ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (45)
  • AGU  (34)
  • Springer  (11)
  • Emerald
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Public Library of Science
  • 2005-2009  (45)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: On two occasions, sudden gravity changes occurred simultaneously at two summit Etna’s stations, during local low-magnitude earthquakes. A systematic coupling between earthquakes inducing comparable maximum acceleration and displacement at the observation points and gravity steps is missing, implying (1) the non-instrumental nature of the steps and (2) the need for particular underlying conditions for the triggering mechanism(s) to activate. We review some of the volcanological processes that could induce fast underground mass redistributions, resulting in gravity changes at the surface. These processes involve bubbles and crystals present in the magma and require particular conditions in order to be effective as mass-redistributing processes. The gravity steps could be a geophysical evidence of the dynamical stress transfer between tectonic and magmatic systems at a local scale. Given the implications that these transfers may have on the volcanic activity, routine volcano monitoring should include the observation of fast gravity changes.
    Description: Published
    Description: L02301
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: gravity step ; dynamical stress transfer ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper we describe the experiences and results gained in the use of tiltmeters at Mt. Etna during the last twenty years. The tilt data represent a fundamental contribution to understanding of volcanic phenomena. Moreover, the tilt played an important role in analytic modelling, of the sources linked to the most important recent lateral eruptions. The tilt data also provided evidence of co-seismic variations for higher energy and shallower seismic events. We also discuss the marked variations that often occur over the entire volcano edifice without being associated with seismicity or eruptive activity. This work also analyses and discusses experiments conducted to verify the limitations of shallow borehole sensors. The main causes of noise are the thermo-elastic effects on the ground and the spurious effects on the sensor due to temperature variations. To this end, results of recent experiments to verify the theoretical filtering of thermal noise at depth and to examine the real thermal coefficients of the sensors through a patented instrument are discussed. Finally, results obtained from signal recordings, applied theoretical studies, experiments performed and technological advances have recently suggested new horizons for tilt monitoring through the development of innovative instrumentation. We describe the application of new technology for the detection of tilt by a long base fluid tiltmeter, installed in 1997, which is able to record very stable, high precision signals with very low noise, thus allowing more detailed investigation of the different phases of volcanic activity.
    Description: Published
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: reserved
    Keywords: Tiltmeter ; Modeling ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Five three-component broadband ocean bottom seismometers (OBSs) were deployed on the seafloor around the Aeolian Islands (Southern Tyrrhenian Sea). By comparing OBSs digital seismograms, we found a low-frequency seismicity recorded only at OBS05, the nearest seafloor station to Stromboli volcano. This seismicity appears in the form of a continuous seismic signal (tremor-like-signal) as well as a considerable number of shock-like events. We focused on recordings from OBS05 to verify their correlation with Stromboli volcanic activity. From the spectral analysis, we observed low-frequency events (LP events), superposed upon the continuous background noise (tremor). LP events and tremor, showing similar energy fluctuations and frequency content, appear to be produced by the same dynamic processes. We interpret this low-frequency seismicity as probably originating from a continuous uprising of gas bubbles from the deeper part of the Stromboli magmatic column. This could highlight the existence of a deeper source for low-frequency seismicity.
    Description: Published
    Description: L04305
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano-seismology ; low-frequency events ; tremor ; OBSs ; Stromboli (Southern Tyrrhenian Sea) ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Large variations of the CO2 flux through the soil were observed between November 2002 and January 2006 at Mt. Etna volcano. In many cases, the CO2 flux was strongly influenced by changes in air temperature and atmospheric pressure. A new filtering method was then developed to remove the atmospheric influences on soil CO2 flux and, at the same time, to highlight the variations strictly related to volcanic activity. Successively, the CO2 corrected data were quantitatively compared with the spectral amplitude of the volcanic tremor by cross correlation function, cross-wavelet spectrum and wavelet coherence. These analyses suggested that the soil CO2 flux variations preceded those of volcanic tremor by about 50 days. Given that volcanic tremor is linked to the shallow (a few kilometer) magma dynamics and soil CO2 flux related to the deeper (*12 km b.s.l.) magma dynamics, the “delayed similarity” between the CO2 flux and the volcanic tremor amplitude was used to assess the average speed in the magma uprising into the crust, as about 170–260 m per day. Finally, the large amount of CO2 released before the onset of the 2004–2005 eruption indicated a deep ingression of new magma, which might have triggered such an eruption.
    Description: In press
    Description: N/A or not JCR
    Description: reserved
    Keywords: Mt. Etna ; Soil CO2 flux ; Volcanic tremor ; Cross-wavelet spectrum ; Wavelet coherence ; Cross correlation function ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: A permanent automatic infrared (IR) station was installed at Solfatara crater, the most active zone of Campi Flegrei caldera. After a positive in situ calibration of the IR camera, we analyze 2175 thermal IR images of the same scene from 2004 to 2007. The scene includes a portion of the steam heated hot soils of Solfatara. The experiment was initiated to detect and quantify temperature changes of the shallow thermal structure of a quiescent volcano such as Solfatara over long periods. Ambient temperature results as the main parameter affecting IR temperatures while air humidity and rain control image quality. A geometric correction of the images was necessary to remove the effects of slow movement of the camera. After a suitable correction the images give a reliable and detailed picture of the temperature changes, over the period October 2004 – January 2007, which suggests origin of the changes were linked to anthropogenic activity, vegetation growth and to the increase of the flux of hydrothermal fluids in the area of the hottest fumaroles. Two positive temperature anomalies were registered after the occurrence of two seismic swarms which affected the hydrothermal system of Solfatara in October 2005 and October 2006. It is worth noting that these signs were detected in a system characterized by a low level of activity with respect to systems affected by real volcanic crisis where more spectacular results will be expected. Results of the experiment show that this kind of monitoring system can be a suitable tool for volcanic surveillance.
