ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (61)
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas  (44)
  • 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks  (28)
  • Elsevier  (61)
  • American Chemical Society
  • American Chemical Society (ACS)
  • 2005-2009  (61)
Collection
  • Articles  (61)
Source
Years
Year
  • 1
    Publication Date: 2020-10-29
    Description: We present new viscosity measurements for melts spanning a wide range of anhydrous compositions including: rhyolite, trachyte, moldavite, andesite, latite, pantellerite, basalt and basanite. Micropenetration and concentric cylinder viscometry measurements cover a viscosity range of 10−1 to 1012 Pas and a temperature range from 700 to 1650 °C. These new measurements, combined with other published data, provide a high-quality database comprising ∼800 experimental data on 44 well-characterized melt compositions. This database is used to recalibrate the model proposed by Giordano and Dingwell [Giordano, D., Dingwell, D. B., 2003a. Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349] for predicting the viscosity of natural silicate melts. The present contribution clearly shows that: (1) the viscosity (η)–temperature relationship of natural silicate liquids is very well represented by the VFT equation [log η=A+B/ (T−C)] over the full range of viscosity considered here, (2) the use of a constant high-T limiting value of melt viscosity (e.g., A) is fully consistent with the experimental data, (3) there are 3 different compositional suites (peralkaline, metaluminous and peraluminous) that exhibit different patterns in viscosity, (4) the viscosity of metaluminous liquids is well described by a simple mathematical expression involving the compositional parameter (SM) but the compositional dependence of viscosity for peralkaline and peraluminous melts is not fully controlled by SM. For these extreme compositions we refitted the model using a temperature-dependent parameter based on the excess of alkalies relative to alumina (e.g., AE/SM). The recalibrated model reproduces the entire database to within 5% relative error (e.g., RMSE of 0.45 logunits).
    Description: Published
    Description: 42–56
    Description: reserved
    Keywords: Viscosity ; Model ; Silicate melts ; Metaluminous ; Peraluminous ; Peralkaline ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 717294 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-29
    Description: Two sets of cooling experiments were run at atmospheric conditions for two anhydrous starting latitic and trachytic melts: 1) five cooling rates (25, 12.5, 3, 0.5, and 0.125 °C/min) between 1300° and 800 °C, and 2) a 11 0.5 °C/min cooling rate from 1300 °C with quench temperatures at 1200°, 1100°, 1000° and 900 °C. Trachytic run-products are invariably glassy. Nucleation is also suppressed in the latitic run-products at the three highest 13 cooling rates. Conversely, in the 0.5 and 0.125 °C/min runs, latites have a crystal content of 90 vol.%. The 14 phases are: plagioclase, clinopyroxene, glass and iron-bearing oxide (in order of abundance). The variable 15 quench temperatures, investigated by coupling experiments with Pt-wire and Pt- capsule sample containers inset 2,again did not produce crystallization of trachyte, whereas latitic samples are characterized by 10 vol.% of oxides, pyroxenes and plagioclase (in order of appearance), at temperature b1000 °C. Effects of (preferential) heterogeneous nucleation on sample holders, of superheating degree, and chemical species loss during cooling are absent for both melt compositions. The difference of solidification paths between these two silicate melts can be ascribed only to their small chemical differences. In comparison with calculated equilibrium conditions all the experimental latitic and trachytic run-products revealed strong kinetic effects, interpretable in the light of the nucleation theory. The glass- forming ability (GFA) of trachyte is higher, whereas their critical cooling rate (Rc) is lower (b0.125 °C/min), in comparison to latitic melts (RcN0.5 °C/min). The experimental results carried out in this study can be applied to lava flows and domes; trachytic lavas are able to flow for longer period with respect to latitic ones in a metastable condition. Glass-rich terrestrial lavas, i.e. obsidians, can be the result of sluggish nucleation kinetics due to the relative high polymerisation of evolved silicate melts.
    Description: Published
    Description: 91-101
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: crystallization ; lava flows ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-03
    Description: A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP),Italy, is presented together with 87Sr/86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/4He = 5.2 Ra and 87Sr/86Sr = 0.7056 in south Campania, to 3He/4He = 0.44 Ra and 87Sr/86Sr = 0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma–crust interaction. The 3He/4He–87Sr/86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (f30 Ma), can ingrowth in the mantle wedge account for the 3He/4He of the most radiogenic basalts.
