ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics
  • Aircraft Stability and Control
  • 2005-2009  (506)
  • 1940-1944  (86)
  • 1
    Publication Date: 2018-06-11
    Description: The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: A second-order unstructured-grid code, developed and used primarily for steady aerodynamic simulations, is applied to the synthetic jet in a cross flow. The code, FUN3D, is a vertex-centered finite-volume method originally developed by Anderson[1, 2], and is currently supported by members of the Fast Adaptive Aerospace Tools team at NASA Langley. Used primarily for design[3] and analysis[4] of steady aerodynamic configurations, FUN3D incorporates a discrete adjoint capability, and supports parallel computations using MPI. A detailed description of the FUN3D code can be found in the references given above. The code is under continuous development and contains a variety of flux splitting algorithms for the inviscid terms, two methods for computing gradients, several turbulence models, and several solution methodologies; all in varying states of development. Only the most robust and reliable components, based on experiences with steady aerodynamic simulations, were employed in this work. As applied in this work, FUN3D solves the Reynolds averaged Navier-Stokes equations using the one equation turbulence model of Spalart and Allmaras[5]. The spatial discretization is formed on unstructured meshes using a vertex-centered approach. The inviscid terms are evaluated by a flux-difference splitting formulation using least-squares reconstruction and Roe-type approximate Riemann fluxes. Green-Gauss gradient evaluations are used for viscous and turbulence modeling terms. The discrete spatial operator is combined with a backward time operator which is then solved iteratively using point or line Gauss-Seidel and local time stepping in a pseudo time. For steady flows, the physical time step is set to infinity and the pseudo time step is ramped up with the iteration count. A second-order backward in time operator is used for time accurate flows with 20 to 50 steps in the pseudo time applied at each physical time step. For this effort, FUN3D was modified to support spatially varying boundary and initial conditions, and unsteady boundary conditions. Also, a specialized in/out flow boundary condition was implemented to model the action of the diaphragm. This boundary condition is described below in more detail. The grids were generated using the internally developed codes GridEX[6] for meshing the surfaces and inviscid regions of the domain, and for CAD access; and MesherX[7] for meshing the viscous regions. Grid spacing in on the surfaces and in the inviscid regions are indirectly controlled by specifying sources. The viscous layers are generated using an advancing layer technique. MeshersX allows the user to control the spatial variation of the first step off the surface, growth rates, and the termination criterion by providing small problem dependent subroutines.
    Keywords: Aerodynamics
    Type: Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control; 2.6.1 - 2.6.5; NASA/CP-2007-214874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: A guidance and control method was developed to detect and exploit thermals for energy gain. Latency in energy rate estimation degraded performance. The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology. Many UAVs have similar mission constraints to birds and sailplanes. a) Surveillance; b) Point to point flight with minimal energy; and c) Increased ground speed.
    Keywords: Aircraft Stability and Control
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The prediction of separation bubbles on NACA 65-213 and NACA 0012 using a modified Chen-Thyson transition model is presented. The contents include: 1) Background; 2) Analysis of NACA 65-213 separation bubble using cebeci's viscous-inviscid interaction method; 3) Analysis of NACA 0012 separation bubble using navier-stokes method; and 4) Comparison with experiment.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 269-281; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: Experiments on boundary layer transition with flat, concave and convex walls and various levels of free-stream disturbance and with zero and strong streamwise acceleration have been conducted. Measurements of both fluid mechanics and heat transfer processes were taken. Examples are profiles of mean velocity and temperature; Reynolds normal and shear stresses; turbulent streamwise and cross-stream heat fluxed; turbulent Prandtl number; and streamwise variations of wall skin friction and heat transfer coefficient values. Free-stream turbulence levels were varied over the range from about 0.3 percent to about 8 percent. The effects of curvature on the onset of transition under low disturbance conditions are clear; concave curvature leads to an earlier and more rapid transition and the opposite is true for convex curvature This was previously known but little documentation of the transport processes in the flow was available
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 373-388; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Measurements on transition under different levels of adverse pressure gradient and free-stream turbulence level are described. This extensive series of investigations, which was predicated on intermittency measurement techniques, has resulted in correlations for transition length and turbulent spot formation rate. These correlations rae intended to be used in conjunction with boundary layer prediction methods and examples are given of such predictions. More effective predictions of the transition region, especially under conditions of variable pressure gradient, are dependent on a more comprehensive understanding of transition and spot behavior. It is expected that this will result in improved transition modeling.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 311-318; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: Experimental work with leading edge separation bubbles is presented to clarify the issues regarding transition in separated regions. Hot-wire measurements, in the form of oscilloscope traces, turbulence intermittency and conditionally sampled velocity distributions are given. The resulting points of transition onset and spot production rates are compared to existing correlations.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 421-429; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: A new concept and technique has been developed to directly control boundary-layer transition and turbulence. Near-wall vertical motions are directly suppressed through the application of Lorentz force. Current (j) and magnetic (b) fields are applied parallel to the boundary and normal to each other to produce a Lorentz force (j x B) normal to the boundary. This approach is called magnetic turbulence control (MTC). Experiments have been performed on flat-plate transitional and turbulent boundary layers in water seeded with a weak electrolyte.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 51-59; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: An experimental investigation of boundary layer transition in a multi-stage turbine has been completed using surface-mounted hot-film sensors. Tests were carried out using the two-stage Low Speed Research Turbine of the Aerodynamics Research Laboratory of GE Aircraft Engines. Blading in this facility models current, state-of-the-art low pressure turbine configurations. The instrumentation technique involved arrays of densely-packed hot-film sensors on the surfaces of second stage rotor and nozzle blades. The arrays were located at mid-span on both the suction and pressure surfaces. Boundary layer measurements were acquired over a complete range of relevant Reynolds numbers. Data acquisition capabilities provided means for detailed data interrogation in both time and frequency domains. Data indicate that significant regions of laminar and transitional boundary layer flow exist on the rotor and nozzle suction surfaces. Evidence of relaminarization both near the leading edge of the suction surface and along much of the pressure surface was observed. Measurements also reveal the nature of the turbulent bursts occuring within and between the wake segments convecting through the blade row. The complex character of boundary layer transition resulting from flow unsteadiness due to nozzle/nozzle, rotor/nozzle, and nozzle/rotor wake interactions are elucidated using these data. These measurements underscore the need to provide turbomachinery designers with models of boundary layer transition to facilitate accurate prediction of aerodynamic loss and heat transfer.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 1-2; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: The end-stage phase of boundary layer transition is characterized by the development of hairpin-like vortices which evolve rapidly into patches of turbulent behavior. In general, the characteristics of the evolution form this hairpin stage to the turbulent stage is poorly understood, which has prompted the present experimental examination of hairpin vortex development and growth processes. Two topics of particular relevance to the workshop focus will be covered: 1) the growth of turbulent spots through the generatio and amalgamation of hairpin-like vortices, and 2) the development of hairpin vortices during transition in an end-wall junction flow. Brief summaries of these studies are described below. Using controlled generation of hairpin vortices by surface injection in a critical laminar boundary layer, detailed flow visualization studies have been done of the phases of growth of single hairpin vortices, from the initial hairgin generation, through the systematic generation of secondary hairpin-like flow structures, culminating in the evolution to a turbulent spot. The key to the growth process is strong vortex-surface interactions, which give rise to strong eruptive events adjacent to the surface, which results in the generation of subsequent hairpin vortex structures due to inviscid-viscuous interactions between the eruptive events and the free steam fluid. The general process of vortex-surface fluid interaction, coupled with subsequent interactions and amalgamation of the generated multiple hairpin-type vortices, is demonstrated as a physical mechanism for the growth and development of turbulent spots. When a boundary layer flow along a surface encounters a bluff body obstruction extending from the surface (such as cylinder or wing), the strong adverse pressure gradients generated by these types of flows result in the concentration of the impinging vorticity into a system of discrete vortices near the end-wall juncture of the obstruction, with the extensions of the vortices engirdling the obstruction to form "necklace" or "horseshoe" vortices. Recent hydrogen bubble and particle image visualization have shown that as Reynolds number is increased for a laminar approach flow, the flow will become critical, and a destabilization of the necklace vortices results in the development of an azimuthal waviness, or "kinks", in the vortices. These vortex kinks are accentuated by Biot-Savart effects, causing portions of a distorted necklace vortex to make a rapid approach to the surface, precipitating processes of localized, three-dimensional surface interactions. These interactions result in the rapid generation, focussing, and ejection of thin tongues of surface fluid, which rapidly roll-over and appear as hairpin vortices in the junction region. Subsequent amalgamation of these hairpin vortices with the necklace vortices produces a complex transitional-type flow. A presentation of key results from both these studies will be done, emphasizing both the ubiquity of such hairpin-type flow structures in manifold transitional-type flows, and the importance of vortex-surface interactions n the development of hairpin vortices.