ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (12)
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (9)
  • Mt. Etna  (7)
  • American Geophysical Union  (23)
  • Nova Science Publishers, Inc., Hauppauge, NY
  • 2005-2009  (24)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: In this paper we provide a review of chemical and isotopic data gathered over the last three decades on Etna volcano's fluid emissions and we present a synthetic framework of their spatial and temporal relationships with the volcano-tectonic structures, groundwater circulation and eruptive activity. We show that the chemistry, intensity and spatial distribution of gas exhalations are strongly controlled by the main volcano-tectonic fault systems. The emission of mantle-derived magmatic volatiles, supplied by deep to shallow degassing of alkali-hawaiitic basalts, persistently occurs through the central conduits, producing a huge volcanic plume. The magmatic derivation of the hot gases is verified by their He, C and S isotopic ratios. Colder but widespread emanations of magma-derived CO2 and He also occur through the flanks of the volcano and through aquifers, mainly concentrated within two sectors of the south-southwest (Paternò-Belpasso) and eastern (Zafferana) flanks. In these two peripheral areas, characterized by intense local seismicity and gravity highs, magma-derived CO2 and helium are variably diluted by shallower crustal-derived fluids (organically-derived carbon, radiogenic helium). Thermal and geochemical anomalies recorded in groundwaters and soil gases within these two areas prior to the 1991-1993 eruption are consistent with an input of hot fluids released by ascending magma. Magmatic fluids interacted with the shallow aquifers, modifying their physico-chemical conditions, and led to strong variations of the soil CO2 flux. In addition to routine survey of the crater plume emissions, geochemical monitoring of remote soil gases and groundwaters may thus contribute to forecasting Etna's eruptions.
    Description: Published
    Description: 129-145
    Description: partially_open
    Keywords: Mt. Etna ; Geochemical surveillance ; Groundwaters ; Volcanic gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 2755693 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The recent eruption of Mount Etna (July 2001) offered the opportunity to analyze magma-derived volatiles emitted during preand syn-eruptive phases, and to verify whether their composition is affected by changes in volcanic dynamics. This paper presents the results of analyses of F, Cl and S in the volcanic plume collected by filter-packs, and interprets variations in the composition based on contrasting solubility in magmas. A Rayleigh-type degassing mechanism was used to fit the acquired data and to estimate Henryâ s solubility constant ratios in Etnean basalt. This model provided insights into the dynamics of the volcano. Abundances of sulfur and halogens in eruptive plumes may help predict the temporal evolution of an ongoing effusive eruption.
    Description: -Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 1559
    Description: partially_open
    Keywords: magmatic degassing ; acidic gases ; plume chemistry ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 275912 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Sulphur speciation in volcanic gases acts as a major redox buffer, and H2S/SO2 ratios represent a valuable indicator of magmatic conditions and interactions between magmatic and hydrothermal fluids. However, measurement of H2S/SO2 even by direct sampling techniques, is not straightforward. We report here on application of a small ultraviolet spectrometer for real-time field measurement of H2S and SO2 concentrations, using open-path and extractive configurations. The device was tested at fumaroles on Solfatara and Vulcano, Italy, in November 2002. H2S concentrations of up to 220ppmm(400 ppmv) were measured directly above the Bocca Grande fumarole at Solfatara, and H2S/SO2 molar ratios of 2 and 2.4, respectively, were determined for the ‘F11’ and ‘F0’ fumaroles at Vulcano. In comparison with other optical techniques capable of multiple volcanic gas measurements, such as laser and FTIR spectroscopy, this approach is considerably simpler and cheaper, with the potential for autonomous, sustained hightime resolution operation.
    Description: Published
    Description: 1652
    Description: partially_open
    Keywords: Remote monitoring ; Plume chemistry ; sulphur species ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 124998 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Soil temperature and total dissolved gas pressure(TDGP) data were recorded by two continuous monitoring stations on the volcano of Stromboli (Italy) between March and October 2006. During this period several TDGP and soil temperature anomalies, unrelated to external causes and characterized by a similar shape and occurrence time, were recorded. These anomalies were interpreted as transients due to changes in the degassing regime of the volcano,which was in turn related to changes in the partition ratio of the volcanic fluidsbetweenthe conduitandthe soil. In thesame period Stromboli experienced an anomalous phase of volcanic and tectonic activity. The close correlation found between volcano-tectonic activity and variations in anomalousmonitored parameters suggests that their continuous monitoring may be a useful tool for the surveillance of volcanic activity on the island.