    Description: - European Social Fund - Scottish Universities - Carnegie Trust for the Universities of Scotland.
    Description: Published
    Description: 295–308
    Description: partially_open
    Keywords: Roman Comagmatic Province ; fluid inclusions ; helium ; strontium ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 516427 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-15
    Description: Public works in progress in the Campanian plain north of Somma-Vesuvius recently encountered the remains of a prehistoric settlement close to the town of Afragola. Rescue excavations brought to light a Bronze Age village partially destroyed and buried by pyroclastic density currents (PDCs) of the Vesuvian Pomici di Avellino eruption (3.8 14C ka BP) and subsequently sealed by alluvial deposits. Volcanological and rockmagnetic investigations supplemented the excavations. Careful comparison between volcanological and archaeological stratigraphies led to an understanding of the timing of the damage the buildings suffered when they were struck by a series of PDCs. The first engulfed the village, located some 14 km to the north of the inferred vent, and penetrated into the dwellings without causing major damage. The buildings were able to withstand the weak dynamic pressure of the currents and deviate their path, as shown by the magnetic fabric analyses. Some later collapsed under the load of the deposits piled up by successive currents. Stepwise demagnetization of the thermal remanent magnetization (TRM) carried by potsherds embedded in the deposits yields deposition temperatures in the order of 260– 320 °C, fully consistent with those derived from pottery and lithic fragments from other distal and proximal sites. The fairly uniform temperature of the deposits is here ascribed to the lack of pervasive air entrainment into the currents. This, in turn, resulted from the lack of major topographical obstacles along the flat plain. The coupling of structural damage and sedimentological analyses indicates that the currents were not destructive in the Afragola area, but TRM data indicate they were still hot enough to cause death or severe injury to humans and animals. The successful escape of the entire population is apparent from the lack of human remains and from thousands of human footprints on the surface of the deposits left by the first PDCs. People were thus able to walk barefoot across the already emplaced deposits and escape the subsequent PDCs. The rapid cooling of the deposits was probably due to both their thinness and heat dissipation due to condensation of water vapour released in the mixture by magma–water interaction.
    Description: Published
    Description: 408–421
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: pyroclastic density current ; Bronze Age ; magnetic fabric ; deposition temperature ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-29
    Description: Viscosity of hydrous trachytes from the Agnano Monte Spina eruption (Phlegrean Fields, Italy) has been determined at 1.0 GPa and temperatures between 1200 and 1400 °C using the falling sphere method in a piston cylinder apparatus. The H2O content in the melts ranged from 0.18 to 5.81 wt.%. These high-temperature hydrous viscosities, along with previous ones determined at low-temperature (anhydrous and hydrous) and at high-temperature (anhydrous), at 1 atm on the same melt composition, represent the only complete viscosity data set available for K-trachyticmelts, frommagmatic to volcanic conditions.Viscosity decreases with increasing temperature andwater content in the melt.At constant temperature, viscosity appears to significantly decreasewhen the first wt.% ofH2Ois added.At H2O content higher than 3 wt.% the effect of temperature on viscosity is slight. Moreover, the deviation from Arrhenian behaviour towards greater “fragility” occurs with increasing water content. We combined low- and high-temperature viscosities (also from literature) and parameterized themby the use of a modified Vogel–Fulcher–Tamman equation, which accommodates the non-Arrhenian temperature dependence ofmelt viscosity.Moreover, in order to explore the extent to which the improved knowledge of Agnano Monte Spina trachyte viscosity may affect simulation of volcanic eruption at Phlegrean Fields, we included our viscosity models in numerical simulations of magma flow and fragmentation along volcanic conduits. These simulations show that the new parameterizations (and hence the new equations) give stronger predictions in the temperature interval relevant for magmatic and eruptive processes.
    Description: Published
    Description: 124-137
    Description: JCR Journal
    Description: reserved
    Keywords: Viscosity ; Trachyte ; Falling sphere method ; Vogel–Fulcher–Tamman equation ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-29
    Description: We have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.
