ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Underwater acoustic propagation  (10)
  • Echo  (4)
  • Astronomy
  • Fisheries
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • Acoustical Society of America  (16)
  • 2005-2009  (16)
  • 1950-1954
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 118 (2005): 263-278, doi:10.1121/1.1907106.
    Description: Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error of each equalizer. This error is decomposed into two components. These are the minimum achievable error and the excess error. The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors
    Description: This work has been supported by ONR Grant Nos. N00014-00-1-0048 and N00014-02-C-0201.
    Keywords: Underwater acoustic communication ; Adaptive equalisers ; Channel estimation ; Acoustic signal processing ; Adaptive signal processing ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2004. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 116 (2004): 2067-2080, doi:10.1121/1.1771591.
    Description: The forward scattering of acoustic signals off of shoaling surface gravity waves in the surf zone results in a time-varying channel impulse response that is characterized by intense, rapidly fluctuating arrivals. In some cases, the acoustic focusing by the curvature of the wave crest results in the formation of caustics at or near a receiver location. This focusing and the resulting caustics present challenges to the reliable operation of phase coherent underwater acoustic communications systems that must implicitly or explicitly track the fluctuations in the impulse response. The propagation physics leading to focusing are studied with both experimental data and a propagation model using surface wave profiles measured during the collection of the experimental data. The deterministic experimental and modeled data show good agreement and demonstrate the stages of the focusing event and the impact of the high intensity arrivals and rapid fluctuations on the ability of an algorithm to accurately estimate the impulse response. The statistical characterization of experimental data shows that the focusing by surface gravity waves results in focused surface reflected arrivals whose intensity often exceeds that of the direct arrival and the focusing and caustic formation adversely impacts the performance of an impulse response estimation algorithm.
    Description: This work has been supported by ONR Grant Nos. N00014-96-1-0120, N00014-00-1-0303, N00014-99-1-0274, and N00014-00-1-0048.
    Keywords: Underwater acoustic communication ; Underwater acoustic propagation ; Acoustic focusing ; Acoustic wave refraction ; Direction-of-arrival estimation ; Acoustic signal processing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 126 (2009): 599-606, doi:10.1121/1.3158826.
    Description: Receptions, from a ship-suspended source (in the band 50–100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), “deep seafloor arrivals,” that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.
    Description: The LOAPEX source deployments, the moored DVLA receiver deployments, and some post-cruise data reduction and analysis were funded by the Office of Naval Research under Award Nos. N00014-1403-1-0181, N00014-03-1-0182, and N00014-06-1-0222. Additional post-cruise analysis support was provided to RAS through the Edward W. and Betty J. Scripps Chair for Excellence in Oceanography. The OBS/Hs used in the experiment were provided by Scripps Institution of Oceanography under the U.S. National Ocean Bottom Seismic Instrumentation Pool (SIO-OBSIP—http://www.obsip.org). To cover the costs of the OBS/H deployments funds were paid to SIO-OBSIP from the National Science Foundation and from the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute.
    Keywords: Hydrophones ; Ocean waves ; Oceanographic equipment ; Sonar ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 126 (2009): 1026-1035, doi:10.1121/1.3158818.
    Description: In this paper Creamer's [(1996). J. Acoust. Soc. Am. 99, 2825–2838] transport equation for the mode amplitude coherence matrix resulting from coupled mode propagation through random fields of internal waves is examined in more detail. It is shown that the mode energy equations are approximately independent of the cross mode coherences, and that cross mode coherences and mode energy can evolve over very similar range scales. The decay of cross mode coherence depends on the relative mode phase randomization caused by coupling and adiabatic effects, each of which can be quantified by the theory. This behavior has a dramatic effect on the acoustic field second moments like mean intensity. Comparing estimates of the coherence matrix and mean intensity from Monte Carlo simulation, and the transport equations, good agreement is demonstrated for a 100-Hz deep-water example.
