ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (31)
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data  (21)
  • Elsevier  (52)
  • Blackwell Publishing Ltd
  • Nature Publishing Group
  • Taylor & Francis
  • 2005-2009  (52)
  • 1950-1954
Collection
Years
Year
  • 1
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-21
    Description: The lithological and compositional characteristics of eighteen different pyroclastic deposits of Campanian origin, dated between 125 cal ky BP and 22 cal ky BP, were described. The pyroclastic deposits were correlated among different outcrops mainly located on the Apennine slopes that border the southern Campanian Plain. They were grouped in two main stratigraphic and chronologic intervals of regional significance: a) between Pomici di Base (22.03 cal ky BP; Somma–Vesuvius) and Campanian Ignimbrite (39 cal ky BP; Campi Flegrei) eruptions; and b) older than Campanian Ignimbrite eruption. Three new 14C AMS datings support the proposed correlations. Six eruptions were attributed to the Pomici di Base- Campanian Ignimbrite stratigraphic interval, while twelve eruptions are older than Campanian Ignimbrite. Of the studied deposits two originated from Ischia island, five are related to Campi Flegrei, and three to Somma– Vesuvius. Two eruptions have an uncertain correlation with Somma–Vesuvius or Campi Flegrei, while six eruptions remain of uncertain source. Minimum volumes of five eruptions were assessed, ranging between 0.5 km3 and 4 km3. Two of the studied deposits were correlated with Y-3 and X-5 tephra layers, which are widely dispersed in the central Mediterranean area. The new stratigraphic and chronologic data provide an upgraded chrono-stratigraphy for the explosive activity of Neapolitan volcanoes in the period between 125 and 22 cal ky BP.
    Description: Published
    Description: 19–48
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Neapolitan volcanoes ; late Pleistocene ; explosive eruptions ; Somma–Vesuvius ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-17
    Description: Papandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772,only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano. At the present time, the activity is centered in the northeast crater with discharge of low temperature fumaroles and acid hot springs. Two types of acid fluids are emitted in the crater of Papandayan volcano: (1) acid sulfate-chloride waters with pH between 1.6 and 4.6 and (2) acid sulfate waters with pH between 1.2 and 2.5. The water samples collected after the eruption on January 2003 reveal an increase in the SO4/Cl and Mg/Cl ratios. This evolution is likely explained by an increase in the neutralization of acid fluids and tends to show that water–rock interactions were more significant after the eruption. The evolution in the chemistry observed since 2003 is the consequence of the opening of new fractures at depth where unaltered (or less altered) volcanic rocks were in contact with the ascending acid waters. The high δ34S values (9–17‰) observed in acid sulfatechloride waters before the November 2002 eruption suggest that a significant fraction of dissolved sulfates was formed by the disproportionation of magmatic SO2. On the other hand, the low δ34S (−0.3–7‰) observed in hot spring waters sampled after the eruption suggest that the hydrothermal contribution (i.e. the surficial oxidation of hydrogen sulfide) has increased.
    Description: Published
    Description: 276-286
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Papandayan volcano ; Indonesia ; phreatic eruption ; hydrothermal system ; fluid geochemistry ; advanced argillic alteration ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-16
    Description: Assessing the residence times of phonolite magmas in the shallow crust contributes to the understanding of explosive volcanic systems. Estimations of that by dating the residence time of a mineral in a melt was difficult in the past, because e.g. of the lack of evidence for the co-genetic character of the crystals dated. Here we present an estimate for the residence time of a phonolite magma feeding the Pomici di Mercato Plinian eruption (8890±90 cal years BP) of Mt. Somma-Vesuvius (Southern Italy), employing U–Th disequilibrium dating of unzoned Ca-rich phenocrystic magmatic garnets. Based on combined textural, geochemical, and Sr- O isotope evidence, these garnets can be identified as co-genetic with their host phonolites. Furthermore, experimental and petrological data suggest that Ca-garnets can be a liquidus phase in highly differentiated phonolite magmas of Mercato. A whole-rock–glass–garnet U–Th isochron gives a crystallisation age for the Ca-rich garnets of 14,400±1100 a (2σ). This implies a Ca-garnet residence time of 5510±1100 years (2σ) in the Mercato phonolite melt prior to eruption and provides one of the first robust estimates of how long explosive phonolite magma has resided in the shallow crust before eruption. Calculations of magma cooling rates and settling velocities of the Ca-garnets confirm that garnet-bearing phonolite can remain liquid and the garnets remain suspended in a magma chamber for as long as 5510 years before the time of eruption. Processes which may have disturbed the U–Th isotope systematic of the samples, such as assimilation, recharge or surface alteration can be ruled out.
    Description: Published
    Description: 293-301
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Uranium ; Thorium ; U–Th isotopes ; Somma-Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma–Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Srisotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation– Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC–AFC) formulation. J. Petrol. 999– 1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energyconstrained assimilation–fractional crystallization (EC–AFC) model to magmatic systems. J. Petrol. 1019–1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9–10 km) is a fundamental process controlling magma compositions at Mt. Somma–Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions.