    Description: Published
    Description: 93-108
    Description: partially_open
    Keywords: trachytic magma ; conduit flow ; eruption dynamics and numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 455753 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-17
    Description: The Neapolitan Yellow Tuff (NYT) is the product of the largest known trachytic phreatoplinian eruption. It covered an area larger than 1000 km2 with an estimated volume of about 40 km3 of erupted magma. During the course of the eruption a caldera collapsed within the previously formed Campanian Ignimbrite caldera. The resulting nested structure strongly influenced the following volcanic activity in the Campi Flegrei caldera. As previous dating of the NYT does not converge toward a unique result, a new set of 40Ar/39Ar age determinations has been carried out to better constrain the age of the eruption. Two variants of the 40Ar/39Ar dating method were applied to determine the age of the NYT eruption: (1) single-crystal total fusion (SCTF), on an individual phenocryst of feldspar, and (2) laser incremental heating (LIH), on bulk aliquots of feldspar phenocrysts. The results of the SCTF analyses show that the overall sample weighted mean age, derived from the conventional age calculation, is 15.6 ;0.8 ka. A weighted mean of the isochron age is 15.3 ;1.2 ka (2c), and has been assumed as the best indicator of age to be derived from the SCTF analyses. The LIH analyses results show that plateau ages vary from 15.4; 0.5 to 14.5; 0.5 ka. The overall weighted mean age of the isochron results is 14.9;0.4 ka (2c). This result has been assumed as the reference age for the NYT eruption, and agrees with the SCTF age. The new age obtained for the NYT deposits is of great relevance for the understanding of the evolution and the present state of the Campi Flegrei caldera and collocates the NYT in a crucial stratigraphical position to date the climatic oscillations that occurred between the Late Glacial and the Holocene.
    Description: Published
    Description: 157-170
    Description: partially_open
    Keywords: Neapolitan Yellow Tuff ; Campi Flegrei caldera ; 40Ar/39Ar dating method ; Geochronology ; Late Glacial ; Holocene ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 385386 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-27
    Description: The eruptive dynamics of volcanic systems are largely controlled by the viscosity of deforming magma. Here we report the results of a series of high-temperature, high-pressure experiments at conditions relevant for volcanic conduits (250 MPa confining pressure and temperature between 500 °C and 900 °C) that were undertaken to investigate the rheology of magma with crystal fractions varying between 0.5 and 0.8 (50 to 80 wt.%) at different strain-rate conditions. The experiments demonstrate that the presence of crystals increases the relative viscosity (ratio between the viscosity of the mixture and the viscosity of the melt phase) of magmas and additionally induces a decrease of the relative viscosity with increasing strain-rate (shear thinning, non-Newtonian behavior). The experimental results, combined with existing data at low crystal fractions (0–0.3), were used to develop a semi-empirical parameterization that describes the variations of relative viscosity for crystal fractions between 0 and 0.8 and accounts for the complex non-Newtonian rheology of crystal-bearing magmas. The new parameterization, included into numerical models simulating the magma ascent dynamics, reveals that strain-rate-dependent rheology significantly modifies the dynamic behavior inside volcanic conduits, particularly affecting the magma fragmentation conditions.
    Description: Published
    Description: 402-419
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: partially_open
    Keywords: magma rheology ; experimental deformation ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-17
    Description: Papandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772,only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano. At the present time, the activity is centered in the northeast crater with discharge of low temperature fumaroles and acid hot springs. Two types of acid fluids are emitted in the crater of Papandayan volcano: (1) acid sulfate-chloride waters with pH between 1.6 and 4.6 and (2) acid sulfate waters with pH between 1.2 and 2.5. The water samples collected after the eruption on January 2003 reveal an increase in the SO4/Cl and Mg/Cl ratios. This evolution is likely explained by an increase in the neutralization of acid fluids and tends to show that water–rock interactions were more significant after the eruption. The evolution in the chemistry observed since 2003 is the consequence of the opening of new fractures at depth where unaltered (or less altered) volcanic rocks were in contact with the ascending acid waters. The high δ34S values (9–17‰) observed in acid sulfatechloride waters before the November 2002 eruption suggest that a significant fraction of dissolved sulfates was formed by the disproportionation of magmatic SO2. On the other hand, the low δ34S (−0.3–7‰) observed in hot spring waters sampled after the eruption suggest that the hydrothermal contribution (i.e. the surficial oxidation of hydrogen sulfide) has increased.
    Description: Published
    Description: 276-286
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Papandayan volcano ; Indonesia ; phreatic eruption ; hydrothermal system ; fluid geochemistry ; advanced argillic alteration ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...