    Description: Published
    Description: B12206
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: partially_open
    Keywords: Termal Monitoring of Hydrothermal ; Activity ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Ground deformation data from GPS and differential synthetic aperture radar interferometry (DInSAR) techniques are analyzed to study the July–August 2001 Mount Etna eruption as well as the dynamics preceding and following this event. Five GPS surveys were carried out on the entire Mount Etna network or on its southeastern part, from July 2000 to October 2001. Five ERS-2 ascending passes and three descending ones are used to form five interferograms spanning periods from a month to 1 year, before and encompassing the eruption. Numerical and analytical inversions of the GPS and DInSAR data were performed to obtain analytical models for preeruptive, syneruptive and posteruptive periods. The deformation sources obtained were from the Mogi model: (1) pressure sources located beneath the upper western flank of the volcano, inflating before the eruption onset and deflating afterward; (2) tensile dislocations to model the intrusion of a N-S dike in the central part of the volcano; and (3) two sliding and two normal dislocations to model the eastern and southern flank dynamics. This study confirms that the lower vents of the eruption were fed by a magma stored at depth ranging from 9 to 4 km below sea level, as proposed from petrochemical and geophysical researches. The rising of the magma through the shallow crust started months before the eruption onset but accelerated on the last day; this study suggests that in the volcanic pile the path of the rising magma was driven by the volcano topography. The eastern sliding plane and the interaction between dike intrusion and flank instability have been better defined with respect to previous studies. The sliding motion abruptly accelerated with the dike intrusion, and this continued after the end of the eruption. The acceleration was accompanied by the propagation of the strain field toward the eastern periphery of the volcano.
    Description: We acknowledge the ‘‘Istituto Nazionale di Geofisica e Vulcanologia’’, the Italian ‘‘Dipartimento per la Protezione Civile’’ and the European Community (contract INGV-DPC UR V3_6/36 and VOLUME Project) for their economic contribution to this research. The SAR data are provided by ESA-ESRIN.
    Description: Published
    Description: B06405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Ground deformation ; GPS ; InSAR ; Mt. Etna ; Modelling ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: An accurate description of the geochemical system is presented here based on a review of scientific work performed during the past decade. The surface manifestations of the volcanic system of Stromboli have been investigated using several measuring techniques. Studying the chemical composition of the volcanic plume and of fumarolic emissions has provided information on magma degassing processes. The total fluxes of the emitted gases from both the plume and the soil were found to vary with changes in volcanic activity (from normal Strombolian activity to effusive and/or paroxysmal activity). Thermal water results from the interaction between volcanic gases, host rock, seawater and meteoric water and temporal changes observed in the chemical and the isotopic composition of the gases dissolved into thermal waters highlighted the rising of new magma batches. Combining modelling of gas-water-rock interactions with an understanding of the volcanic system allowed to identify preferential sampling sites and parameters for the geochemical monitoring of volcanic activity at Stromboli Island.
    Description: Unpublished
    Description: 16
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Water geochemistry ; Volcanic surveillance ; Stromboli ; Gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Geochemical surveillance has been carried out at Stromboli since 1999 using discrete and continuous monitoring of thermal waters and soil degassing. On 27 February 2007 a new eruption began which lasted until 2 April; it was characterized by effusive activity on the Sciara del Fuoco and also by a paroxistic event (15 March). This crisis represented an opportunity to refine the model developed previously and to improve our understanding of the relationship between the magmatic dynamics of the volcano and geochemical variations. The main aim of this research was to evaluate the level of criticality of the volcanic activity. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are herein presented. Furthermore, we propose a refined geochemical model of fluids circulation, including plume and summit fumarolic soil degassing. Noteworthy geochemical signals of volcanic unrest were also clearly identified (before, during and after the effusive activity) in the degassing plume as well as in the degassing from the soil at the summit.
    Description: Published
    Description: San Francisco, CA,USA
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: CO2 flux ; Stromboli volcano ; SO2 Flux ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The Total Volatile (TV) flux from Mount Etna volcano has been characterised for the first time, by summing the simultaneously-evaluated fluxes of the three main volcanogenic volatiles: H2O, CO2 and SO2.SO2 flux was determined by routine DOAS traverse measurements, while H2O and CO2 were evaluated by scaling MultiGAS-sensed H2O/SO2 and CO2/SO2 plume ratios to the UV-sensed SO2 flux. The time-averaged TV flux from Etna is evaluated at ~21,000 t∙day-1, with a large fraction accounted for by H2O(~13,000 t∙day-1). H2O dominates (≥70%) the volatile budget during syn-eruptive degassing, while CO2 and H2O contribute equally to the TV flux during passive degassing. The CO2 flux was observed to be particularly high prior to the 2006 eruption, suggesting that this parameter is a good candidate for eruption prediction at basaltic volcanoes.
    Description: Published
    Description: L24302
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Active volcanoes ; Volcanic monitoring ; Gas ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The early stages of the 2002–2003 lateral eruption at Mount Etna were accompanied by slow changes (over some hours) and some rapid step offsets in the local magnetic field. At five monitoring locations, the total magnetic field intensity has been measured using continuously operating Overhauser magnetometers at a sampling rate of 10 s. The very unique aspect of these observations is the close temporal correspondence between magnetic field offsets and earthquakes that occurred in the upper northern flank of the volcano on 27 October 2002 prior to a primary eruption. Rapid coseismic changes of the magnetic field were clearly identified for three of the most energetic earthquakes, which were concentrated along the Northeast Rift at a depth of about 1 km below sea level. Coseismic magnetic signals, with amplitudes from 0.5 to 2.5 nT, have been detected for three of the largest seismic events located roughly midway between the magnetic stations. We quantitatively examine possible geophysical mechanisms, which could cause the magnetic anomalies. The comparison between magnetic data, seismicity and surface phenomena implies that piezomagnetic effects are the primary physical mechanism responsible for the observed magnetic anomalies although the detailed cause of the rapid high stress change required is not clear. The modeling of the observed coseismic magnetic changes in terms of piezomagnetic mechanism provides further evidence of the complex interaction between volcanic and tectonic processes during dike propagation along the Northeast Rift.
