ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (12)
  • AGU  (11)
  • Blackwell Publishing Ltd  (1)
  • American Society of Hematology
  • Nature Publishing Group
  • 2005-2009  (12)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: In the Apennines subduction (Italy), earthquakes mainly occur within overriding plate, along the chain axis. The events concentrate in the upper 15 km of the crust above the mantle wedge and focal solutions indicate normal faulting. In the foreland, the seismogenic volume affects the upper 35 km of the crust. Focal solutions indicate prevailing reverse faulting in the northern foreland and strike-slip faulting in the southern one. The deepening of the seismogenic volume from the chain axis to the foreland follows the deepening of the Moho and isotherms. The seismicity above the mantle wedge is associated with uplift of the chain axial zone, volcanism, high CO2 flux, and extension. The upward pushing of the asthenospheric mantle and the mantle-derived, CO2-rich fluids trapped within the crust below the chain axis causes this seismicity. All these features indicate that the axial zone of Apennines is affected by early rifting processes. In northern Italy, the widespread and deeper seismicity in the foreland reflects active accretion processes. In the southern foreland, the observed dextral strike-slip faulting and the lack of reverse focal solutions suggest that accretion processes are not active at present. In our interpretation of the Apennines subduction, the shallower seismicity of the overriding plate is due to the dynamics (uprising and eastward migration) of the asthenospheric wedge.
    Description: Published
    Description: Q02013
    Description: JCR Journal
    Description: open
    Keywords: Apenninnes ; crustal seismicity ; rifting ; subduction ; fluids ; geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2459547 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The Tyrrhenian Sea is an extensional basin opened by trench retreat and back-arc extension during subduction of the Calabrian slab in the last 10–12 My. Subduction is still active beneath the SEmost part of the Tyrrhenian Sea, as testified by seismicity down to 500 km depth. By analyzing seismicity and geodetic data, together with recent tomographic images, we define the present-day situation. An evident N-S compressional regime prevails in the Tyrrhenian region west of the Aeolian archipelago, while east of them a NNW-SSE extension is documented by focal mechanisms and GPS data, with a much smaller strain rate with respect to the past. The transition between these two domains is accommodated by a N-S discontinuity zone which runs from Aeolian Islands to Mt. Etna with an extensional to strike-slip deformation.
    Description: Published
    Description: L06611
    Description: JCR Journal
    Description: reserved
    Keywords: geodynamics ; seismotectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Surface waves from the great Sumatra-Andaman earthquakes of 2004 and 2005 that cross Italy south of 44 N display Love-to-Rayleigh scattered waves (quasi- Love phases) diagnostic of sharp lateral gradients in the anisotropic properties of Earth’s upper mantle. Surface waves that traverse Italy further north lack this distinctive phase, documenting a change in the upper mantle fabric that is corroborated by a shift in the fast polarization of shear wave birefringence. These observations suggest that orogen-parallel asthenospheric extension behind the retreating Apennines slab has limited geographical expression. We hypothesize that subduction rollback currently terminates at 44 N, while the upper mantle flow pattern further to the north has been recently rearranged.
    Description: Published
    Description: L04304
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: surface wave ; Sumatra earthquake ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We report on the paleomagnetism of 34 sites from lower Oligocene–middle Miocene sediments exposed in the Tertiary Piedmont Basin (TPB, northern Italy). The TPB is formed by a thick (4000 m) and virtually undeformed sedimentary succession unconformably lying upon Alpine nappes decapitated by extensional exhumation, which in turn are tectonically stacked over the Adriatic foreland. Paleomagnetic directions from 23 (mostly Oligocene) sites were chronologically framed using new biostratigraphic evidence from calcareous nannoplankton. Our data, along with published paleomagnetic results, show that the TPB rotated 50 counterclockwise with respect to Africa in Aquitanian-Serravallian times. The rotation was likely driven by underneath nappe stacking and was synchronous with (further) bending of the Alpine chain. Both the rotation magnitude and its timing are similar to those documented for the Corsica-Sardinia microplate. Therefore the formation of the western Alpine arc (or at least part of its present-day curvature) occurred during the rollback of the Apenninic slab and related back-arc spreading of the Liguro-Provenc¸al Basin and drift of the Corsica-Sardinia block. This suggests a common dynamics driving both the Alpine and the Apennine slab motions. Paleomagnetic data also document that the Adriatic plate has undergone no paleomagnetic rotation since mid-late Miocene times. Anisotropy of magnetic susceptibility data suggests that the TPB, an enigmatic basin arising from a controversial tectonic setting, formed in an extensional regime characterized by a stretching direction approximately orthogonal to the main trend of the underlying chain.
