustal earthquakes and through the comparison with paleostress data. We have considered 86 wells for breakout analysis, with depths down to 6–7 km, 125 fault plane solutions of crustal earthquakes with M〈5 that occurred between 1988 and 1995 in the Northern and Central Apennines, and data of stronger earthquakes (M≤6) reported in other studies. The Tyrrhenian coastal region and the Apenninic belt are characterized by Shmin direction mainly trending NE-SW, with predominantly normal fault plane solutions. Along the outer front of the belt and the Adriatic offshore, Shmin is oriented NW-SE, and focal solutions are thrust or strike-slip, with maximum compression around NE-SW. Conversely, south of 43°N, breakouts evidence an orthogonal direction of horizontal compression (NW-SE), following the Southern Apennine trend, where a widespread NE-SW extension was recognized by previous investigations. Comparing these results to the recent tectonic evolution inferred from structural geology, we argue that the extension-compression pair, characteristic of the post-Tortonian evolution of the mountain belt, has been migrating in time from late Miocene to Present only in the northern sector of the arc, whereas the southern sector underwent a generalized extension, at least since middle Pleistocene. The striking correspondence between the active compression front and the region with evidence of a remnant subducted slab suggests that the migrating extension-compression pair has been controlled by progressive retreat of the slab.
    Description: Published
    Description: 108-118
    Description: reserved
    Keywords: stress ; borehole breakout ; tectonics ; Italy ; Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4086543 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-03
    Description: We have analyzed a 1500 m section at 3.9 to 5.4 km depth in a well of the southern Apennines, in order to better characterize the local active stress field and its correlation with tectonic structures. In this paper we present and discuss the results obtained from the comparison between breakouts and structural analysis from dipmeter data. We have found that the mean breakout direction is in agreement with the regional stress field that in this area is characterized by normal faulting (σ1 = σv) with NE-SW trending extension (horizontal σ3). Since the regional stress field is relatively well known in this region, we could detect and study some anomalous horizontal stress directions along the well, which we interpret as due to faults crosscutting the borehole. A detailed comparison between the breakout-inferred stress variations along depth and the faults identified by the dipmeter analysis reveals that some of these faults are associated with stress rotations, whereas others do not show any variation. The former can be interpreted either as “open” fractures or as faults that slipped recently with a near-complete stress drop, and the latter can be interpreted as “sealed” faults. In particular, we found that the main thrust faults of the area, mainly active in Pliocene times, appear to be sealed, whereas ∼E-W trending high-angle (normal?) faults determine strong stress rotations, suggesting that they are the main active structures of the region. This suggests that the study area is located in a transfer zone between the two main “Apenninic” (NW-SE trending) fault systems which ruptured in the last 150 years. This study has shown that a detailed analysis of the structural and geometrical characteristics of deep wells can be used for the reconnaissance of active structures. This approach can contribute to seismic hazard studies and, if carried out in an oil-bearing section, can help to maximize the hydrocarbon production.
    Description: Published
    Description: reserved
    Keywords: borehole breakout ; structural analysis in deep wells ; active faults ; Southern Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1487574 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-05-29
    Description: In January 2002 Mount Nyiragongo erupted foiditic lavas that covered the Southern volcano flank devastating vast urban areas. Lava flows originated from vents at different heights on the eruptive fissure displayed different velocities, from tens of km/h at the highest vents to slow-advance (0.1–1 km/h) in Goma town several km away from the volcano. To understand the different behavior of lava flows and their threat to the local population, we undertook a multidisciplinary study involving textural and rheological measurements and numerical simulations of heat transfer during magma ascent. We demonstrate that pre-eruptive cooling and syn-eruptive undercooling of magma determined the different rheological behavior of lava flows erupted from vents at diverse heights. Venting at lower altitudes is expected to produce viscous, slowly advancing lavas, although development of fluid, faster flows should be included among possible future eruptive scenarios.
    Description: Published
    Description: L06301
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Nyiragongo volcano ; textural and rheological measurements ; numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Postseismic relaxation is modeled for the Irpinia earthquake, which struck southern Italy in 1980. Our goal is to understand the mechanism of surface deformation due to stress relaxation in the deep portion of the crust-lithosphere system for a shallow normal fault source and to infer the rheological properties of the lithosphere in the extensional environment of peninsular Italy. The modeling is carried out within the framework of our normal mode viscoelastic theory at high spatial resolution in order to accurately resolve the vertical surface displacements for a seismic source. The slip distribution over the faults is first inverted from coseismic leveling data, the misfit between observed and modeled vertical displacements being minimized by means of the L2 norm. Slip distribution is then used within the viscoelastic model to invert for the viscosities of the lower crust and generally of the lithosphere. Inversion is based on leveling data sampled along three lines crossing the epicentral area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.