    Description: Published
    Description: B09103
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: piezomagnetism ; earthquakes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: We report measurements of Hg, SO2, and halogens (HCl, HBr, HI) in volcanic gases from Masaya volcano, Nicaragua, and gaseous SO2 and halogens from Telica volcano, Nicaragua. Mercury measurements were made with a Lumex 915+ portable mercury vapor analyzer and gold traps, while halogens, CO2 and S species were monitored with a portable multi gas sensor and filter packs. Lumex Hg concentrations in the plume were consistently above background and ranged up to 350 ng/m3. Hg/SO2 mass ratios measured with the real-time instruments ranged from 1.1*10-7 to 3.5*10-5 (mean 2*10-5). Total gaseous mercury TGM)concentrations measured by gold trap ranged from 100 to 225 ng/m3. Reactive gaseous mercury accounted for 1% of TGM, while particulate mercury was 5% of the TGM. Field measurements of Masaya’s SO2 flux, combined with the Hg/SO2 ratio, indicate a Hg flux from Masaya of 7.2 Mg/a-1. At Masaya’s low temperature fumaroles, Hg/CO2 mass ratios were consistently around 2*10-8, lower than observed in the main vent (Hg/CO2 10-7). Low-temperature fumarole Hg fluxes from Masaya are insignificant (150 g a-1). Ratios of S, C and halogen species were also measured at Masaya and Telica volcanoes. CO2/SO2 ratios at Masaya ranged from 2.8 to 3.9, comparable to previously published values. At Masaya molar Br/SO2 was 3*10-4 and I/SO2 was 2*10-5, suggesting fluxes of 0.2–0.5 Mg HBr d-1 and 0.02–0.05 Mg HI d-1. At Telica the Br/SO2 ratio was also 3*10-4 and the I/SO2 ratio was 5.8*10-5, with corresponding fluxes of 0.2 Mg HBr d-1 and 0.06 Mg HI d-1. Gases at both volcanoes are enriched in I relative to Br and Cl, compared to gases from volcanoes elsewhere.
    Description: This work was funded by NERC grant NE/ C511180/1/.
    Description: Published
    Description: B06203
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Mercury ; Halogen ; Volcanic emissions ; Masaya volcano ; Telica volcano ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: This study presents baseline data for future geochemical monitoring of the active Tacaná volcano–hydrothermal system (Mexico–Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500–2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal (T from 25.7°C to 63.0°C) HCO3–SO4 waters are thought to have formed by the absorption of a H2S/SO2–CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as −128 and −19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of −3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio (RA)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 RA, respectively). The L/S (5.9 ± 0.5)and (L + S)/M ratios (9.2 ± 0.7) for the same gases are almost identical to the ones calculated for gases in El Salvador, suggesting an enhanced slab contribution as far as the northern extreme of the Central American Volcanic Arc,Tacana
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Tacaná volcano ; Fluid geochemistry ; Volcano–hydrothermal system ; Bubbling gases ; Fumaroles ; Isotopes ; Volcanic surveillance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: The spatial pattern of the b value of the frequency-magnitude relation has been analyzed using gridding techniques beneath Mount Etna, Italy. A regional data set of 2900 events with Md (duration magnitude) 1.5 up to 15 km depth occurring between August 1999 and December 2005 has been used. Two regions with an abnormally high b value have been found, one centered beneath the southern part of the Valle del Bove, above the 6 km below sea level (bsl) deep basement, and the other beneath the summit region 2 km bsl east of the Central Craters. We can infer that these high b value anomalies are regions of increased crack density, and/or high pore pressure, related to the presence of nearby magma storage. This interpretation is supported by all the available geophysical evidence, such as tomographic studies and geodetic deformation measurements. The data set has also been subdivided into five periods, corresponding to different phases of volcanic activity: 2001 preeruption, 2001 eruptive, 2002–2003 preeruption, 2002–2003 eruptive, and 2002–2003 posteruption. The minimum magnitude of completeness, Mc, and the b value were computed for each period. A volume of anomalously high b values can be observed in each of these periods (except for the 2002–2003 preeruption interval). This approach has allowed the detection of the transient presence of magmatic intrusions during the various periods evaluated.
    Description: Published
    Description: B12303
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: b value ; Mount Etna ; frequency-magnitude relation ; magmatic intrusions ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Ground deformation at Mt. Etna detected by three GPS surveys carried out in 2004, 2005, and 2006 is analyzed. The data set encompasses the 2004–2005 eruptions and foreruns those of 2006. A wide deflation of the entire volcano was detected from 2004 to 2005, accompanying the 2004–2005 eruption; conversely an evident inflation phase, from 2005 to 2006, followed this eruption and preceded the 2006 one. In both cases, the deflation-inflation cycle was accompanied by a continuous seaward motion of the eastern flank. We inverted both data sets (2004–2005 deflation and 2005–2006 inflation) using an optimization algorithm based on the Genetic Algorithm (GA) in order to detect the ground deformation sources. The wide contraction measured during the eruption reveals the drainage of a sill-shaped magma reservoir located by data inversions at a depth of about 4.5 km b.s.l. The pressurizing source modeled for the 2005–2006 time interval indicates a refilling of the shallower near-vertical plumbing system of the volcano. This could indicate a change in the geometry of the feeding system, active after the 2004–2005 eruption, with a new and shallower magma storage that could have enabled the resumption of volcanic activity that was observed at summit craters in 2006. These results improve the imaging of the plumbing system of Mt. Etna volcano.
    Description: Published
    Description: B05406
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Ground deformation ; GPS ; Genethic algorithms ; Modelong ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: During the effusive phase of the Stromboli 2007 eruption, the GPS and tilt stations recorded small but significant changes which, for the first time at this volcano, clearly indicated a deflation. We modeled the deflation, inferring a depressurizing vertically elongated source with centre under the volcano edifice about 2.8 km below sea level. The model, whose position is above the magma source region inferred by petrological studies, and the associated rapid deflation suggest a near free pathway for magma ascent from this source to the upper shallow conduit.