    Description: Published
    Description: B03104
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Paleomagnetism ; Tertiary Piedmont Basin ; Paleomagnetic directions ; Biostratigraphic evidence ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU
    In:  Reply to Comment on “Could the Mw = 9.3 Sumatra Earthquake Trigger a Geomagnetic Jerk?”
    Publication Date: 2017-04-04
    Description: We thank M. Dumberry for providing the opportunity to discuss further the article [Florindo et al., 2005] in which we suggested that the Sumatra earthquake could have triggered a geomagnetic jerk. Dumberry is against our hypothesis for different reasons: (1) The displacement pattern produced by this earthquake is incompatible with the core-mantle boundary (CMB) deformations required for a torsional oscillation; (2) most of the deformations occurred locally, producing an actual mass displacement that has not involved the entire Earth; and (3) no abrupt change in the length of day (LOD) has been observed after this event. Although we agree with some of the considerations proposed by Dumberry, we think that these do not rule out the possibility that a jerk has been triggered by the Sumatra earthquake or that in the future, other earthquakes could induce a change in the flow pattern near the CMB leading to a geomagnetic jerk. On the contrary, we retain that this hypothesis is plausible, although it is more correct to talk about the existence of a possible link between geomagnetic jerks and earthquakes where the earthquake magnitude is not the only discriminating parameter.
    Description: Published
    Description: 343
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.4. Geomagnetismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Sumatra Earthquake ; Geomagnetic Jerk ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Shield volcanoes, caldera-bearing stratovolcanoes, and monogenetic cones compose the large fissural Payen Volcanic Complex, located in the Andes foreland between latitude 35°S and 38°S. The late Pliocene-Pleistocene and recent volcanic activity along E-W trending eruptive fissures produced basaltic lavas showing a within-plate geochemical signature. The spatial distribution of fractures and monogenetic vents is characterized by self-similar clustering with well defined power law distributions. Vents have average spacing of 1.27 km and fractal exponent D = 1.33 defined in the range 0.7–49.3 km. The fractal exponent of fractures is 1.62 in the range 1.5–48.1 km. The upper cutoffs of fractures and vent fractal distributions (about 48–49 km) scale to the crustal thickness in the area, as derived from geophysical data. This analysis determines fractured media (crust) thickness associated with basaltic retroarc eruptions. We propose that the Payen Volcanic Complex was and is still active under an E-W crustal shortening regime.
    Description: Published
    Description: Q09002
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic field ; crustal shortening ; vent distibution ; Andes ; Argentina ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-03
    Description: We analyse P-wave traveltimes for the Mediterranean area, using both teleseismic and regional arrivals for shallow earthquakes reported in the Bulletins of the International Seismological Centre. We model delays between pairs of 0.5° × 0.5° cells, obtaining a detailed representation of the P traveltime heterogeneities. Examination of these anomalies shows the clear presence of geographically coherent patterns—consistent with known geological features—due to significant structure in the upper mantle. We present a scheme, based on an empirical heterogeneity correction (EHC) to P-wave traveltimes, to improve earthquake location. This method provides similar benefits to those of a location procedure based on ray tracing in a 3-D model, but it is simpler and computationally more efficient. The definition of the traveltime heterogeneity model, being based on a statistical procedure, bypasses most of the critical points and possible instabilities involved in model inversion. EHC relocation, applied to Mediterranean earthquakes, allows one to predict about 70 per cent of the estimated signal due to heterogeneity and produces epicentral and origin time-shifts of, respectively, 4.22 km and 0.35 s (rms). From a synthetic experiment, in which we use the proposed algorithm to retrieve known source locations, we estimate that the rms improvement achieved by the EHC relocation over a simpler, standard, 1-D location is more than 20 per cent for both epicentral mislocation and origin time-shifts.