    Description: This work was supported by the Office of Naval Research and the Naval Undersea Warfare Center’s (NUWC) Under- Sea Warfare (USW) chair at the Naval Postgraduate School.
    Keywords: Acoustic field ; Acoustic intensity ; Matrix algebra ; Monte Carlo methods ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2004. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 116 (2004): 239-244, doi:10.1121/1.1675813.
    Description: Recent laboratory measurements of acoustic backscattering by individual benthic shells have isolated the edge-diffracted echo from echoes due to the surface of the main body of the shell. The data indicate that the echo near broadside incidence is generally the strongest for all orientations and is due principally to the surface of the main body. At angles well away from broadside, the echo levels are lower and are due primarily to the diffraction from the edge of the shell. The decrease in echo levels from broadside incidence to well off broadside is shown to be reasonably consistent with the decrease in acoustic backscattering from normal incidence to well off normal incidence by a shell-covered seafloor. The results suggest the importance of the edge of the shell in off-normal-incidence backscattering by a shell-covered seafloor. Furthermore, when considering bistatic diffraction by edges, there are implications that the edge of the shell (lying on the seafloor) can cause significant scattering in many directions, including at subcritical angles.
    Description: This research was supported by the U.S. Office of Naval Research (Grant No. N00014-02-1-0095) and the Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA.
    Keywords: Underwater sound ; Acoustic wave diffraction ; Acoustic wave scattering ; Echo
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2004. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 116 (2004): 3404-3422, doi:10.1121/1.1819499.
    Description: To investigate acoustic effects of nonlinear internal waves, the two southwest tracks of the SWARM 95 experiment are considered. An airgun source produced broadband acoustic signals while a packet of large nonlinear internal waves passed between the source and two vertical linear arrays. The broadband data and its frequency range (10–180 Hz) distinguish this study from previous work. Models are developed for the internal wave environment, the geoacoustic parameters, and the airgun source signature. Parabolic equation simulations demonstrate that observed variations in intensity and wavelet time–frequency plots can be attributed to nonlinear internal waves. Empirical tests are provided of the internal wave-acoustic resonance condition that is the apparent theoretical mechanism responsible for the variations. Peaks of the effective internal wave spectrum are shown to coincide with differences in dominant acoustic wavenumbers comprising the airgun signal. The robustness of these relationships is investigated by simulations for a variety of geoacoustic and nonlinear internal wave model parameters.
    Description: This work was supported by an ONR Ocean Acoustics Graduate Traineeship Award and by ONR grants to Rensselaer, the University of Delaware, and Woods Hole Oceanographic Institution.
    Keywords: Acoustic resonance ; Nonlinear acoustics ; Underwater acoustic propagation ; Parabolic equations ; Acoustic intensity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1611-1623, doi:10.1121/1.1854571.
    Description: Parabolic equation numerical simulations of waveguide acoustical beam propagation in an ocean of Garrett–Munk internal waves are used to examine the range evolution of beam properties such as beamwidth (both spectral and spatial), Shannon entropy, and scintillation index, as a function of beam angle. Simulations are carried out at 250- and 125-Hz acoustic frequencies. The ray trajectories associated with these beams are predominantly chaotic or exponentially sensitive to initial conditions and/or medium perturbations. At long range near saturation, the finite-frequency beams show a constant rate of change of Shannon entropy with range, independent of acoustic frequency. This full-wave rate of entropy is of the same order of magnitude as the average rate of entropy for the ray trajectories associated with this beam. Finite-range Lyapunov exponents provide the estimates of ray entropy rate or Kolmogorov–Siani entropy. The correspondence between full-wave and ray entropies suggests a full-wave manifestation of ray chaos, but only once statistical saturation is obtained. In spite of this correspondence, the simulated acoustical beams expand diffusively not exponentially (or explosively).
    Keywords: Underwater acoustic propagation ; Acoustic signal processing ; Parabolic equations ; Entropy ; Ocean waves ; Chaos
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1473-1485, doi:10.1121/1.1828501.