    Description: Published
    Description: L06311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; 2007 eruption ; ground deformation ; modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Since the last eruption in 1888-90, volcanic activity at Vulcano Island (Aeolian Archipelago, Italy) has been limited to fumarolic degassing, concentrated near the active cone of “La Fossa” crater in the northern sector of the island. During the period 1990-1996, EDM and levelling data indicate a deflation and contraction focused on the La Fossa Cone. We jointly inverted these datasets using for volume change both a spherical Mogi (1958) source and an ellipsoid as defined by Davis (1986). The best fitting source for the 1990-96 deflation is a shallow sub-vertical prolate ellipsoid positioned roughly under the crater. Our model is consistent with increased activity in a shallow hydrothermal system, supported by observations of water evaporation testified by the increase of steam emission and temperature at crater fumaroles. The fluid loss from a shallow geothermal reservoir is the most likely cause of the subsidence recorded at La Fossa Cone during the same period. This clear linkage between the deformation signals and hydrothermal activity, has important implications in the hazard assessment and monitoring of the Vulcano activity.
    Description: Published
    Description: B07402
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: modeling ; hydrothermal source ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-01-11
    Description: We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green’s functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano
    Description: Published
    Description: L04301
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1736327 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Late on the night of 26 October 2002, a dike intrusion started suddenly at Mount Etna, producing intense explosive activity and lava effusion on the southern flank. Five to six hours afterward, a long field of eruptive fractures propagated radially along the northeastern flank of the volcano, producing marked variations at the permanent tilt network. The dike propagation velocity was inferred by the associated seismicity. We modeled the temporal evolution of the continuously recorded tilt data, both during the vertical dike propagation on the high south flank on 26 October and during the radial propagation along the northeast flank, between 27 and 28 October. The reproduction of the recorded tilt signal allowed us to describe the geometry and characteristics of the two dikes in greater detail than the previous static inversion. We deduced that the eruption was characterized by an unusual composite mechanism, clearly showing a transition from a nearly pure opening mode displacement to a mechanism characterized by an equally strong normal dip-slip component and a smaller left lateral strike-slip component. In this study we demonstrate the interaction between the final segment of the dike and a preexisting structure that was reactivated in response to the intrusion. We show that tilt and its modeling represent a powerful tool to verify and constrain dike intrusions in detail.
    Description: Published
    Description: B06404,
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3184806 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.
    Description: Published
    Description: 1-22
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Lava ; Instantaneous effusion rate ; Time-averaged discharge rate ; Eruption rate ; Monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-03
    Description: Soil-temperature measurements can provide information on the distribution of degassing fissures, their relationship to the internal structure of the volcano, and the temporal evolution of the system. At Vulcano Island (Italy) heat flux from a 〈3 km-deep magma body drives a hydrothermal system which extends across the main Fossa crater. This heat flux is also associated with variable magmatic gas flow. A high density map of soil-temperatures was made in 1996 at a constant depth of 30 cm on the central and southern inner flanks of the Fossa crater. These measurements extended over an area covering about 0.04 km2, across which the heat flux is predominantly associated with a shallow boiling aquifer. The map shows that hot zones relate to structures of higher permeability, mainly associated with a fissure system dating from the last eruptive cycle (1888-90). From 1996 to January 2005, we studied the evolution of the heat flux for the high temperature part of the map, both by repeating our measurements as part of fourteen visits, during which temperatures were measured at a constant depth, and using data from permanent stations which allowed soil-temperatures to be continuously measured for selected vertical profiles. These data allowed us to calculate the heat flux, and its variation, with good precision for values lower than about 100 W m-2, which is generally the case in the study area. Above 100 W m-2 although the heat flux value is underestimated its variations are recorded with an error less than 10%. During the period 1996-2004 two increases in the thermal flux were recorded. The first one was related to the seismic crisis of November 1998 which opened existing or new fissures. The second, in November 2004, was probably due to magma migration, and was associated with minor seismic activity.
    Description: Published
    Description: on line first
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: partially_open
    Keywords: hydrothermal flux ; soil temperature ; monitoring ; seismic activity ; Vulcano ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: The peculiarity of the quiescent La Fossa volcano is the occurrence of ‘‘crises’’ characterized by strong increases of fumarole T and output and by chemical changes indicative of an increasing input of magmatic fluids. Several surveys carried out during a new ‘‘crisis’’ began in November 2004 indicate that the total diffuse CO2 emission for the crater area increases by one order of magnitude during crises (up to 1600 ton d 1 in December 2005). Concern exists on the possibility that these crises be related to an unrest process leading to eruption. The repetition along decades of the same gas compositional variations during crises, their temporal coincidence with increases of the local shallow seismicity, and the lack of any significant ground motion, rather suggest that they correspond to moments of increasing volatile release from a stationary magma system.
    Description: Published
    Description: L13316
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1580524 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: Continuous soil radon monitoring was carried out near the Southeast Crater (SEC) of Mt. Etna during the 10-day July 2006 Strombolian-effusive eruption. This signal was compared with simultaneously acquired volcanic tremor and thermal radiance data. The onset of explosive activity and a lava fountaining episode were preceded by some hours with increases in radon soil emission by 4–5 orders of magnitude, which we interpret as precursors. Minor changes in eruptive behavior did not produce significant variations in the monitored parameters. The remarkably high radon concentrations we observed are unprecedented in the literature. We interpret peaks in radon activity as due primarily to microfracturing of uranium-bearing rock. These observations suggest that radon measurements in the summit area of Etna are strongly controlled by the state of stress within the volcano and demonstrate the usefulness of radon data acquisition before and during eruptions.
    Description: Published
    Description: L24316
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 251334 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Two swarms of microearthquakes (ML ≤ 2.2), occurred on July 2-7 and August 22, 2000 at Campi Flegrei, accompained by a ground uplift episode (4 cm) which interrupted on early March 2000 the descending trend started on 1985. Spectral analysis indicates a direct involvement of magmatic/hydrothermal fluids in the source process of the July swarm, while the August events are typical of shear failure, similar to most of the earthquakes that occurred during the last (1982-1984) bradyseismic crisis. Precise 3-D relative location applied to similar earthquakes allows for the recognition of two parallel alignments trending NE-SW at depths of 1.7 and 3.2 Km. This trend is consistent with the direction of the main focal plane obtained from fault plane solutions and evidences tensile failure in close proximity to the zone of maximum uplift as depicted by geodetic measurements. A fault weakening mechanism triggered by increasing pore pressure is invoked as the cause of these earthquakes.