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 79-89; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: Our research involves study of the behavior of k-epsilon turbulence models for simulation of bypass-level transition over flat surfaces and turbine blades. One facet of the research has been to assess the performance of a multitude of k-epsilon models in what we call "natural transition", i.e. no modifications to the k-e models. The study has been to ascertain what features in the dynamics of the model affect the start and end of the transition. Some of the findings are in keeping with those reported by others (e.g. ERCOFTAC). A second facet of the research has been to develop and benchmark a new multi-time scale k-epsilon model (MTS) for use in simulating bypass-level transition. This model has certain features of the published MTS models by Hanjalic, Launder, and Schiestel, and by Kim and his coworkers. The major new feature of our MTS model is that it can be used to compute wall shear flows as a low-turbulence Reynolds number type of model, i.e. there is no required partition with patching a one-equation k model in the near-wall region to a two-equation k-epsilon model in the outer part of the flow. Our MTS model has been studied extensively to understand its dynamics in predicting the onset of transition and the end-stage of the transition. Results to date indicate that it far superior to the standard unmodified k-epsilon models. The effects of protracted pressure gradients on the model behavior are currently being investigated.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 495-514; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: The transition process which takes place in the attachment-line boundary layer in the presence of gross contamination is an issue of considerable interest to wing designers. It is well known that this flow is very sensitive to the presence of isolated roughness and that transition can be initiated at a very low value of the local medium thickness Reynolds number.Moreover, once the attachment line is turbulent, the flow over the whole wing chords, top and bottom surface, will be turbulent and this has major implications for wind drag.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 327-337; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The similarity among turbulent spots observed in various transition experiments, and the rate in which they contaminate the surrounding laminar boundary layer is only cursory. The shape of the spot depends on the Reynolds number of the surrounding boundary layer and on the pressure gradient to which it and the surrounding laminar flow are exposed. The propagation speeds of the spot boundaries depend, in addition, on the location from which the spot originated and do not simply scale with the local free stream velocity. The understanding of the manner in which the turbulent manner in which the turbulent spot destabilizes the surrounding, vortical fluid is a key to the understanding of the transition process. We therefore turned to detailed observations near the spot boundaries in general and near the spanwise tip of the spot in particular.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 285-309; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The transition from laminar to turbulent flow in a boundary layer is a complex phenomenon that may take different routes, each involving distinct stages governed by different, often not-yet unraveled dynamical principles. There are, surprisingly, questions concerning virtually every stage in the process, beginning with receptivity to external disturbances, the linear stability of spatially developing flows, different possible nonlinear end games, the formation and propagation of turbulent spots and the emergence of fully developed turbulent flow. There seems no doubt that the flow has to be seen as a forced, nonlinear spatio-temporal system, but the system is so complex that to extract simple insights is still very difficult.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 3-10; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: Experiment are being carried out to study the process by which th almost periodic disturbance waves generated naturally by the freestream evolve into turbulence. The boundary layer on a flat plate has been used for this study. The novelty of the approach is in the form of artificial excitation that is used. In this work the flow is excited artificially by deterministic white noise. The weak T-S wave created develops down stream, becomes nonlinear and blows up locally onto a highly distorted flow. These large local distortions of the mean flow allow very high frequency disturbances to grow and form into small turbulent spots. The spots arise from the excitation, and if the same noise sequence is repeated a spot will form at the same position and time instant relative to the excitation.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 39-49; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: A program sponsored by the National Aeronautics and Space Administration (NASA) for the investigation of the heat transfer in the transition region of turbine vanes and blades with the object of improving the capability for predicting heat transfer is described,. The accurate prediction of gas-side heat transfer is important to the determination of turbine longevity, engine performance and developmental costs. The need for accurate predictions will become greater as the operating temperatures and stage loading levels of advanced turbine engines increase. The present methods for predicting transition shear stress and heat transfer on turbine blades are based on incomplete knowledge and are largely empirical. To meet the objectives of the NASA program, a team approach consisting of researchers from government, universities, a research institute, and a small business is presented. The research is divided into areas of experimentation, direct numerical simulation (DNS) and turbulence modeling. A summary of the results to date is given for the above research areas in a high-disturbance environment (bypass transition) with a discussion of the model development necessary for use in numerical codes.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 235-267; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: In order to understand the end-stages of boundary layer transition in low as well as high disturbance environments it is desirable to establish a unified view of the sequences of physico-mathematical phenomena that lead from laminar flow to self-sustained "bursting" in wall turbulence. The dominant driving disturbances: oncoming free turbulence, unsteady pressure fields, inhomogeneous density fields, inhomogeneities in wall geometry, all force disturbed motions within the boundary layer via multiple competitive receptivity mechanisms. For small disturbances, a sequence of instabilities then leads to sporadic local bursting very near the wall which can sustain turbulence. The local seeds of turbulence then somehow propagate to engulf quite rapidly the surrounding disturbed but still laminar regions.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 11-21; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: Quantitative observations of transitional boundary layers in regions of strong flow deceleration on an axial compressor stator blade are reported. Measurements are obtained at a fixed chordwise position, and the blade incidence was varied by changing the compressor throughflow so as to move the transition region relative to the stationary probe. It was thus possible to observe typical boundary layer behavior at various stages of transition in the turbomachine environment. The range of observations covers separating laminar flow at transition onset, and reattachment of intermittently turbulent periodically separated shear layers.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 163-173; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Experimental work at the University of Oxford Osney Lab has demonstrated characteristics of the late-stage transition process by the use of thin-film heat transfer gauges. The development of turbulent spots has been observed in a range of environments, including flat plates, turbine blade cascade tests and wake-passing experiments. These results were taken at Mach/Reynolds numbers and gas-to-wall temperature ratios representative of gas turbines. Analyses of the spot characteristics are consistent with measurements taken in low speed experiments, and support the Schubauer and Klebanoff type of turbulent spots. The addition of simulated wakes from upstream stages has been observed to be primarily superpositional for these tests.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 149-162; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: A spatially developing direct numerical simulation has been performed for flow over a flat plate that is subjected to a one-time fluid injection through an elongated slit in the wall. The flow parameters have been chosen to closely approximate the experimental conditions of Haidari, Taylow, and Smith (AIAA-89-0964). A hairpin vortex quickly develops near the upstream end of the slit, and a pair of necklace vortices form around the slow-moving injection fluid. As seen in the experiments and reported in Haidari and Smith (in review, JFM), the hairpin vortex spawns both in-line and sidelobe secondary vortices. However, no subdsidiary vortices (those formed by the inviscid deformation of a vortex-line bundle) are observed. At later times, a set of three different types of vortices are identified: hairpin vortex structures with heads that rise away from the wall horseshoe-shaped vortices that do not rise out of the boundary layer, and quasi-streamwise vortices. These structures interact with each other and with the wall layer to generate new vortices that are similar in structure to those mentioned above, although a particular parent vortex may have an offspring that more nearly resembles another member of the set. Perturbation velocity and vertical vorticity contours reveal an arrowhead shape of the highly disturbed region that is reminiscent of a turbulent spot. Spatially averaged velocity profiles in the highly disturbed area are nonlaminar, but as yet do not show typical low-of-the-wall behavior.