    Description: Published
    Description: 1-16
    Description: partially_open
    Keywords: Lithospheric rheology ; Irpinia earthquake ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 419 bytes
    Format: 623618 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: This paper reports the use of diffusive tubes in determining HF, HCl, and SO2 in the volcanic plume of Mount Etna in an attempt to highlight the potential of this method in studying volcanoes. In a first application a network of 18 diffusive tubes was installed on Etna flanks, aimed at evaluating the atmospheric dispersion of the volcanic plume on a local scale. Results showed a monotonic decrease in volatile air concentrations with distance from the craters (HF from 0.15 to 〈0.003 mmol m3, HCl from 2 to 〈0.01 mmol m3, and SO2 from 11 to 0.04 mmol m3), revealing the prevalently volcanic contribution. Matching of SO2/HCl and HCl/HF volatile ratios with contemporaneous measurements at the summit craters validated the use of diffusive tubes in tracing the chemical features of a volcanic plume from remote locations. A first tentative assessment of dry deposition rates of volcanogenic acidic gases was also made, yielding 2.5 74 t d1 (SO2), 0.6 17 t d1 (HCl), and 0.02 0.6 t d1 (HF) and revealing the potential environmental impact of gas emissions. In a second experiment, carried out during the recent October 2002 to February 2003 eruption of Etna, diffusive tubes provided a continuous record of the chemical composition of the eruptive plume from a safe distance of 1 km from the vents, thus considerably decreasing the risks involved in sampling. This highlighted a clear time decrease in SO2 concentrations and SO2/HCl ratios, which was interpreted as due to progressive exhaustion of volatile degassing and eruption energy.
    Description: Published
    Description: D21308
    Description: partially_open
    Keywords: volcanic plumes ; impact of volcanic emissions ; sulfur and halogens chemistry ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 597469 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The Neapolitan volcanic region is located within the graben structure of the Campanian Plain (CP), which developed between the western sector of the Appenine Chain and the eastern margin of the Tyrrhenian Sea. Two volcanic areas, spaced less than 10 km apart, are situated within the CP: the Somma-Vesuvius Volcano (SVV) and the Phlegraean Volcanic District (PVD). SVV is a typical stratovolcano, whereas PVD, including Campi Flegrei, Procida, and Ischia, is composed mostly of monogenetic centers. This contrast is due to different magma supply systems: a widespread fissure-type system beneath the PVD and a central-type magma supply system for the SVV. Volcanological, geophysical, and geochemical data show that magma viscosity, magma supply rate, and depth of magma storage are comparable at PVD and SVV, whereas different structural arrangements characterize the two areas. On the basis of geophysical data and magma geochemistry, an oblique-extensional tectonic regime is proposed within the PVD, whereas in the SVVarea a compressive stress regime dominates over extension. Geophysical data suggest that the area with the maximum deformation rate extends between the EW-running 41st parallel and the NE-running Magnaghi-Sebeto fault systems. The PVD extensional area is a consequence of the Tyrrhenian Sea opening and is decoupled from the surrounding areas (Roccamonfina and Somma-Vesuvius) which are still dominated by Adriatic slab dynamics. Spatially, we argue that the contribution of the asthenospheric wedge become much less important from W-NW to E-SE in the CP. The development of the two styles of volcanism in the CP reflects the different tectonic regimes acting in the area.
    Description: Published
    Description: 1-25
    Description: partially_open
    Keywords: Volcanic styles ; Tectonic setting ; Neapolitan volcanic region ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 428 bytes
    Format: 1655376 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: From December 2002 to July 2003, Stromboli volcano was characterized by a new effusive stage of eruption after a period of extraordinary strombolian activity. Signals recorded in two continuous monitoring stations during the eruption, which have already been presented in very recent papers, evidenced anomalies in the CO2 flux just before the onset of the eruption. A more detailed analysis carried out on the data subset acquired during the eruption, integrated by daily field observations of the scientific personnel working at the volcanological observatory in Stromboli, showed that CO2 flux and soil temperature are strictly related to volcanic events. Furthermore, the relative minima and maxima of the two parameters showed a strong correlation with wind speed and direction. This fact was especially true at the summit station, whereas at the coastal sites seasonal and meteorological effects masked the volcanic signal. The analysis of the wind data, particularly the relationships between wind speed and direction, air and soil temperature, and local circulation of atmospheric air masses revealed that during the eruption, in the summit area of Stromboli air movements were not only related to atmospheric circulation but were also significantly affected, and in certain cases caused, by volcanic activity. This conclusion was reached by observing several anomalies, such as the discrepancies in the wind direction between the two stations, higher air temperatures at the summit site, and inversion of direction for wind before and after the reopening of the conduit in a major explosion on 5 April 2003. The relationships found between volcanic activity, soil temperatures, CO2 fluxes, and wind speed and direction indicate that soil temperature measurements, in an open conduit volcano such as in this case, could be used to monitor the level of volcanic activity, along with CO2 flux. Furthermore, the possible volcanic origin of a peculiar type of air circulation identified in the summit area of Stromboli suggests that the separation between volcanic and atmospheric signals might not be obvious, requiring monitoring over a wide area, rather than a single location.