    Description: Published
    Description: 2525-2528
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; seismic swarm ; earthquakes locations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: On 22 September 2002, 1 month before the beginning of the flank eruption on the NE Rift, an M-3.7 earthquake struck the northeastern part of Mt. Etna, on the westernmost part of the Pernicana fault. In order to investigate the ground deformation pattern associated with this event, a multi-disciplinary approach is presented here. Just after the earthquake, specific GPS surveys were carried out on two small sub-networks, aimed at monitoring the eastern part of the Pernicana fault, and some baselines belonging to the northeastern EDM monitoring network of Mt. Etna were measured. The leveling route on the northeastern flank of the volcano was also surveyed. Furthermore, an investigation using SAR interferometry was performed and also the continuous tilt data recorded at a high precision sensor close to the epicenter were analyzed to constrain the coseismic deformation. The results of the geodetic surveys show a ground deformation pattern that affects the entire northeastern flank of the volcano, clearly shaped by the Pernicana fault, but too strong and wide to be related only to an M-3.7 earthquake. Leveling and DInSAR data highlight a local strong subsidence, up to 7 cm, close to the Pernicana fault. Significant displacements, up to 2 cm, were also detected on the upper part of the NE Rift and in the summit craters area, while the displacements decrease at lower altitude, suggesting that the dislocation did not continue further eastward. Three-dimensional GPS data inversions have been attempted in order to model the ground deformation source and its relationship with the volcano plumbing system. The model has also been constrained by vertical displacements measured by the leveling survey and by the deformation map obtained by SAR interferometry.
    Description: Published
    Description: 757-768
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: partially_open
    Keywords: Ground deformation ; Modeling ; Flank dynamics ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.
    Description: Published
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow field ; Morphology ; Tumuli ; Lava tubes ; Effusion rate ; Rheology ; Stromboli volcano ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1287165 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: After the end of the 2002–2003 eruption, Mount Etna activity was characterized only by gentle degassing at the summit craters and some earthquake swarms. Suddenly, an eruption started on 7 September 2004 in complete absence of summit crater volcanic activity, seismicity or seismic tremor, and ground deformation. This is the first time that magma poured out passively without preeruptive and coeruptive volcanic and/or geophysical phenomena. The primary key to understanding this event is represented by the ground deformation pattern recorded through GPS measurements during the year before the eruption. The ground deformation shows inflation superimposed by a predominant eastward movement of the eastern sector at a rate never observed before in a noneruptive period. The images from satellite radar interferometry confirmed this pattern. The deformation field clearly shows that the maximum tension in the eastern sector of the volcano caused the opening of the eruptive fracture which favored the silent pouring out of already resident magma.
    Description: Published
    Description: B12207
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 869388 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: We model the location, geometry and density of the source of the recent geological unrest at Campi Flegrei caldera (Italy) by inverting levelling, trilateration and gravity measurements collected between 1980 and 1995. The best fitting source for the 1980–84 inflation is a horizontal penny-shaped crack with a density 142 to 1115 kg/m3. The source best fitting the deflation period (1990–95) is a vertical spheroid with density between 902 and 1015 kg/m3. These results exclude the intrusion of magma, and indicate the migration of fluid to and from the caldera hydrothermal system as the cause of ground deformation and consequent unrest.
    Description: Published
    Description: L01307
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 455230 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: On 5 April 2003 at 07:13 GMT (09:13 local time) a violent vulcanian explosion occurred at Stromboli volcano. At the time of the event an eruptive crisis was ongoing at the volcano with a lava flow outpouring along the Sciara del Fuoco flank. The seismic signals related to the event were recorded by 8 permanent broadband stations and gives information about the eruption kinematics. An ultra-longperiod signal (period 〉 20 s), that we interpret as the effect of the ground tilt on the broadband sensors, starts about 4 min before and terminates about 1 min after the explosion. On the basis of the radial pattern of tilt directions we conclude that this signal is the effect of the deformation of the volcanic edifice, due to the rapid rising of a batch of magma, its ejection and the magma column readjustment. About 1 min before the explosion we observe an high frequency signal (period 〈 0.1 s) that we believe to be related to the vesiculation of the rising batch of gas-rich magma. At 07:13:35 GMT a powerful very-long-period signal (period 2 20 s), marking the onset of the explosive fragmentation, is recorded. This is confirmed by a blast wave following few seconds later. The remaining seismic signal (more than 3 min), shows an higher frequency content being related only to the fall of ballistic ejecta and to landslides along Sciara del Fuoco.We propose the implementation of an early warning system for the short-term forecast of such explosions, based on the real-time automatic detection of the tilt signals preceding such events.
    Description: Published
    Description: L08308
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 773734 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Bulk atmospheric deposition of major cations (Na, K, Ca, Mg) and anions (Cl, F, SO4) were measured at 15 sites around an active volcano, Mount Etna, from 2001 to 2003. Their composition indicates several natural sources, among which deposition of plume-derived volcanogenic gas compounds is prevalent for F, Cl and S. Plume-derived acidic compounds are also responsible for the prevailing acidic composition of the samples collected on the summit of the volcano (pH in the 2.45–5.57 range). Cation species have complex origin, including deposition of plume volcanogenic ash and aerosols and soil-dust wind re-suspension of either volcanic or carbonate sedimentary rocks. Variation of the deposition rates during the March 2001– March 2003 period, coupled with previous measurements from 1997 to 2000 (Appl Geochem 16:985–1000, 2001), were compared with the variation of SO2 flux, volcanic activity and rainfall. The deposition rate was mainly controlled by rainfall. Commonly, about 0.1–0.9% of HF, HCl and SO2 emitted by the summit crater’s plume were deposited around the volcano. We estimate that ∼2 Gg of volcanogenic sulphur were deposited over the Etnean area during the 2002–2003 flank eruption, at an average rate of ∼24 Mg day−1 which is two orders of magnitude higher than that typical of quiescent degassing phases.