    Description: Published
    Description: 232-254
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake location ; Mediterranean ; P waves ; traveltime ; upper mantle ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We study the upper mantle P wave velocity structure below the Euro-Mediterranean area, down to 1000 km depth, by seismic travel time tomography. We invert summary residuals constructed with both regional and teleseismic first arrival data reported by the International Seismological Centre (ISC) (1964–1995), introducing some alternative strategies in the travel time tomographic approach and a new scheme to correct teleseismic data for global mantle structure. Our high-resolution model PM0.5 is parameterized with three-dimensional (3-D) linear splines on a grid of nodes with 0.5 spacing in both horizontal directions and 50 km vertical spacing. We obtain about 26% root-mean-square (RMS) reduction of residuals by inversion in addition to roughly 31% reduction after summary rays formation and selection. Sensitivity analyses are performed through several test inversions to explore the resolution characteristics of the model at different spatial scales. The distribution of large-scale fast anomalies suggests that two different stages of a convection process presently coexist in very close regions. The mantle dynamics of western central Europe is dominated by blockage of subducted slabs at the 660 km discontinuity and ponding of seismically fast material in the transition zone. Contrarily, in the eastern Mediterranean, fast velocity material sinks into the lower mantle, suggesting that the flow of the cold downwelling here is not blocked by the 660 km discontinuity. On a smaller scale, the existence of tears in the subducted slab (lithospheric detachment) all along both margins of the Adriatic plate, as proposed by some authors, is not supported by our tomographic images.
    Description: Published
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: travel time ; body wave tomography ; upper mantle ; Europe-Mediterranean area ; Earth structure ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Slab-like seismic velocity heterogeneities below the Alpine chain, interpreted as subducted lithosphere, are imaged by tomographic studies down to only about 300 km depth. A non-negligible discrepancy therefore exists between tomographic and geological data, the latter indicating at least 500 km of Tertiary convergence at trench. Yet a recently published tomographic study detects a pronounced high velocity anomaly at the bottom of the upper mantle right below the Alpine area. Combining tomographic images of the mantle, geological findings and plate system kinematics, we investigate how the presence of this feature in the transition zone below the Alps can be traced back to the Tertiary Alpine subduction and possibly explain the observed discrepancy. We propose that a part of the fast velocity body now residing just above the 660 km discontinuity once belonged to the Alpine slab, torn off by an event occurred at about 30–35 Ma.
    Description: Published
    Description: L06605
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Alps ; upper mantle ; tomography ; subduction ; break-off ; transition zone ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: By means of a stratified viscoelastic Earth model we study the effect of sinking slabs on the dynamic topography, the non-hydrostatic geoid and the long-term sea level variations. Sea level fluctuations due to subduction are found to be sensitive to the nature of the 670 km seismic discontinuity and to the rheological layering of the mantle. The response of our model to both a single subduction and a realistic distribution of slabs is studied by a numerical simulation based on a simplified approach. Consistent with previous results, we find that an upper bound to relative sea level time variations associated with the initiation of a new subduction in the upper mantle is ∼0.1 mm/yr. Relative sea level changes driven by the dynamic readjustment of internal mass heterogeneities may thus be comparable with those attributed to other changes in the tectonic regime on a large scale. This confirms the relevance of subduction as an important contributor to long-term sea level fluctuations.
    Description: Published
    Description: 1587–1590
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: sea level ; geoid ; dynamic topography ; subduction ; viscosity profile ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...