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 91-114; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: A series of experiments are described which examine the growth of turbulent spots on a flat plate at Reynolds and Mach numbers typical of gas-turbine blading. A short-duration piston tunnel is employed and rapid-response miniature surface-heat-transfer gauges are used to asses the state of the boundary layer. The leading- and trailing-edge velocities of spots are reported for different external pressure gradients and Mach numbers. Also, the lateral spreading angle is determined from the heat-transfer signals which demonstrate dramatically the reduction in spot growth associated with favorable pressure gradients. An associated experiment on the development of turbulent wedges is also reported where liquid-crystal heat-transfer techniques are employed in low-speed wind tunnel to visualize and measure the wedge characteristics. Finally, both liquid crystal techniques and hot-film measurements from flight tests at Mach number of 0.6 are presented.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 319-325; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: A transitional laminar boundary layer is developed on a 1m wide km long flat plate in a 0.6m deep water channel with a freestream velocity of 15-50 cm/s. A particulate dispenser under computer control ejects individual particles having diameters of 1/3 delta into the free stream. The particulates are introduced with an initial velocity of U(sub infinity) in the direction of the free stream. They have differing specific gravities of 1.03-2.7 which introduces an additional non-dimensional parameter relating the time taken to traverse the boundary layer to the convective time scale. The particulates produce a wake in the upper region of the boundary layer as they sink towards the wall. Visualization data taken over the range 5 x 10(exp 4) less than Re(sub x) less than 5 x 10(exp 5) indicate that turbulent spots are produced by the disturbances due to the wake rather than by the particulates themselves. This suggests that the spot formation process in this case may be inviscid in nature and may not be strongly influenced by the presence of the wall.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 23-30; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: Airfoils at high Reynolds numbers, in general, have small separation bubbles that are usually confined to the leading edge. Since the Reynolds number is large, the turbulence model for the transition region between the laminar and turbulent flow is not important. Furthermore, the onset of transition occurs either at separation or prior to separation and can be predicted satisfactorily by empirical correlations when the incident angle is small and can be assumed to correspond to laminar separation when the correlations do not apply, i.e., at high incidence angles.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 339-356; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This lecture reviews current practice as well as new modeling ideas for the calculation of at least skin friction and heat transfer between the onset and end of transition.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 431-471; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: For incompressible benchmark flows, we have demonstrated the capability of the parabolized stability equations (PSE) to simulate the transition process in excellent agreement with microscopic experiments and direct Navier-Stokes simulations at modest computational cost. Encouraged by these results, we have developed the PSE methodology of three-dimensional boundary-layers in general curvilinear coordinates for the range from low to hypersonic speeds, and for both linear and nonlinear problems. For given initial and boundary conditions, the approach permits simulations from receptivity through linear and secondary instabilities into the late stages of transition where significant changes in skin friction and heat transfer coefficients occur. We have performed transition simulations for a variety of two- and three-dimensional similarity solutions and for realistic flows over swept wings at subsonic and supersonic speeds, the pressure ans suction side of turbine blades at low and medium turbulence levels, and over a blunt cone at Mach number Ma = 8. We present selected results for different transition mechanisms with emphasis on the late stage of transition and the evolution of wall-shear stress and heat transfer.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 473-487; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: The primary objective of the UAVSAR Project is to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or minimally piloted vehicle. This viewgraph presentation reviews NASA Dryden's role in the UAVSAR program. The G-III aircraft is described and shown, as well as a high level system architecture. The goals of the Platform Precision Autopilot (PPA) that it are shall fly the G-III within a 10 m (32.8 ft) diameter tube for at least 90% of each data take in conditions of calm to light atmospheric disturbances, as defined in MIL-STD-1797. That it minimize motion during data collection. It is critical to operate the UAVSAR System on a steady platform.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: This viewgraph presentation reviews the use of Intelligent Flight Control System (IFCS) for the F-15. The goals of the project are: (1) Demonstrate Revolutionary Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions (2) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs. The motivation for the development are to reduce the chance and skill required for survival.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: A guidance and control method was developed to detect and exploit thermals for energy gain. Latency in energy rate estimation degraded performance. The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology. Many UAVs have similar mission constraints to birds and sailplanes. a) Surveillance; b) Point to point flight with minimal energy; and c) Increased ground speed.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: Much of technology needed for analysis of HALE nonlinear aeroelastic problems is available from rotorcraft methodologies. Consequence of similarities in operating environment and aerodynamic surface configuration. Technology available - theory developed, validated by comparison with test data, incorporated into rotorcraft codes. High subsonic to transonic rotor speed, low to moderate Reynolds number. Structural and aerodynamic models for high aspect-ratio wings and propeller blades. Dynamic and aerodynamic interaction of wing/airframe and propellers. Large deflections, arbitrary planform. Steady state flight, maneuvers and response to turbulence. Linearized state space models. This technology has not been extensively applied to HALE configurations. Correlation with measured HALE performance and behavior required before can rely on tools.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-05
    Description: As part of the program of flight tests of airplane propellers to determine compressibility effects at high speeds, preliminary flights have been made with a conventional three-blade propeller (Hamilton Standard 3155-6) on a Bell YP-39 airplane. This preliminary report presents the high-speed data obtained thus far with a brief analysis of the results.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-05
    Description: Although antispin tail parachutes have been used successfully in spin demonstrations for some time, very little published information is available concerning the size of parachute, the bridle-line length, and the type and location of pack to use for particular airplane. The present paper is an attempt to supply data relating to these factors. The paper is in two parts. The first part reviews the principles of operation of the antispin parachutes, views the principles of operation of the antispin parachutes, summarized available information on actual installations, and discusses parachute loads and pack locations. The second part of the paper reports on systematic tests in the NACA-15-foot and 20-foot free-spinning tunnels at the Langley memorial Aeronautical Laboratory to determine the minimum size and the optimum bridle-line lengths for antispin tail parachutes for current military airplanes. It is concluded that airplanes weighing between 7500 and 14,000 pounds require parachutes 8 feet in diameter and bridle-line lengths between 20 and 50 feet. A positive-ejection mechanism is desirable to throw the parachute clear of the tail and to assure rapid opening. The pack and attachment point must be so located that the equipment will not foul the tail surfaces.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-06-28
    Description: The relation between the elevator hinge moment parameters and the control forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance. The stability of the short period oscillations is shown as a series of boundaries giving the limits of the stable regions in terms of the elevator hinge moment parameters. The effects of static stability, elevator moment of inertia, elevator mass unbalance, and airplane density are also considered. Dynamic instability is likely to occur if there is mass unbalance of the elevator control system combined with a small restoring tendency (high aerodynamic balance). This instability can be prevented by a rearrangement of the unbalancing weights which, however, involves an increase of the amount of weight necessary. It can also be prevented by the addition of viscous friction to the elevator control system provided the airplane center of gravity is not behind a certain critical position. For high values of the density parameter, which correspond to high altitudes of flight, the addition of moderate amounts of viscous friction may be destabilizing even when the airplane is statically stable. In this case, increasing the viscous friction makes the oscillation stable again. The condition in which viscous friction causes dynamic instability of a statically stable airplane is limited to a definite range of hinge moment parameters. It is shown that, when viscous friction causes increasing oscillations, solid friction will produce steady oscillations having an amplitude proportional to the amount of friction.