    Description: Published
    Description: L08301
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Dissolved gases ; Soil temperature ; Total dissolved gas pressure ; Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The soil CO2 flux on Mt. Etna as recorded by the ETNAGAS network (an automatic system for measuring soil CO2 flux and meteorological parameters) started to increase strongly about 5 months prior to the onset of the 2004–2005 eruption and decreased a few months before the end of the eruption. Time delays in the occurrences of anomalies in soil CO2 flux at different sites in the geochemical network constrain the relationship between soil CO2 flux distributions and the tectonic framework of Etna volcano. The anomalies observed before the 2004–2005 eruption support the intrusion of new undegassed magma into the upper feeding system of the volcano (〈20 km below sea level). Magma subsequently rose slowly in the volcano conduits, thereby triggering the onset of the 2004–2005 eruption. The time delays in the occurrences of anomalies in combination with spectral analysis indicate the importance of tectonic and volcanotectonic structures in driving the ascent of deep gases within the crust. Moreover, greatest amplitude pulsations of the low-frequency components of the CO2 flux signals were correlated with the paroxystic activities of the 2004–2005 eruption. This study confirms that CO2 flux variation is a useful indicator for volcanic activity in the surveillance of the Mt. Etna and similar basaltic volcanoes.
    Description: Dipartimento Protezione Civile Ministero degli Interni
    Description: Published
    Description: B09206
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 flux ; Continuous monitoring of soil CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Active volcanoes produce inaudible infrasound due to the coupling between surface magmatic processes and the atmosphere. Monitoring techniques based on infrasound measurements have been proved capable of producing information during volcanic crises. We report observations collected from an infrasound network on Mt. Etna which enabled us to detect and locate a new summit eruption on May 13, 2008 when poor weather inhibited direct observations. Three families of signals were identified that allowed the evolution of the eruption to be accurately tracked in real-time. Each family is representative of a different active vent, producing different waveforms due to their varying geometry. Several competitive models have been developed to explain the source mechanisms of the infrasonic events, but according to our studies we demonstrate that two source models coexist at Mt. Etna during the investigated period. Such a monitoring system represents a breakthrough in the ability to monitor and understand volcanic phenomena.
    Description: Published
    Description: L05304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; infrasound ; eruption ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Volcanic gas emissions from fumaroles on the rim of La Fossa crater, Vulcano Island, Italy, were measured simultaneously using direct sampling (for H2O, CO2, total sulfur, HCl and HF), filter packs (for SO2, HCl, HF) and short-path active-mode FTIR measurements (for H2O, CO2,SO2, HCl and HF) in an intercomparison study in May 2002. The results show that Cl/F ratios were in good agreement between all three methods, and that FTIR and direct sampling determined comparable proportions of CO2 and H2O. Amounts of total S observed in direct sampling data were approximately double the amounts of SO2 measured with filter packs and FTIR. This difference could be attributed either to the fact FTIR and filter packs do not measure reduced sulfur species (e.g., H2S) or to sublimation of elemental S upon exit from the fumarole, after collection by direct sampling but before detection with FTIR and filter packs.
    Description: Published
    Description: L02610
    Description: partially_open
    Keywords: volcanic gas techniques ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 434088 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: A new method for extracting dissolved gases in natural waters has been developed and tested, both in the laboratory and in the field. The sampling device consists of a polytetrafluroethylene (PTFE) tube (waterproof and gas permeable) sealed at one end and connected to a glass sample holder at the other end. The device is pre-evacuated and subsequently dipped in water, where the dissolved gases permeate through the PTFE tube until the pressure inside the system reaches equilibrium. A theoretical model describing the time variation in partial gas pressure inside a sampling device has been elaborated, combining the mass balance and ‘‘Solution-Diffusion Model’’ which describes the gas permeation process through a PTFE membrane). This theoretical model was used to predict the temporal evolution of the partial pressure of each gas species in the sampling device. The model was validated by numerous laboratory tests. The method was applied to the groundwater of Vulcano Island (southern Italy). The results suggest that the new sampling device could easily extract the dissolved gases from water in order to determine their chemical and isotopic composition.
    Description: - European Social Fund.
    Description: Published
    Description: Q09005
    Description: partially_open
    Keywords: dissolved gases ; helium isotope ; PTFE membrane ; Vulcano Island ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 446781 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Ground-based measurements of volcanic sulfur dioxide fluxes are important indicators of volcanic activity, with application in hazard assessment, and understanding the impacts of volcanic emissions upon the environment and climate. These data are obtained by making traverses underneath the volcanic plume a few kilometers from source with an ultraviolet spectrometer, measuring integrated SO2 concentrations across the plume’s cross section, and multiplying by the plume’s transport speed. However, plume velocities are usually derived from ground-based anemometers, located many kilometers from the traverse route and hundreds of meters below plume altitude, complicating the experimental design and introducing large flux (can be 〉100%) errors. Here we present the first report of a single instrument capable of (accurate) volcanic SO2 flux measurements. This device records integrated SO2 concentrations and plume heights during traverses. Between traverses, two in-plume SO2 time series are measured from underneath the plume with the instrument, corresponding to zenith and inclined (user-specified angle from vertical in the direction of the volcano) fields of view, respectively. The distance between the points of intersection of the two views with the plume is found on the basis of the determined plume height, and the two signals are cross-correlated to determine the lag between them, enabling accurate derivation of the wind speed. We present flux data (with errors ±12%) obtained in this way at Mt. Etna during July 2004.
    Description: Published
    Description: Q02003
    Description: partially_open
    Keywords: DOAS ; volcanic SO2 emissions. ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 185006 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Description: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Description: Published
    Description: L02309
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...