ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction  (411)
  • Magnetism
  • Quantum information
  • American Association for the Advancement of Science (AAAS)  (348)
  • Nature Publishing Group (NPG)  (63)
  • Dordrecht : Springer  (4)
  • American Physical Society (APS)
  • 2005-2009  (415)
Collection
Keywords
Publisher
Language
Years
Year
  • 1
    Keywords: Chemistry ; Engineering ; Magnetism ; Materials ; Optical materials
    ISBN: 9781402087967
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Condensed matter ; Magnetism ; Memory management (Computer science) ; Nanotechnology ; Surfaces (Physics)
    ISBN: 9781402063381
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Magnetism ; Microwaves ; Nanotechnology ; Superconductivity ; Surfaces (Physics) ; Weights and measures
    ISBN: 9781402051074
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Crystallography ; Magnetism ; Materials ; Medicine ; Superconductivity
    ISBN: 9781402068232
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pitsouli, Chrysoula -- Perrimon, Norbert -- England -- Nature. 2008 Jul 31;454(7204):592-3. doi: 10.1038/454592a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18668098" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; *Cell Proliferation ; Drosophila melanogaster/cytology/*growth & development ; Epithelial Cells/*cytology/metabolism ; Humans ; Intestinal Mucosa/cytology/*growth & development/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-08-15
    Description: Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus that can cause life-threatening disease in the fetus and the immunocompromised host. Upon attachment to the cell, the virus induces robust inflammatory, interferon- and growth-factor-like signalling. The mechanisms facilitating viral entry and gene expression are not clearly understood. Here we show that platelet-derived growth factor-alpha receptor (PDGFR-alpha) is specifically phosphorylated by both laboratory and clinical isolates of HCMV in various human cell types, resulting in activation of the phosphoinositide-3-kinase (PI(3)K) signalling pathway. Upon stimulation by HCMV, tyrosine-phosphorylated PDGFR-alpha associated with the p85 regulatory subunit of PI(3)K and induced protein kinase B (also known as Akt) phosphorylation, similar to the genuine ligand, PDGF-AA. Cells in which PDGFR-alpha was genetically deleted or functionally blocked were non-permissive to HCMV entry, viral gene expression or infectious virus production. Re-introducing human PDGFRA gene into knockout cells restored susceptibility to viral entry and essential viral gene expression. Blockade of receptor function with a humanized PDGFR-alpha blocking antibody (IMC-3G3) or targeted inhibition of its kinase activity with a small molecule (Gleevec) completely inhibited HCMV viral internalization and gene expression in human epithelial, endothelial and fibroblast cells. Viral entry in cells harbouring endogenous PDGFR-alpha was competitively inhibited by pretreatment with PDGF-AA. We further demonstrate that HCMV glycoprotein B directly interacts with PDGFR-alpha, resulting in receptor tyrosine phosphorylation, and that glycoprotein B neutralizing antibodies inhibit HCMV-induced PDGFR-alpha phosphorylation. Taken together, these data indicate that PDGFR-alpha is a critical receptor required for HCMV infection, and thus a target for novel anti-viral therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soroceanu, Liliana -- Akhavan, Armin -- Cobbs, Charles S -- England -- Nature. 2008 Sep 18;455(7211):391-5. doi: 10.1038/nature07209. Epub 2008 Aug 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosciences, California Pacific Medical Center Research Institute, Suite 220, 475 Brannan Street, San Francisco, California 94107, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18701889" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cytomegalovirus/*physiology ; Cytomegalovirus Infections/*metabolism/*virology ; Enzyme Activation/drug effects ; Gene Expression Regulation, Viral ; Humans ; Mice ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Protein Binding/drug effects ; Proto-Oncogene Proteins c-akt/metabolism ; Receptor, Platelet-Derived Growth Factor alpha/deficiency/genetics/*metabolism ; Signal Transduction ; Viral Envelope Proteins/metabolism ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-07-03
    Description: On activation by receptors, the ubiquitously expressed class IA isoforms (p110alpha and p110beta) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110alpha in growth factor and insulin signalling. To probe for distinct functions of p110beta, we constructed conditional knockout mice. Here we show that ablation of p110beta in the livers of the resulting mice leads to impaired insulin sensitivity and glucose homeostasis, while having little effect on phosphorylation of Akt, suggesting the involvement of a kinase-independent role of p110beta in insulin metabolic action. Using established mouse embryonic fibroblasts, we found that removal of p110beta also had little effect on Akt phosphorylation in response to stimulation by insulin and epidermal growth factor, but resulted in retarded cell proliferation. Reconstitution of p110beta-null cells with a wild-type or kinase-dead allele of p110beta demonstrated that p110beta possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110beta was required for G-protein-coupled receptor signalling triggered by lysophosphatidic acid