    Keywords: Aircraft Stability and Control
    Type: AD-A301267 , NACA-TR-791
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-05
    Description: Tests of several modern airplanes indicate that control surfaces with a high degree of aerodynamic balance are likely to possess characteristics which make them unsatisfactory or dangerous in high-speed flight. Dive tests made in the spring of 1940 at the NACA on a naval fighter-type airplane illustrate one form of instability that may be encountered. During a dive at an indicated airspeed of 365 miles per hour, the ailerons suddenly overbalanced. The efforts of the pilot to bring the ailerons back to neutral resulted in a violent oscillation of the control stick from side to side. Fortunately, the force required to return the ailerons to neutral was within the pilot's capabilities. A time history of the maneuver is given in figure1 and typical frames from motion pictures of the cockpit and of the wing, taken during the maneuver, are given in figure 2. In the illustrated case, the occurrence of aerodynamic overbalance was attributed to a slight bulge, approximately 1/16 inch thick, on the lower surface of the leading edges of the ailerons, caused by the installation of additional mass balance ahead of the hinge line. A drawing showing the shape of the bulge is given in figure 3. After this slight protuberance had been eliminated, dives were successfully made at higher speeds.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-02
    Description: This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
    Keywords: Aircraft Stability and Control
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-28
    Description: This chapter provides a brief wrap-up of the task group report and focuses on the overall conclusions and recommendations for future work for the CAWAPI and VFE-2 facets beyond the task group. The overall conclusion is that the Technology Readiness Level (TRL) of CFD solvers has been improved in predicting the flow-physics of vortex-dominated flows during the work of the task group, by having flight and wind-tunnel data available for comparison. Moreover, like all good scientific studies, this task group has identified flight conditions on the F-16XL airplane or wind-tunnel test conditions for a specific leading-edge radius on the 65 delta-wing model where the TRL still needs to be increased.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 37-1 - 37-4; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-28
    Description: This chapter identifies the benefits that occurred to the AVT-113 task group members and the resulting progress made to two separate vortical flow proposals for task group status being combined into one. Both of these proposals dealt with multiple-vortices, and though they shared different focuses, the general topic, as well as the specific features of this flow, made it of great interest to each sub-task or facet member. The joint meetings increased our overall understanding of vortical flow and the synergistic benefits are summarized in terms of experimental and computational data, virtual laboratory usage, dissemination of results, and career development.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 36-1 - 36-4; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-28
    Description: Nine groups participating in the CAWAPI project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, be it steady or unsteady flow, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 16-1 - 16-35; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-28
    Description: In support of the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) with its goal of improving the Technology Readiness Level of flow solvers by comparing results with measured F-16XL-1 flight data, NASA Langley employed the TetrUSS unstructured grid solver, USM3D, to obtain solutions for all seven flight conditions of interest. A newly available solver version that incorporates a number of turbulence models, including the two-equation linear and non-linear k- , was used in this study. As a first test, a choice was made to utilize only a single grid resolution with the solver for the simulation of the different flight conditions. Comparisons are presented with three turbulence models in USM3D, flight data for surface pressure, boundary-layer profiles, and skin-friction distribution, as well as limited predictions from other solvers. A result of these comparisons is that the USM3D solver can be used in an engineering environment to predict vortex-flow physics on a complex configuration at flight Reynolds numbers with a two-equation linear k- turbulence model.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 15-1 - 15-35; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-28
    Description: A review is presented of the initial experimental results and analysis that formed the basis the Vortex Flow Experiment 2 (VFE-2). The focus of this work was to distinguish the basic effects of Reynolds number, Mach number, angle of attack, and leading edge bluntness on separation-induced leading-edge vortex flows that are common to slender wings. Primary analysis is focused on detailed static surface pressure distributions, and the results demonstrate significant effects regarding the onset and progression of leading-edge vortex separation.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 18-1 - 18-22; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-28
    Description: In this chapter numerical simulations of the flow around F-16XL are performed as a contribution to the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) using the PAB3D CFD code. Two turbulence models are used in the calculations: a standard k-epsilon model, and the Shih-Zhu-Lumley (SZL) algebraic stress model. Seven flight conditions are simulated for the flow around the F-16XL where the free stream Mach number varies from 0.242 to 0.97. The range of angles of attack varies from 0 deg to 20 deg. Computational results, surface static pressure, boundary layer velocity profiles, and skin friction are presented and compared with flight data. Numerical results are generally in good agreement with flight data, considering that only one grid resolution is utilized for the different flight conditions simulated in this study. The Algebraic Stress Model (ASM) results are closer to the flight data than the k-epsilon model results. The ASM predicted a stronger primary vortex, however, the origin of the vortex and footprint is approximately the same as in the k-epsilon predictions.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 7-1 - 7-29; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-28
    Description: The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of some of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory (NLR). The baseline all-tetrahedral and hybrid unstructured grids were generated at the NASA Langley Research Center and the U.S. Air Force Academy, respectively. To provide more geometrical resolution, additional unstructured grids were generated at EADS-MAS, the UTSimCenter, and Boeing Phantom Works. All the grids generated within the framework of CAWAPI will be discussed.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 4-1 - 4-17; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-28
    Description: The RTO Task Group AVT-113 "Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft" was established in April 2003. Two facets of the group, "Cranked Arrow Wing Aerodynamic Project International (CAWAPI)" and "Vortex Flow Experiment-2 (VFE-2)", worked closely together. However, because of the different requirements of each part, the CAWAPI facet concluded its work earlier (December 2006) than the VFE-2 facet (December 2007). In this first chapter of the Final Report of the Task Group an overview on its work is given, and the objectives for the Task Group are described.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 1-1 - 1-5; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-28
    Description: Flight surface flow data of various types for the F-16XL-1 aircraft, employed in the Cranked Arrow Wing Aerodynamics Project (CAWAP), are available.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; A2-1; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-28