    Description: Published
    Description: 255-265
    Description: JCR Journal
    Description: open
    Keywords: Volcanic degassing ; Etna volcano ; Impact of volcanic eruptions ; S deposition rates ; Halogen deposition rates ; Bulk deposition chemistry ; Environmental volcanology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: Ground deformation occurring on Mount Etna from 1994 to 1995 is analyzed in this paper. This period was characterized by intense volcanic activity at the four summit craters, with frequent strombolian activity, fire fountains, and emplacement of several new lava flows. Four GPS surveys were carried out during this time, two as routinely planned each year and an additional two in 1995 to acquire more data to follow the activity at the NE Crater. The comparisons between GPS surveys are reported in terms of horizontal and vertical displacements of each station and in terms of areal dilatation and principal strain axes. During the period considered in this work, a trend of increasing areal dilatation of the volcano (at a rate of about 5 mstrain/yr) was recognized; it was briefly interrupted by a small contraction (about 2 mstrain), in the autumn of 1995, when volcanic activity at the summit craters began. In detail, the strain distribution of the network is analyzed; it allows the detection of areas showing anomalous behavior, such as the summit zone or the Pernicana fault. Inversions of the ground displacement vectors have been performed by appropriately combining numerical and analytical approaches. Results of the inversions suggest structures defining an eastward and southward sliding of the eastern and southeastern sectors of Mount Etna.
    Description: CNR-GNV "Empedocle" ESA-ESRIN project
    Description: Published
    Description: 2153
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Ground deformation ; modeling ; Flank instability ; Mt. Etna ; Volcano dynamics ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Forward Looking Infrared Radiometer (FLIR) cameras offer a unique view of explosive volcanism by providing an image of calibrated temperatures. In this study, 344 eruptive events at Stromboli volcano, Italy, were imaged in 2001–2004 with a FLIR camera operating at up to 30 Hz. The FLIR was effective at revealing both ash plumes and coarse ballistic scoria, and a wide range of eruption styles was recorded. Eruptions at Stromboli can generally be classified into two groups: Type 1 eruptions, which are dominated by coarse ballistic particles, and Type 2 eruptions, which consist of an optically-thick, ash-rich plume, with (Type 2a) or without (Type 2b) large numbers of ballistic particles. Furthermore, Type 2a plumes exhibited gas thrust velocities (〉15 m s−1) while Type 2b plumes were limited to buoyant velocities (〈15 m s−1) above the crater rim. A given vent would normally maintain a particular gross eruption style (Type 1 vs. 2) for days to weeks, indicating stability of the uppermost conduit on these timescales. Velocities at the crater rim had a range of 3–101 m s−1, with an overall mean value of 24 m s−1. Mean crater rim velocities by eruption style were: Type 1= 34 m s−1, Type 2a=31 m s−1, Type 2b=7 m s−1. Eruption durations had a range of 6–41 s, with a mean of 15 s, similar among eruption styles. The ash in Type 2 eruptions originates from either backfilled material (crater wall slumping or ejecta rollback) or rheological changes in the uppermost magma column. Type 2a and 2b behaviors are shown to be a function of the overpressure of the bursting slug. In general, our imaging data support a broadening of the current paradigm for strombolian behavior, incorporating an uppermost conduit that can be more variable than is commonly considered.
    Description: NSF grant no. EAR-0207734, NERC grant no. NER/B/S/2001/00707, the USGS Volcano Hazards Program and the Geophysical Institute at the University of Alaska Fairbanks
    Description: Published
    Description: 769-784
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli volcano ; volcano monitoring ; thermal imaging ; eruption dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-01-19
    Description: Bromine monoxide (BrO) and sulphur dioxide (SO2) abundances as a function of the distance from the source were measured by ground-based scattered-light Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) in the volcanic plumes of Mt. Etna on Sicily, Italy in August-October 2004 and May 2005 and Villarica in Chile in November 2004. BrO and SO2 spatial distributions in a cross section of Mt. Etna’s plume were also determined by Imaging DOAS. We observed an increase in the BrO/SO2 ratio in the plume from below the detection limit near the vent to about 4.5 x 10-4 at 19 km (Mt. Etna) and to about 1.3 x 10-4 at 3 km (Villarica) distance, respectively. Additional attempts were undertaken to evaluate the compositions of individual vents on Mt. Etna. Furthermore, we detected the halogen species ClO and OClO. This is the first time that OClO could be detected in a volcanic plume. Using calculated thermodynamic equilibrium compositions as input data for a one–dimensional photochemical model, we could reproduce the observed BrO and SO2 vertical columns in the plume and their ratio as function of distance from the volcano as well as vertical BrO and SO2 profiles across the plume with current knowledge of multiphase halogen chemistry, but only when we assumed the existence of an ”effective source region”, where volcanic volatiles and ambient air are mixed at about 600°C (in the proportions of 60% and 40%, respectively)
    Description: Published
    Description: D06311
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Chemistry ; Volcanic Plumes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-05-17
    Description: This is the first report in the scientific literature of direct measurement of the terminal settling velocity of volcanic particles during an eruption. Field measurements using a continuous wave X-band disdrometer were carried out at Mt. Etna on 18 and 19 December 2002, when the explosive activity produced a 4 km high volcanic plume. These data allow the estimation of the intensity of the fallout and the measurement of the terminal settling velocities of the volcanic particles in real-time. The main results are: (1) the tested instrument detected coherent falling volcanic particles from 0.2 to 1 mm diameter; (2) measured terminal settling velocities were in agreement with both experimental and theoretical methods; (3) however, the measured velocities were clustered around few discrete values, rather than a range of velocities as would be expected if the particles were falling simultaneously and discretely. This new methodology has many new applications for local hazard mitigation and improved understanding of fallout processes.