    Description: Published
    Description: 303– 329
    Description: reserved
    Keywords: Mt. Somma–Vesuvius volcano ; Sr isotopes ; Geochemistry ; Crustal contamination ; Mantle source ; Phenocryst entrapment ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 879803 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Despite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at midocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas, as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223–18251.] to CO2–He–Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01–0.5 m/s), slightly faster rates of energetic effusions (0.1–1 m/s), up to rates of 1–10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine deposits where they are collected. Enhanced knowledge of a number of physical properties of gas-bearing MOR magmas is also required, mainly noble gas diffusivities, to describe multicomponent bubble growth at a higher confidence level.
    Description: Published
    Description: 138-158
    Description: JCR Journal
    Description: reserved
    Keywords: Bubble growth; ; MORB; ; Noble gas; ; Kinetic fractionation; ; Modeling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Viscosity of water-bearing float glass (0.03–4.87 wt% H2O) was measured in the temperature range of 573–1523 K and pressure range of 50–500 MPa using a parallel plate viscometer in the high viscosity range and the falling sphere method in the low viscosity range. Melt viscosity depends strongly on temperature and water content, but pressure up to 500 MPa has only minor influence. Consistent with previous studies on aluminosilicate compositions we found that the effect of dissolved water is most pronounced at low water content, but it is still noticeable at high water content. A new model for the calculation of the viscosities as a function of temperature and water content is proposed which describes the experimental data with a standard deviation of 0.22 log units. The depression of the glass tran- sition temperature Tg by dissolved water agrees reasonably well with the prediction by the model of Deubener [J. Deubener, R. Mu¨ ller, H. Behrens, G. Heide, J. Non-Cryst. Solids 330 (2003) 268]. Using water speciation measured by near-infrared spectroscopy we infer that although the effect of OH groups in reducing Tg is larger than that of H2O molecules, the difference in the contribution of both species is smaller than predicted by Deubener et al. (2003). Compared to alkalis and alkaline earth elements the effect of protons on glass fragility is small, mainly because of the relatively low concentration of OH groups (max. 1.5 wt% water dissolved as OH) in the glasses.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Glass transition ; Pressure effects ; FTIR measurements ; Alkali silicates ; Silicates ; Soda-lime-silica ; Fragility ; Viscosity ; Water in glass ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: This paper presents and discusses the measurement of permeability of Neapolitan Yellow Tuff (NYT) samples obtained in the framework of a study concerning the phenomenon of bradyseism, i.e. the slow vertical movement of soil, in the Campi Flegrei caldera (Campania—Italy). Measurements have been performed under isothermal, non-isothermal and transient non-isothermal conditions using a specifically designed apparatus. Results of measurements of porosity of different samples are also reported. Experimental results in isothermal conditions show that the volume flux through the samples changes linearly with applied pressure. The values of permeability obtained turn out to be independent of the temperature and pressure gradients applied to the samples. This result is consistent with the fact that the permeability is a characteristic of the porous medium, and as such is not affected by temperature and pressure variation, at least in the range examined. The permeability values measured in our laboratories agree quite well with the ones measured in situ by the Agenzia Generale Italiana Petroli (AGIP) during a geothermal exploration of the Campi Flegrei area in 1980. An interesting, still unexplained phenomenon has been detected during transient phases when both pressure and temperature gradients were applied to the samples. The phenomenon consists in an enhancement of volume flux due to heat flux in the transient phase. The extra volume-flux disappears once the steady temperature gradient is reached.
    Description: Published
    Description: 125-136
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; hydrothermal systems; ; resurgent calderas ; porous media ; hydraulic permeability ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This paper focuses on the role that hydrothermal systems may play in caldera unrest. Changes in the fluid chemistry, temperature, and discharge rate of hydrothermal systems are commonly detected at the surface during volcanic unrest, as hydrothermal fluids adjust to changing subsurface conditions. Geochemical monitoring is carried out to observe the evolving system conditions. Circulating fluids can also generate signals that affect geophysical parameters monitored at the surface. Effective hazard evaluation requires a proper understanding of unrest phenomena and correct interpretation of their causes. Physical modeling of fluid circulation allows quantification of the evolution of a hydrothermal system, and hence evaluation of the potential role of hydrothermal fluids during caldera unrest. Modeling results can be compared with monitoring data, and then contribute to the interpretation of the recent caldera evolution. This paper: 1) describes the main features of hydrothermal systems; 2) briefly reviews numerical modeling of heat and fluid flow through porous media; 3) highlight the effects of hydrothermal fluids on unrest processes; and 4) describes some model applications to the Phlegrean Fields caldera. Simultaneous modeling of different independent parameters has proved to be a powerful tool for understanding caldera unrest. The results highlight the importance of comprehensive conceptual models that incorporate all the available geochemical and geophysical information, and they also stress the need for high-quality, multi-parameter monitoring and modeling of volcanic activity.
    Description: Accepted
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: open
    Keywords: hydrothermal activity ; caldera unrest ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Description: Published
    Description: 79-95
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...