    Description: The Virtual Laboratory (VL) was to be an integral part of the database service that NASA provided to the international community, and for a brief period the VL was fully operational in the CAWAPI facet of the AVT-113 task group. This chapter details how one can construct a VL and also some of the lessons learned along the way that required changes to be made. The VL was to support both the CAWAPI and VFE-2 facets but due to the lack of funding and sufficient Information Technology (IT) support people with the right skills, the VFE-2 facet only reached the advanced planning stage with little software in place. However, both efforts point out the value of a VL in a task group like AVT-113 and illustrate that there needs to be a budgeted item for the IT effort to bring the VL to full operational status in each application.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 2-1 - 2-10; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-28
    Description: In the present paper the main results of the new experiments from VFE-2 are summarized. These include some force and moment results, surface and off-body measurements, as well as steady and fluctuating quantities. Some critical remarks are added, and an outlook for future investigations is given.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 24-1 - 24-27; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-28
    Description: This paper provides a brief history of the F-16XL-1 aircraft, its role in the High Speed Research (HSR) program and how it was morphed into the Cranked Arrow Wing Aerodynamics Project (CAWAP). Various flight, wind-tunnel and Computational Fluid Dynamics (CFD) data sets were generated during the CAWAP. These unique and open flight datasets for surface pressures, boundary-layer profiles and skin-friction distributions, along with surface flow data, are described and sample data comparisons given. This is followed by a description of how the project became internationalized to be known as Cranked Arrow Wing Aerodynamics Project International (CAWAPI) and is concluded by an introduction to the results of a 5-year CFD predictive study of data.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; 3-1 - 3-32; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-28
    Description: In this Appendix, sample data are provided in support of Chapter 18. Links and references are also provided.
    Keywords: Aerodynamics
    Type: Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft; A3.1-1 - A3.1-4; RTO-TR-AVT-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-28
    Description: A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
    Keywords: Aerodynamics
    Type: Vortex Breakdown Over Slender Delta Wings; 11-1 - 11-36; AC/323(AVT-080)TP/253
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-28
    Description: An experimental investigation for the flow about a 65 deg. delta wing has been conducted in the NASA Langley National Transonic Facility (NTF). The tests were conducted at Reynolds numbers, based on the mean aerodynamic chord, ranging from 6 million to 120 million and at Mach numbers ranging from 0.4 to 0.9. The model incorporated four different leading-edge bluntness values. The data include detailed static surfacepressure distributions as well as normal-force and pitching-moment coefficients. The test program was designed to quantify the effects of Mach number, Reynolds number, and leading-edge bluntness on the onset and progression of leading-edge vortex separation.
    Keywords: Aerodynamics
    Type: Vortex Breakdown Over Slender Delta Wings; 4-1 - 4-20; AC/323(AVT-080)TP/253
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-02
    Description: In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.
    Keywords: Aircraft Stability and Control
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-11
    Description: Following the completion of NASA s Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Ares Projects Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented. Keywords: Ares I Crew Launch Vehicle, aerodynamics, wind tunnel testing, computational fluid dynamics
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-11
    Description: The flow over the two-dimensional hump model is computed by solving the RANS equations with kappa-omega (SST) model. The governing equations, the flow equations and the turbulent equations, are solved using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using explicit third order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The WENO and the TVD methods and the formulas are explained in [1] and the application of ENO method to N-S equations is given in [2]. The solution method implemented in this computation is described in detail in [3].
    Keywords: Aerodynamics
    Type: Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control; 3.15.1 - 3.15.5; NASA/CP-2007-214874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-11
    Description: Computational analyses have been conducted on the Wall-mounted Glauert-Goldschmied type body ("hump" model) with the Full Unstructured Navier-Stokes 2-D (FUN2D) flow solver developed at NASA LaRC. This investigation uses the time-accurate Reynolds-averaged Navier- Stokes (RANS) approach to predict aerodynamic performance of the active flow control experimental database for the hump model. The workshop is designed to assess the current capabilities of different classes of turbulent flow solution methodologies, such as RANS, to predict flow fields induced by synthetic jets and separation control geometries. The hump model being studied is geometrically similar to that previously tested both experimentally and computationally at NASA LaRC [ref. 1 and 2, respectively].
    Keywords: Aerodynamics
    Type: Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control; 3.10.1 - 3.10.5; NASA/CP-2007-214874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: A viewgraph presentation describing aerodynamics at NASA Johnson Space Center is shown. The topics include: 1) Personal Background; 2) Aerodynamic Tools; 3) The Overset Computational Fluid Dynamics (CFD) Process; and 4) Recent Applicatoins.
    Keywords: Aerodynamics
    Type: Houston IEEE Section Meeting; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Description: Problems involved in the stability and control of tailless airplanes are discussed. Such factors as the location of the aerodynamic center and its effect on the longitudinal stability, longitudinal trim with high-lift devices, the effects of various changes in the shape of the wing on lateral stability, and the effects of nacelles are covered. It appears that sufficient stability and controllability can be secured without sweepback. With sweepback, a flap over the center section of the wing may be used to serve the dual purpose of elevator control and high-lift device. Sweepback introduces undesirable stalling characteristics, however, and may require auxiliary devices to prevent stalling of the tips.
    Keywords: Aerodynamics
    Type: NACA-TN-837
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: An investigation was made of the flow downstream from a "two-dimensional" grid formed of parallel rods. In both two and three dimensional jet fields there is a critical range of grid density below which the downstream flow is stable and above which it is unstable. The flow can be completely stabilized by means of an adequate lateral contraction beginning immediately after the grid or by use of a fine-mesh damping screen parallel to the grid plane and within a definite range of positions downstream from the grid.
    Keywords: Aerodynamics
    Type: NACA-WR-W-90 , NACA-ACR-4H24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: Problem of improving thrust at low speeds is primarily one of reducing angle of attack of operation of sections to improve L/D or reducing blade helix angle. An analysis, based on recent propeller data, is presented for determining improvements in thrust or efficiency which could be obtained by increased number of blades, increased blade width, increased diameter, dual rotation, and two-speed gearing. All methods were found very effective, particularly two-speed gearing.
