ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Institute of Physics  (133,511)
  • Nature Publishing Group  (27,710)
  • 2005-2009  (144,588)
  • 1945-1949  (16,633)
Collection
Years
Year
  • 11
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  The ISME Journal, 3 (1). pp. 4-12.
    Publication Date: 2019-09-24
    Description: Our understanding of the composition and activities of microbial communities from diverse habitats on our planet has improved enormously during the past decade, spurred on largely by advances in molecular biology. Much of this research has focused on the bacteria, and to a lesser extent on the archaea and viruses, because of the relative ease with which these assemblages can be analyzed and studied genetically. In contrast, single-celled, eukaryotic microbes (the protists) have received much less attention, to the point where one might question if they have somehow been demoted from the position of environmentally important taxa. In this paper, we draw attention to this situation and explore several possible (some admittedly lighthearted) explanations for why these remarkable and diverse microbes have remained largely overlooked in the present era of the microbe. © 2009 International Society for Microbial Ecology All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 447 . p. 383.
    Publication Date: 2019-09-23
    Description: As the complex interplay of forces in the ocean responds to climate change, the dynamics of global ocean circulation are shifting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-09-23
    Description: Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC)1. Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic2, 3 (RAPID, at latitude 26.5° N, and MOVE, at latitude 16° N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades4, 5. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of plusminus1.5–3 Sv (1 Sv = 106 m3 s-1) on decadal timescales in the subtropics6. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water7. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-09-23
    Description: Piceamycin, a new macrolactam polyketide antibiotic, was detected by HPLC-diode array screening in extracts of Streptomyces sp. GB 4-2, which was isolated from the mycorrhizosphere of Norway spruce. The structure of piceamycin was determined by mass spectrometry and NMR experiments. It showed inhibitory activity against Gram-positive bacteria, selected human tumor cell lines and protein tyrosine phosphatase 1B. The Journal of Antibiotics (2009) 62, 513-518; doi:10.1038/ja.2009.64; published online 17 July 2009
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-09-23
    Description: In the context of gradual Cenozoic cooling, the timing of the onset of significant Northern Hemisphere glaciation 2.7 million years ago is consistent with Milankovitch's orbital theory, which posited that ice sheets grow when polar summertime insolation and temperature are low. However, the role of moisture supply in the initiation of large Northern Hemisphere ice sheets has remained unclear. The subarctic Pacific Ocean represents a significant source of water vapour to boreal North America, but it has been largely overlooked in efforts to explain Northern Hemisphere glaciation. Here we present alkenone unsaturation ratios and diatom oxygen isotope ratios from a sediment core in the western subarctic Pacific Ocean, indicating that 2.7 million years ago late-summer sea surface temperatures in this ocean region rose in response to an increase in stratification. At the same time, winter sea surface temperatures cooled, winter floating ice became more abundant and global climate descended into glacial conditions. We suggest that the observed summer warming extended into the autumn, providing water vapour to northern North America, where it precipitated and accumulated as snow, and thus allowed the initiation of Northern Hemisphere glaciation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 2 (4). pp. 243-244.
    Publication Date: 2019-09-23
    Description: The enhanced Arctic warming over the past three decades is attracting much attention. Combining forward and inverse models with observations suggests that regional changes in aerosol concentrations have contributed significantly.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-09-23
    Description: The transport of warm and salty Indian Ocean waters into the Atlantic Ocean—the Agulhas leakage—has a crucial role in the global oceanic circulation1 and thus the evolution of future climate. At present these waters provide the main source of heat and salt for the surface branch of the Atlantic meridional overturning circulation (MOC)2. There is evidence from past glacial-to-interglacial variations in foraminiferal assemblages3 and model studies4 that the amount of Agulhas leakage and its corresponding effect on the MOC has been subject to substantial change, potentially linked to latitudinal shifts in the Southern Hemisphere westerlies5. A progressive poleward migration of the westerlies has been observed during the past two to three decades and linked to anthropogenic forcing6, but because of the sparse observational records it has not been possible to determine whether there has been a concomitant response of Agulhas leakage. Here we present the results of a high-resolution ocean general circulation model7, 8 to show that the transport of Indian Ocean waters into the South Atlantic via the Agulhas leakage has increased during the past decades in response to the change in wind forcing. The increased leakage has contributed to the observed salinification9 of South Atlantic thermocline waters. Both model and historic measurements off South America suggest that the additional Indian Ocean waters have begun to invade the North Atlantic, with potential implications for the future evolution of the MOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-23
    Description: The early oceanographic history of the Arctic Ocean is important in regulating, and responding to, climatic changes. However, constraints on its oceanographic history preceding the Quaternary (the past 1.8 Myr) have become available only recently, because of the difficulties associated with obtaining continuous sediment records in such a hostile setting. Here, we use the neodymium isotope compositions of two sediment cores recovered near the North Pole to reconstruct over the past approx15 Myr the sources contributing to Arctic Intermediate Water, a water mass found today at depths of 200 to 1,500 m. We interpret high neodymium ratios for the period between 15 and 2 Myr ago, and for the glacial periods thereafter, as indicative of weathering input from the Siberian Putoranan basalts into the Arctic Ocean. Arctic Intermediate Water was then derived from brine formation in the Eurasian shelf regions, with only a limited contribution of intermediate water from the North Atlantic. In contrast, the modern circulation pattern, with relatively high contributions of North Atlantic Intermediate Water and negligible input from brine formation, exhibits low neodymium isotope ratios and is typical for the interglacial periods of the past 2 Myr. We suggest that changes in climatic conditions and the tectonic setting were responsible for switches between these two modes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-09-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-09-23
    Description: Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate1. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores of Cenozoic sediments from the Arctic's deep-sea floor. Similarly, the timing of the opening of a connection between the northern North Atlantic and the Arctic Ocean, permitting deep-water exchange, has been poorly constrained. This situation changed when the first drill cores were recovered from the central Arctic Ocean2. Here we use these cores to show that the transition from poorly oxygenated to fully oxygenated ('ventilated') conditions in the Arctic Ocean occurred during the later part of early Miocene times. We attribute this pronounced change in ventilation regime to the opening of the Fram Strait. A palaeo-geographic and palaeo-bathymetric reconstruction of the Arctic Ocean, together with a physical oceanographic analysis of the evolving strait and sill conditions in the Fram Strait, suggests that the Arctic Ocean went from an oxygen-poor 'lake stage', to a transitional 'estuarine sea' phase with variable ventilation, and finally to the fully ventilated 'ocean' phase 17.5 Myr ago. The timing of this palaeo-oceanographic change coincides with the onset of the middle Miocene climatic optimum3, although it remains unclear if there is a causal relationship between these two events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...