    Description: Published
    Description: 1-5
    Description: partially_open
    Keywords: Volcanology: Explosive volcanism ; Volcanology: Remote sensing of volcanoes ; Volcanology: Instruments and techniques ; Volcanology: Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 163670 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: Ground deformation occurring on the southern flank of Mt Etna volcano during the JulyAugust 2001 eruption was monitored by GPS measurements along an EW profile crossing the fissure system. This profile was measured eight times during the eruption, using the 'stop and go' semi-kinematic technique. Horizontal and vertical displacements between GPS surveys are reported for each station. The most significant event is a deformation episode occurring during the first week of the eruption, between 2527 July. Displacements were measured on benchmarks close to the eruptive fissure and the tensile 1989 fracture. Data inversions for measured displacements were performed using the Okada model. The model shows the narrowing of the 2001 dyke accompanied by a dextral dislocation along an east-dipping fault, parallel to the 1989 fracture.
    Description: Published
    Description: 336-341
    Description: partially_open
    Keywords: GPS ; Ground deformation ; Modelling ; Volcano monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 513 bytes
    Format: 467775 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: To recognize possible signals of intrusive processes leading to the last 2002–2003 flank eruption at Mt. Etna, we analyzed the spatial pattern of microseismicity between August 2001 and October 2002 and calculated 23 fault plane solutions (FPSs) for shocks with magnitude greater than 2.5. By applying the double-difference approach of Waldhauser and Ellsworth [2000] on 3D locations, we found that most of the scattered epicentral locations further collapse in roughly linear features. High-precision locations evidenced a distribution of earthquakes along two main alignments, oriented NE-SW to ENE-WSW and NW-SE, matching well both with the known tectonic and volcanic lineaments of Etna and FPSs results. Moreover, microseismicity and swarms located along the NNW-SSE volcano-genetic trend suggest, together with geodetic data and volcanological evidence that progressive magma refilling has occurred since February 2002.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Earthquake dynamics and mechanics ; Seismology: Earthquake parameters ; Seismology: Volcano seismology ; Volcanology: Eruption monitoring ; Volcanology: Magma migration. ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 1909477 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: The Stromboli volcano (Aeolian Islands, Italy) erupted suddenly on 28 December 2002 after a 17-year period of typically persistent but moderate eruptive activity, followed two days later by a tsunamigenic landslide on its NW flank (Sciara del Fuoco) felt in the coastal areas of southern Italy. Three continuous GPS stations were quickly deployed near the volcano's rim sampling at 1 Hz, with instantaneous positions computed relative to a fourth station on its flank. We report on two deformation episodes. A vent migration on 16–17 February 2003 caused significant displacements at only one site and contributed to the decision not to issue a warning of an impending tsunamigenic landslide. The second episode on 5 April 2003, a paroxystic explosion from the summit crater, allowed us to model, for the first time with geodetic data, the shallow magma chambers that give rise to Strombolian explosive activity.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Mathematical Geophysics: Modeling ; Tectonophysics: Physics of magma and magma bodies ; Volcanology: Eruption mechanisms ; Volcanology: Eruption monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 269915 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: Soil radon emissions have been proved as a useful tool for predicting earthquakes and volcanic eruptions and furthermore aided in determining the location of active faults. Continuous radon monitoring was carried out near Southeast Crater of Mt. Etna in September–November 1998, during a period of frequent eruptive episodes at that crater. Radon anomalies were detected when eruptive episodes and the accompanying volcanic tremor became increasingly intense: no anomalies in radon activity were observed during the first five, and weaker, eruptive episodes, whereas significant spikes in radon activity preceded the latter five episodes by ≥46 hours. This probably reflects increased gas leakage through fractures intersecting the shallow plumbing system, as gas pressure in the Southeast Crater conduit became higher with time. Radon monitoring thus might serve to better understand eruptive mechanisms and possible precursors, making further studies in this field a promising perspective.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Volcano seismology ; Structural Geology: Role of fluids ; Volcanology: Volcano monitoring ; Volcanology: Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 152534 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: Effusive activity at Stromboli is uncommon, and the 2002–2003 flank eruption gave us the opportunity to observe and analyze a number of complex volcanic processes. In particular, the use of a handheld thermal camera during the eruption allowed us to monitor the volcano even in difficult weather and operating conditions. Regular helicopter-borne surveys with the thermal camera throughout the eruption have significantly improved (1) mapping of active lava flows; (2) detection of new cracks, landslide scars, and obstructions forming within and on the flanks of active craters; (3) observation of active lava flow field features, such as location of new vents, tube systems, tumuli, and hornitos; (4) identification of active vent migration along the Sciara del Fuoco; (5) monitoring of crater's inner morphology and maximum temperature, revealing magma level changes within the feeding conduit; and (6) detection of lava flow field endogenous growth. Additionally, a new system developed by A. J. L. Harris and others has been applied to our thermal data, allowing daily calculation of effusion rate. These observations give us new insights on the mechanisms controlling the volcanic system.
    Description: Published
    Description: 1-23
    Description: partially_open
    Keywords: volcano monitoring ; thermal mapping ; flank eruption ; Stromboli volcano ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 1426995 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: The 200203 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 200203 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.
    Description: Published
    Description: 314-330
    Description: partially_open
    Keywords: Multi-disciplinary study ; Mount Etna ; 2002–03 eruption ; Eccentric eruptions ; Flank activity ; Etna feeding system ; Volcanic processes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 846913 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: From early September to early November, during the 2004–2005 Mt. Etna effusive eruption, petrologic monitoring was enabled by near-vent sampling of erupting lava and onsite SEM-EDS capabilities at INGV-CT. Significant differences in composition and temperature of lava erupted from 2920–2620 m and 2820–2320 m vents, attest to variably evolved shallow magmatic conditions within a geometrically complex storage volume. The petrography and glass compositions of water-quenched samples indicate that the magma feeding the 2004–2005 activity was likely to have been stored in the shallow plumbing system during the 2000 and 2001 activity, where it experienced volatile loss and extensive crystallization. Both geophysical and petrologic data suggest that this eruption was not triggered by the intrusion of a new dike from depth, but it was more likely that existing shallow magma reservoirs were passively mobilized and erupted in response to edifice deformation.