    Keywords: Aerodynamics
    Type: NACA-WR-L-483
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: Test of a ducted body with Internal flow were made in the 8-foot high-speed wind tunnel for the purpose of studying the effects on external drag and an critical speed of the addition of efficient inlet and outlet openings to a basic streamline shape. Drag tests of a 13.6- inch-diameter streamline body of fineness ratio 6.14 were made at Mach numbers ranging from 0.20 to 0.75. The model was centrally mounted on a 9-percent-thick airfoil and was designed to have an efficient airfoil-body juncture and a high critical speed. An air inlet at the nose and various outlets at the tail were added: drag and internal-flow data were obtained over the given speed range. The critical speed of the ducted bodies was found to be as high as that of the streamline body. The external - drag with air flow through the body did not exceed the drag of the basic streamline shape. No appreciable variation in the efficiency of the diffuser section of the internal duct occurred throughout the Mach number range of the tests.
    Keywords: Aerodynamics
    Type: NACA-WR-L-486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-28
    Description: Data taken from tests at constant speed to establish trim limits of stability, tests at accelerated speeds to determine stable limits of center of gravity shift, and tests at decelerated speeds to obtain landing characteristics of several model hull forms were used to establish hull design effect on longitudinal stability of porpoising. Results show a reduction of dead rise angle as being the only investigated factor reducing low trim limit. Various methods of reducing afterbody interference increased upper trim limit
    Keywords: Aerodynamics
    Type: NACA-WR-L-468
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-06-28
    Description: In order to determine the critical stresses caused by an outward acting pressure on the upper surface of a wing due to the difference in internal and external pressures, torsional tests were made on two curved-sheet specimens subjected to an outward acting normal pressure. Results show that an outward acting normal pressure appreciable raises the critical shear stress for an unstiffened curved sheet; the absolute increase in critical shear stress is slightly greater for a 30 in. rib spacing than for a 10 in. rib spacing.
    Keywords: Aerodynamics
    Type: NACA-WR-L-416
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-28
    Description: Two airfoil plans were used for propeller blades. One is modified Clark Y section designed for structural reliability and the second an NACA 16 airfoil section designed to produce minimum aerodynamic losses. At low air speeds, the propeller designed for aerodynamic effects showed a gain of from 1.5 to 4.0 percent in propulsive efficiency over the conventional type depending on the pitch. Because of the numerous variables involved, the effect of each one on the aerodynamic characteristics of the propellers could not be isolated.
    Keywords: Aerodynamics
    Type: NACA-WR-L-404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: Description is given of flight tests conducted on gun fairings, designed to correct the detrimental effects of the projecting and submerged wing guns on an F4F-3 fighter. It was found that the installation of unfaired guns on a clean wing resulted in a premature stall that increased the stalling speed in the carrier-approach and landing conditions of flight by suitably fairing the guns, it was possible to reduce the stalling speeds to values approaching very nearly the clean-wing values.
    Keywords: Aerodynamics
    Type: NACA-WR-L-247
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-28
    Description: Porpoising characteristics were observed on V-body fitted with tail surfaces for different combinations of load, speed, moment of inertia, location of pivot, elevator setting, and tail area. A critical trim was found which was unaltered by elevator setting or tail area. Critical trim was lowered by moving pivot either forward or down or increasing radius or gyration. Increase in mass and moment of inertia increased amplitude of oscillations. Complete results are tabulated and shown graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-479
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-WR-L-702
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-WR-L-493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-06-28
    Description: Pressure distribution measurements were made over an airfoil with slotted Frise aileron up to 0.76 Mach at various angles of attack and aileron defections. Section characteristics were determined from these pressure data. Results indicated loss of aileron rolling power for deflections ranging from -12 Degrees to -19 Degrees. High stick forces for non-differential deflections incurred at high speed, which were due to overbalancing tendency of up-moving aileron, may precipitate serious control difficulties. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-266 , NACA-ACR-L4G12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: Methods are given of determining the potential flow plast an arbitrary cascade of airfoils and the inverse problem of determining an airfoil having a prescribed velocity distribution in cascade. Results indicated that Cartesian mapping function method may be satisfactorily extended to include cascades. Numerical calculation for computing cascades by Cartesian mapping function method is considerably greater than for single airfoils but much less than hitherto required for cascades. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-81 , NACA-ARR-L4K22B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: Flight tests were conducted on the OS2U-2 seaplane with simple circular-arc-type ailerons directly connected to the actuating torque tube. Two aileron test installations were made, differing only in the inclination of the projecting surface with the wing's upper surface. The lateral-control characteristics of the airplane were determined from data obtained in stalls and rudder-fixed aileron rolls. The revised ailerons were deficient in maximum rolling effectiveness, but were capable of controlling the rolling tendencies of the airplane near the stall.
    Keywords: Aerodynamics
    Type: NACA-WR-A-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-28
    Description: The effects of jet-motor operation on the stability and control characteristics of two fighter-type airplanes as determined by wind-tunnel tests of 1/5-scale models are presented. It is shown that the action of the jets is to cause a small loss in stick-fixed stability which is predictable from known theories.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-A-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-28
    Description: The pitching and the yawing moments of a vee-type and a conventional type of tail surface were measured. The tests were made in the presence of a fuselage and a wing-fuselage combination in such a way as to determine the moments contributed by the tail surfaces. The results showed that the vee-type tail tested, with a dihedral angle of 35.3 deg, was about 71 percent as effective in pitch as the conventional tail and had a yawing-moment to pitching-moment ratio of 0.3. The conventional tail, the panels of which were all congruent to those of the vee-type tail, had a yawing-moment to pitching-moment ratio of 0.48. These ratios are in fair agreement with values calculated by methods shown in this and previous reports. The values of the measured moments were reduced from 15 to 25 percent of the calculated value by fuselage interference.
    Keywords: Aerodynamics
    Type: NACA-TN-815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-28
    Description: Tests were made in 8-ft high-speed wind tunnel to determine the drag reduction possible by eliminating the barrel jacket of a protruding 50-caliber aircraft gun. It was found that the drag of a standard aircraft gun protruding into the air stream at right angles to the flow can be reduced by 23% by discarding the barrel jacket. At 300 mph and sea-level conditions, this amounts to a decrease in drag of from 83 to 64 pounds. A rough surface finish on the barrel was found to have no adverse effects on the drag of the barrel, the drag being actually less at high Mach Numbers.
    Keywords: Aerodynamics
    Type: NACA-WR-L-581
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: Tank tests were made of a hull model of the Hughes-Kaiser cargo airplane for estimates of take-off performance and maximum gross load for take-off. At hump speeds, with the model free to trim, the trim and resistance were high, which resulted in a load-resistance ratio of approximately 4.0 for a gross load coefficient of 0.75. With a 4000,000-lb load, the full size craft may take off in 69 sec over a distance of 5600 ft.
    Keywords: Aerodynamics
    Type: NACA-WR-L-683
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-06-28
    Description: Tests were conducted on hydrofoil assemblies approximating an arrangement for use under seaplanes or surface boats. A series of hydrofoils, each supported by two struts, was towed at various depths ranging from partial submersions to a depth of 5-chord lengths. At depths greater than 4 or 5 chords, the influence of the surface of the water is small; hydrofoils operating at low speed will have characteristics similar to those of airfoils of the same section.