    Description: Published
    Description: Q12001
    Description: partially_open
    Keywords: carbon dioxide flux ; continuous monitoring ; soil temperature ; wind ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2636190 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Marked increases of CO2, H2 and He dissolved in thermal waters and changes in the dissolved carbon isotopic composition, were observed at Stromboli before the 28 December 2002 eruption and before a violent explosive paroxysm occurred on 5 April 2003. High anomalous CO2 flux values were recorded at the crater rim since a week before the eruption onset. The first anomalies in the thermal waters (dissolved CO2 amount) appeared some months before the eruption, when magma column rose at a very high level in the conduit. High peaks of dissolved H2 and He were recorded a few days before the paroxysm. Carbon isotopic composition indicates a magmatic origin of the dissolved CO2 whose increase, together with those of H2 and He, is attributed to an increasing output of deep gases likely produced by depressurization of a rising batch of a deep gas-rich magma, whose fragments have been emitted during the explosion.
    Description: Italian Civil Protection
    Description: Published
    Description: L07620
    Description: partially_open
    Keywords: Stromboli ; geochemical precursors ; CO2 flux ; pH ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 190819 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: A major explosion occurred at Stromboli on April 5 2003, being the most powerful event over a period of exceptional eruptive activity lasting from December to July. Here, we describe results from a network of diffusive tubes set up on the Stromboli’s summit area, aimed at a characterisation of plume composition (SO2, HCl, HF) prior to and after April 5. Data analysis revealed anomalous sulphur degassing 2–3 days before the event, when SO2/HCl ratios (9) significantly higher than those typical of quiescent degassing (1) were recorded. We interpret this exceptional plume signature as an evidence of S-rich magmas ascending in the shallow plumbing system, and propose high SO2/HCl as a potential precursor of major explosions on the volcano. The post-April 5 phase was characterised by time-decreasing SO2/HCl and SO2/HF plume ratios, ascribed to declining magma feeding as a prelude to restoration of ‘‘normal’’ Strombolian activity.
    Description: Published
    Description: L14607
    Description: partially_open
    Keywords: magmatic degassing ; paroxysm ; Stromboli ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 258508 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: We present an updated present-day stress data compilation for the Italian region and discuss it with respect to the geodynamic setting and the seismicity of the area. We collected and analyzed 190 new stress data from borehole breakouts, seismicity, and active faults and checked in detail the previous compilation [Montone et al., 1999]. Our improved data set consists of 542 data, 362 of which with a reliable quality for stress maps. The Italian region is well sampled, allowing the computation of constrained smoothed stress maps; for surrounding regions we added the World Stress Map 2003 release data. These maps depict the active stress conditions and, in the areas where the data are sparse, contribute to understand the relationship between active stress, past tectonic setting, and the seismicity of the study region. The new data are particularly representative along the northern Apennine front, from the Po Plain to offshore the Adriatic, and along the southern Tyrrhenian Sea, north of Sicily, where they point out a compressive tectonic regime. In the Alps both compressive and transcurrent regimes are observed. Our data also confirm that the whole Apenninic belt and the Calabrian arc are extending. Along the central Adriatic coast, changes from one stress regime to another are shown by abrupt variations in the minimum horizontal stress directions. Other gentler stress rotations, as, for instance, from the southern Apennines to the Calabrian arc or along the northern Apennines, follow the curvature of the arcs and are not associated to a stress regime variation.
    Description: Published
    Description: (B10410)
    Description: partially_open
    Keywords: active stress ; earthquakes ; borehole breakouts ; crust and lithosphere ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3452579 bytes
    Format: 711 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...