    Description: Published
    Description: 1-5
    Description: partially_open
    Keywords: Mineralogy and Petrology: Petrography, microstructures, and textures ; Mineralogy and Petrology: Igneous petrology ; Volcanology: Eruption mechanisms and flow emplacement ; Volcanology: Volcano monitoring ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 155221 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: The understanding of shallow intrusive processes during 2002–2004, as well as the causes of the volcano-tectonic seismicity, has been improved at Mt. Etna by comparing the inversion results from GPS data with accurate 3D hypocentral locations. Our findings indicate that short periods of deflation (about six months) were followed by recharging phases after the end of both the 2001 and 2002–2003 flank eruptions. During the last recharging phase (June 2003–August 2004), modeling results and seismic observations suggest a composite mechanism of re-injection of magma into the rift-zones (S and NE), similar to that leading to the 2002–2003 flank eruption, which could have triggered the summit eruption started on September 7, 2004.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Volcanology: Magma migration and fragmentation ; Seismology: Earthquake interaction, forecasting, and prediction ; Seismology: Seismicity and tectonics ; Volcanology: Volcano monitoring ; Volcanology: Eruption mechanisms and flow emplacement ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 868891 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: Flank instability and collapse are observed at many volcanoes. Among these, Mt. Etna is characterized by the spreading of its eastern and southern flanks. The eastern spreading area is bordered to the north by the EW-trending Pernicana Fault System (PFS). During the 20022003 Etna eruption, ground fracturing along the PFS migrated eastward from the NE Rift, to as far as the 18 km distant coastline. The deformation consisted of dextral en-echelon segments, with sinistral and normal kinematics. Both of these components of displacement were one order of magnitude larger (~1 m) in the western, previously known, portion of the PFS with respect to the newly surveyed (~9 km long) eastern section (~0.1 m). This eastern section is located along a pre-existing, but previously unknown, fault, where displaced man-made structures give overall slip rates (11.9 cm/year), only slightly lower than those calculated for the western portion (1.42.3 cm/year). After an initial rapid motion during the first days of the 20022003 eruption, movement of the western portion of the PFS decreased dramatically, while parts of the eastern portion continued to move. These data suggest a model of spreading of the eastern flank of Etna along the PFS, characterized by eruptions along the NE Rift, instantaneous, short-lived, meter-scale displacements along the western PFS and more long-lived centimeter-scale displacements along the eastern PFS. The surface deformation then migrated southwards, reactivating, one after the other, the NNWSSE-trending Timpe and Trecastagni faults, with displacements of ~0.1 and ~0.04 m, respectively. These structures, along with the PFS, mark the boundaries of two adjacent blocks, moving at different times and rates. The new extent of the PFS and previous activity over its full length indicate that the sliding eastern flank extends well below the Ionian Sea. The clustering of seismic activity above 4 km b.s.l. during the eruption suggests a deep décollement for the moving mass. The collected data thus suggests a significant movement (volume 〉1,100 km3) of the eastern flank of Etna, both on-shore and off-shore.
    Description: Published
    Description: 417-430
    Description: partially_open
    Keywords: Volcano spreading ; Fracturing ; Mt. Etna ; Pernicana Fault System ; NE Rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 998206 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: A selected dataset of 151 events, leading the July 17–August 9, 2001 lateral eruption at Mt. Etna volcano, has been analyzed for three-dimensional hypocenter locations, focal mechanisms and stress tensor inversions. The seismic pattern provided indications for two main spatial clusters of foci located along and eastwards of the 2001 Mt. Etna eruptive fractures system. The 151 fault plane solutions (mostly strike slip) were inverted for stress tensor parameters, and space variations of seismogenic stress orientations have been identified. The stress inversion results and the axi-symmetric orientation of P-axes, in the region surrounding the modeled dike, well support the evidence of a unique stress source in agreement with the ground deformation results.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Volcano seismology ; Volcanology: Eruption mechanisms ; Volcanology: Magma migration ; Volcanology: Eruption monitoring. ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 2920311 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: The 2004–05 eruption of Etna was characterised by outpouring of degassed lava from two vents within Valle del Bove. After three months of eruption lava volumes were estimated to be between 18.5 and 32 × 106 m3, with eruption rate between 2.3 and 4.1 m3/s. Petrological analyses show that magma is resident in the shallow plumbing system, emplaced during the last South-East Crater activity. SO2 flux data show no increase at the onset of the eruption and SO2/HCl ratios in gas emitted from the eruptive fissure are consistent with a degassed magma. No seismic activity was recorded prior to eruption, unlike eruptions observed since the 1980's. The purely effusive nature of this eruption, fed by a degassed, resident magma and the fracture dynamics suggest that magmatic overpressure played a limited role in this eruption. Rather, lateral spreading of Etna's eastern flank combined with general inflation of the edifice triggered a geodynamically-controlled eruption.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Volcanology: Effusive volcanism ; Volcanology: Volcano monitoring ; Volcanology: Eruption mechanisms and flow emplacement ; Volcanology: General or miscellaneous ; Tectonophysics: Tectonics and magmatism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 626609 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: The 2002–2003 Mount Etna eruption and the associated deformation provide a unique possibility to study the relationships between volcanism and volcano instability. The sequence started with movement of the eastern volcano flank and was associated with earthquakes and the formation of surface ruptures. Then the eruption occurred from fissures at the north and south rift zones and was followed by additional flank movement, seismic swarms, and surface ruptures. The overall area of flank movement implicated more than 700 km2. In this paper we investigate how episodes of magmatic events (eruptions and intrusions) and flank movement interact. In three-dimensional numerical models we simulate the volcano-tectonic events and calculate changes in the static stress field. The models suggest that the 2002–2003 events are the result of interrelated processes consisting of (1) the preeruptive intrusion of magma and inflation of the volcano, which induced (2) the movement of the volcano east flank, (3) facilitated the eruption, and (4) led to the slip of a much larger part of the eastern and southeastern flanks. Understanding the precise interconnectivity of these processes may help to forecast the behavior during future volcanic crisis at Mount Etna, which is crucial in minimizing volcanic and seismic hazards on the highly populated eastern sector of the volcano.
    Description: Published
    Description: 1-12
    Description: partially_open
    Keywords: Mount Etna ; flank instability ; volcano deformation ; volcano-tectonic interaction ; elastic stress field modeling ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 2262915 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...