    Keywords: Aerodynamics
    Type: NACA-WR-L-758
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-06-28
    Description: Several tail modifications of the Brewster XSBA-1 scout-bomber were investigated and results compared. Modifications consisted of variation of the chord of the elevator and rudder while the total area of the surfaces is kept constant and variations of the total area of the vertical tail surface. Configuration number 2 reduced trim changes by 50 percent and reduced average elevator control force gradient from 30 to 27 pounds/g. Stick travel required to stall in maneuver was 4.6 inches.
    Keywords: Aerodynamics
    Type: NACA-WR-L-598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Analysis was made to determine characteristics required of a balancing-tab system for ailerons in order to reduce aileron stick forces to any desired magnitude. Series of calculations based on section data were made to determine balancing-tab systems of various chord tabs and ailerons that will give, for a particular airplane, zero rate of aileron hinge moment with aileron deflection and yet will produce same maximum rate of roll as a plain unbalanced 15-percent chord aileron of same span. Effects of rolling velocity and of forces in tab link on aileron hinge moments have been included.
    Keywords: Aerodynamics
    Type: NACA-WR-L-346
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-L-227 , NACA-ARR-4B10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-28
    Description: Results of flight tests indicate that profile-drag coefficients which were obtained with the low-drag airfoils were lower than with the conventional types over the range of light coefficients tested. For comparable conditions of the lift coefficient and Reynolds Number, the low-drag airfoils have profile-drag coefficients which may be 27 percent lower than the profile drag of the conventional airfoils tested. Detailed results are presented graphically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-139 , NACA-ACR-L4E31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-06-28
    Description: The effect of various vertical tail arrangements upon the stability and control characteristics of an XP-62 fighter model was investigated. Rudder-free yaw characteristics with take-off power and flaps deflected were satisfactory after dorsal fin modifications. Directional stability was obtained with all modified vertical tails. Satisfactory rudder effectiveness resulted partly because the dual-rotation propellers produced no asymmetric yawing moments. Pedal forces in sideslips were undesirably large but may be easily reduced.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-L-779
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-06-28
    Description: Rough conventional, smooth conventional, and laminar-flow or low-drag sections were tested. The items covered are rotor thrust for fixed power in hovering, range and endurance at cruising speed, and power required at high-forward speed. Calculations indicated that a smooth conventional section gives marked performance gains. Smaller gains are obtainable by using a low-drag section. At high speeds or loads the low-drag section is inferior to the smooth conventional section.
    Keywords: Aerodynamics
    Type: NACA-WR-L-26 , NACA-ACR-L4H05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-06-28
    Description: Tests of 10-ft. diameter, eight-blade, single - and dual - rotating propellers were conducted in 20-ft propeller research tunnel. Propellers were mounted at front end of a streamline body in spinners that covered hubs and parts of shanks. Effect of a symmetrical wing mounted in slipstream was investigated. Blade-angle settings ranged from 20 Degrees to 65 Degrees. Results indicated that dual rotation resulted in gains of from 1 to 8 percent in efficiency over single rotation for eight-blade propellers, but presence of a wing reduced gain about one-half. Greater power absorption caused by dual rotation over flight range and higher efficiency or thrust for range of take-off and climb was indicated
    Keywords: Aerodynamics
    Type: NACA-WR-L-384
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: An investigation was made of the cooling characteristics of a P and W R-2800 engine with NACA short-nose high inlet-velocity cowling. The internal aerodynamics of the cowling were studied for ranges of propeller-advance ratio and inlet-velocity ratio obtained by deflection of cowling flaps. Tests included variations of engine power, fuel/air ratio and cooling-air pressure drop. Engine cooling data are presented in the form of cooling correlation curves, and an example for calculation of cooling requirements in flight is included.
    Keywords: Aerodynamics
    Type: NACA-WR-L-207 , NACA-ACR-L4F06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-06-28
    Description: Investigations were undertaken to improve the ailerons of a P-51 fighter so as to obtain greater effectiveness without increasing the stick forces. Modifications consisted of increasing the deflection range of the aileron to 70 percent and changing the original concave section to a thick section with beveled trailing edge. Results of the modified ailerons showed an increase in effectiveness over the original aileron of 70 percent at low speed and 55 percent at high speeds.
    Keywords: Aerodynamics
    Type: NACA-WR-L-636
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-28
    Description: Hinge-moment, lift, and pressure-distribution measurements were made in the two-dimensional test section of the NACA stability tunnel on a blunt-nose balance-type aileron on an NACA 66,2-216 airfoil at speeds up to 360 miles per hour corresponding to a Mach number of 0.475. The tests were made primarily to determine the effect of speed on the action of this type of aileron. The balance-nose radii of the aileron were varied from 0 to 0.02 of the airfoil chord and the gap width was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gap sealed.
    Keywords: Aerodynamics
    Type: NACA-WR-L-431 , NACA-ACR-3F11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: Aerodynamics data are obtained for the design of linked balancing tabs and effect of varied tab span and location to produce suitable lateral control characteristics with reasonable stick pressures for high-speed aircraft. Simple and spring-linked balancing tabs may considerably reduce control pressures if aileron system is designed for low maximum aileron deflection. Spring-linked tabs also decrease variation of stick pressure with speed and impart better controlllability at low speeds.
    Keywords: Aerodynamics
    Type: NACA-WR-L-470
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-WR-L-318 , NACA-ARR-4A26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: Tests were made of an 0.309-chord double-slotted flap on an NACA 65, 3-118, a equals 1.0 airfoil section to determine drag, lift, and pitching-moment characteristics for a range of flap deflections. Results indicate that combination of a low-drag airfoil and a double-slotted flap, of which the two parts moved as a single unit, gave higher maximum lift coefficients than have been obtained with plain, split, or slotted flaps on low-drag airfoils. Pitching moments were comparable to those obtained with other high-lift devices on conventional airfoils for similar lift coefficients.
    Keywords: Aerodynamics
    Type: NACA-WR-L-697 , NACA-ACR-3I20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: A pursuit type airplane encountered severe diving moments in high-speed dives which make recovery difficult. For the purpose of investigating these diving moments and finding means for their reduction, a 1/6-scale model of the airplane was tested in the 16-foot high-speed wind tunnel at Ames Aeronautical Laboratory. The test results indicate that up to a Mach number of at least 0.75, the limit of the tests, the dive-recovery difficulties can be alleviated and the longitudinal maneuverability improved by the substitution of a long symmetrical fuselage for the standard fuselage.
    Keywords: Aircraft Stability and Control
    Type: NACA-WR-A-65
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: Results are presented for tests of two wings, an NACA 230-series wing and a highly-cambered NACA 66-series wing on a twin-engine pursuit airplane. Auxiliary control flaps were tested in combinations with each wing. Data showing comparison of high-speed aerodynamic characteristics of the model when equipped with each wing, the effect of the auxiliary control flaps on aerodynamic characteristics, and elevator effectiveness for the model with the 66-series wing are presented. High-speed aerodynamic characteristics of the model were improved with the 66-series wing.