and had a function in oncogenic transformation. Most strikingly, in an animal model of prostate tumour formation induced by Pten loss, ablation of p110beta (also known as Pik3cb), but not that of p110alpha (also known as Pik3ca), impeded tumorigenesis with a concomitant diminution of Akt phosphorylation. Taken together, our findings demonstrate both kinase-dependent and kinase-independent functions for p110beta, and strongly indicate the kinase-dependent functions of p110beta as a promising target in cancer therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jia, Shidong -- Liu, Zhenning -- Zhang, Sen -- Liu, Pixu -- Zhang, Lei -- Lee, Sang Hyun -- Zhang, Jing -- Signoretti, Sabina -- Loda, Massimo -- Roberts, Thomas M -- Zhao, Jean J -- P01 CA050661/CA/NCI NIH HHS/ -- P01 CA050661-200001/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-06A1/CA/NCI NIH HHS/ -- P50 CA089393/CA/NCI NIH HHS/ -- P50 CA089393-08S1/CA/NCI NIH HHS/ -- P50 CA090381/CA/NCI NIH HHS/ -- P50 CA090381-05/CA/NCI NIH HHS/ -- R01 CA030002/CA/NCI NIH HHS/ -- R01 CA030002-27/CA/NCI NIH HHS/ -- R01 CA134502/CA/NCI NIH HHS/ -- R01 CA134502-01/CA/NCI NIH HHS/ -- England -- Nature. 2008 Aug 7;454(7205):776-9. doi: 10.1038/nature07091. Epub 2008 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18594509" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Proliferation/drug effects ; *Cell Transformation, Neoplastic ; Epidermal Growth Factor/pharmacology ; Fibroblasts/cytology ; Glucose/*metabolism ; Glucose Intolerance/enzymology/genetics ; Homeostasis ; Humans ; Insulin/*metabolism/pharmacology ; Insulin Resistance/genetics ; Liver/enzymology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; PTEN Phosphohydrolase/deficiency/genetics ; Phosphatidylinositol 3-Kinases/deficiency/genetics/*metabolism ; Phosphorylation/drug effects ; Prostatic Neoplasms/enzymology/genetics/pathology ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernards, Rene -- England -- Nature. 2008 Sep 25;455(7212):479-80. doi: 10.1038/455479a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18818647" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Colorectal Neoplasms/genetics/*metabolism/pathology ; Cyclin-Dependent Kinase 8 ; Cyclin-Dependent Kinases/*metabolism ; Drosophila/genetics/metabolism ; E2F1 Transcription Factor/*metabolism ; Gene Expression Regulation, Neoplastic ; Humans ; Mice ; Retinoblastoma Protein/*metabolism ; Signal Transduction ; Wnt Proteins/metabolism ; beta Catenin/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-10-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinshenker, David -- Warren, Stephen T -- England -- Nature. 2008 Oct 2;455(7213):607-8. doi: 10.1038/455607a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18833269" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dopamine/*metabolism ; Fragile X Mental Retardation Protein/genetics/*metabolism ; Fragile X Syndrome/genetics/*metabolism/physiopathology ; G-Protein-Coupled Receptor Kinase 2/metabolism ; Gene Deletion ; Humans ; Mice ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-05-02
    Description: Half a century ago, the apical ectodermal ridge (AER) at the distal tip of the tetrapod limb bud was shown to produce signals necessary for development along the proximal-distal (P-D) axis, but how these signals influence limb patterning is still much debated. Fibroblast growth factor (FGF) gene family members are key AER-derived signals, with Fgf4, Fgf8, Fgf9 and Fgf17 expressed specifically in the mouse AER. Here we demonstrate that mouse limbs lacking Fgf4, Fgf9 and Fgf17 have normal skeletal pattern, indicating that Fgf8 is sufficient among AER-FGFs to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype; however, when we also removed different combinations of the other AER-FGF genes, we obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate P-D-patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the long-standing hypothesis that AER-FGF signalling is permissive rather than instructive for limb patterning. We discuss how a two-signal model for P-D patterning can be integrated with the concept of early specification to explain the genetic data presented here.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631409/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631409/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mariani, Francesca V -- Ahn, Christina P -- Martin, Gail R -- F32 HD008696/HD/NICHD NIH HHS/ -- F32 HD008696-01/HD/NICHD NIH HHS/ -- F32 HD008696-02/HD/NICHD NIH HHS/ -- F32 HD008696-03/HD/NICHD NIH HHS/ -- R01 HD034380/HD/NICHD NIH HHS/ -- R01 HD034380-05/HD/NICHD NIH HHS/ -- R01 HD034380-06/HD/NICHD NIH HHS/ -- R01 HD034380-07/HD/NICHD NIH HHS/ -- R01 HD034380-08/HD/NICHD NIH HHS/ -- R01 HD034380-09/HD/NICHD NIH HHS/ -- R01 HD34380/HD/NICHD NIH HHS/ -- England -- Nature. 2008 May 15;453(7193):401-5. doi: 10.1038/nature06876. Epub 2008 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94158-2324, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18449196" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning/*genetics/*physiology ; Bone and Bones/embryology/metabolism ; Cell Survival ; Female ; Fibroblast Growth Factor 8/deficiency/genetics/*metabolism ; Fibroblast Growth Factors/deficiency/genetics/*metabolism ; Homeodomain Proteins/genetics ; Limb Buds/cytology/*embryology/metabolism ; Male ; Mice ; Neoplasm Proteins/genetics ; Organ Size ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...