    Keywords: Aerodynamics
    Type: NACA-WR-A-90
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-05
    Description: During August 1939 a series of flight tests was made at Langley Field on the Wilford sea gyroplane, designated by the Navy as the XOZ-1. These tests were intended to permit rough evaluation of the stability and control characteristics of the machine, with particular reference to possible improvements in rigging which might be made in future machines with fixed wing and nonarticulated feathering control rotor, and to provide data on the bending and feathering motions of the rotor blades. The tests made in 1939 proved inadequate, chiefly because the machine as flown did not have sufficient propeller thrust to give it an appreciable speed range in steady flight. Further tests were therefore made in August 1940 after overhauling the engine and substituting a metal propeller for the wooded one first used. The range of speeds covered in steady flight was markedly extended. Steady-flight runs only were made in this series, since it was felt that takeoffs and landings had been covered sufficiently in the previous tests.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-05
    Description: In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.
    Keywords: Aircraft Stability and Control
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an HI1 rocket on November 27,1997 and transitioned in August, 2001 from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro data. After the orbit boost, the attitude errors shown by the PR roll have a smooth sine-wave type signal because of the way that attitude errors propagate with the use of gyro data. Yaw errors couple at orbit period to roll with '/4 orbit lag. By tracking the amplitude, phase, and bias of the sinusoidal PR roll error signal, it was shown that the average pitch rotation axis tends to be offset from orbit normal in a direction perpendicular to the Sun direction, as shown in Figure 2 for a 200 day period following the orbit boost. This is a result of the higher accuracy and stability of the Sun sensor measurements relative to the magnetometer measurements used in the Kalman filter. In November, 2001 a magnetometer calibration adjustment was uploaded which improved the pointing performance, keeping the roll and yaw amplitudes within about 0.1 degrees. After the boost, onboard ephemeris errors had a direct effect on the pitch pointing, being used to compute the Earth pointing reference frame. Improvements after the orbit boost have kept the the onboard ephemeris errors generally below 20 kilometers. Ephemeris errors have secondary effects on roll and yaw, especially during high beta angle when pitch effects can couple into roll and yaw. This is illustrated in figure 3. The onboard roll bias trends as measured by PR data show correlations with the Kalman filter's gyro bias error. This particularly shows up after yaw turns (every 2 to 4 weeks) as shown in Figure 3, when a slight roll bias is observed while the onboard computed gyro biases settle to new values. As for longer term trends, the PR data shows that the roll bias was influenced by Earth horizon radiance effects prior to the boost, changing values at yaw turns, and indicated a long term drift as shown in Figure 4. After the boost, the bias variations were smaller and showed some possible correlation with solar beta angle, probably due to sun sensor misalignment effects.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-11
    Description: Wind tunnel experiments will continue to be a primary source of validation data for many types of mathematical and computational models in the aerospace industry. The increased emphasis on accuracy of data acquired from these facilities requires understanding of the uncertainty of not only the measurement data but also any correction applied to the data. One of the largest and most critical corrections made to these data is due to wall interference. In an effort to understand the accuracy and suitability of these corrections, a statistical validation process for wall interference correction methods has been developed. This process is based on the use of independent cases which, after correction, are expected to produce the same result. Comparison of these independent cases with respect to the uncertainty in the correction process establishes a domain of applicability based on the capability of the method to provide reasonable corrections with respect to customer accuracy requirements. The statistical validation method was applied to the version of the Transonic Wall Interference Correction System (TWICS) recently implemented in the National Transonic Facility at NASA Langley Research Center. The TWICS code generates corrections for solid and slotted wall interference in the model pitch plane based on boundary pressure measurements. Before validation could be performed on this method, it was necessary to calibrate the ventilated wall boundary condition parameters. Discrimination comparisons are used to determine the most representative of three linear boundary condition models which have historically been used to represent longitudinally slotted test section walls. Of the three linear boundary condition models implemented for ventilated walls, the general slotted wall model was the most representative of the data. The TWICS code using the calibrated general slotted wall model was found to be valid to within the process uncertainty for test section Mach numbers less than or equal to 0.60. The scatter among the mean corrected results of the bodies of revolution validation cases was within one count of drag on a typical transport aircraft configuration for Mach numbers at or below 0.80 and two counts of drag for Mach numbers at or below 0.90.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 133-148; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This talk provides a description of several types of transition encountered in turbomachines. It is based largely on personal experience of the detection of transition in turbomachines. Examples are taken from axial compressors, axial turbines and radial turbines. The illustrations are concerned with transition in steady and unsteady boundary layers that develop under the influence of two-dimensional and three-dimensional flow fields.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 115-132; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-06
    Description: Rotor performance and aeroelastic stability are presented for a 124,000-lb Large Civil Tilt Rotor (LCTR) design. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots at 30,000 ft altitude. Design features include a low-mounted wing and hingeless rotors, with a very low cruise tip speed of 350 ft/sec. The rotor and wing design processes are described, including rotor optimization methods and wing/rotor aeroelastic stability analyses. New rotor airfoils were designed specifically for the LCTR; the resulting performance improvements are compared to current technology airfoils. Twist, taper and precone optimization are presented, along with the effects of blade flexibility on performance. A new wing airfoil was designed and a composite structure was developed to meet the wing load requirements for certification. Predictions of aeroelastic stability are presented for the optimized rotor and wing, along with summaries of the effects of rotor design parameters on stability.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-06
    Description: Several different boundary-layer development patterns for flow over the suction surface of a turbine airfoil in a linear cascade were studied and documented using a sliding surface hot-film sensor. The state of the boundary layer, whether laminar, transitional or turbulent, was determined at numerous locations along the airfoil suction surface from leading to trailing edge. Boundary-layer transition from laminar to turbulent flow through laminar separation and turbulent reattachment, or through a combination of bypass transition and strong and weak separation and turbulent reattachment, or through solely bypass transition without separation, was observed and benchmark data were recorded. Surface flow visualization and numerical boundary-layer analysis results are consistent with the hot-film data. Flow and geometry information necessary for nmerical code operation is available.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 207-232; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-06
    Description: Localized disturbances in a laminar boundary layer represent a more realistic model of transition than the extensively studies, two or quasi three-dimensional perturbations regardless of the fact if they evolve in a linear manner or not. Localized disturbances can originate by surface imperfections, insects or dust. The disturbances can be harmonic (i.e. containing a single frequency and a complete set of spanwise wave numbers) or Pulsed (i.e. containing a band of streamwise and spanwise wave numbers). At sufficiently low amplitudes localized disturbances behave according to a linear stability model. It is highly probably that in a natural transition process such localized disturbances will overslap and interact. These interactions could either delay transition because of a partial wave cancellation resulting in an attenuation of the disturbance, or adversely enhance it by promoting nonlinear interactions. The nonlinearity could be simply amplitude dependent or cause a triad resonance. Nonlinear processes in a wave packet lead to breakdown and to the formation of turbulent spots. When the amplitude of the harmonic disturbance saturates, nonlinear processes widen the band of the lower amplified frequencies adjacent to the frequency of excitation. Experimental results describing the spanwise interactions of harmonic and pulsed localized disturbances leading to breakdown will be presented and discussed. A comparison to the evolution and breakdown of a single localized disturbance will be provided.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 390-419; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-06
    Description: This viewgraph presentation reviews direct numerical simulation in the late stages of the transition process to turbulence.
    Keywords: Aerodynamics
    Type: Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition; 489-493; NASA/CP-2007-214667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...