    Description: The three-dimensional beam pattern of a sperm whale (Physeter macrocephalus) tagged in the Ligurian Sea was derived using data on regular clicks from the tag and from hydrophones towed behind a ship circling the tagged whale. The tag defined the orientation of the whale, while sightings and beamformer data were used to locate the whale with respect to the ship. The existence of a narrow, forward-directed P1 beam with source levels exceeding 210 dBpeak re: 1 µPa at 1 m is confirmed. A modeled forward-beam pattern, that matches clicks 〉20° off-axis, predicts a directivity index of 26.7 dB and source levels of up to 229 dBpeak re: 1 µPa at 1 m. A broader backward-directed beam is produced by the P0 pulse with source levels near 200 dBpeak re: 1 µPa at 1 m and a directivity index of 7.4 dB. A low-frequency component with source levels near 190 dBpeak re: 1 µPa at 1 m is generated at the onset of the P0 pulse by air resonance. The results support the bent-horn model of sound production in sperm whales. While the sperm whale nose appears primarily adapted to produce an intense forward-directed sonar signal, less-directional click components convey information to conspecifics, and give rise to echoes from the seafloor and the surface, which may be useful for orientation during dives.
    Description: This work was funded by grants from the Office of Naval Research Grants N00014-99-1-0819 and N00014-01-1-0705, and the Packard Foundation.
    Keywords: Bioacoustics ; Biocommunications ; Array signal processing ; Echo ; Hydrophones ; Multidimensional signal processing ; Underwater sound ; Sonar signal processing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 777-785, doi:10.1121/1.2751268.
    Description: A highly efficient frequency-controlled sound source based on a tunable high-Q underwater acoustic resonator is described. The required spectrum width was achieved by transmitting a linear frequency-modulated signal and simultaneously tuning the resonance frequency, keeping the sound source in resonance at the instantaneous frequency of the signal transmitted. Such sound sources have applications in ocean-acoustic tomography and deep-penetration seismic tomography. Mathematical analysis and numerical simulation show the Helmholtz resonator's ability for instant resonant frequency switching and quick adjustment of its resonant frequency to the instantaneous frequency signal. The concept of a quick frequency adjustment filter is considered. The discussion includes the simplest lumped resonant source as well as the complicated distributed system of a tunable organ pipe. A numerical model of the tunable organ pipe is shown to have a form similar to a transmission line segment. This provides a general form for the principal results, which can be applied to tunable resonators of a different physical nature. The numerical simulation shows that the “state-switched” concept also works in the high-Q tunable organ pipe, and the speed of frequency sweeping in a high-Q tunable organ pipe is analyzed. The simulation results were applied to a projector design for ocean-acoustic tomography.
    Description: The work was supported by ONR.
    Keywords: Acoustic generators ; Underwater sound ; Acoustic resonators ; Oceanographic equipment ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2006. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 119 (2006): 844-856, doi:10.1121/1.2149840.
    Description: The squid Loligo opalescens is a key species in the nearshore pelagic community of California, supporting the most valuable state marine fishery, yet the stock biomass is unknown. In southern Monterey Bay, extensive beds occur on a flat, sandy bottom, water depths 20–60 m, thus sidescan sonar is a prima-facie candidate for use in rapid, synoptic, and noninvasive surveying. The present study describes development of an acoustic method to detect, identify, and quantify squid egg beds by means of high-frequency sidescan-sonar imagery. Verification of the method has been undertaken with a video camera carried on a remotely operated vehicle. It has been established that sidescan sonar images can be used to predict the presence or absence of squid egg beds. The lower size limit of detectability of an isolated egg bed is about 0.5 m with a 400-kHz sidescan sonar used with a 50-m range when towed at 3 knots. It is possible to estimate the abundance of eggs in a region of interest by computing the cumulative area covered by the egg beds according to the sidescan sonar image. In a selected quadrat one arc second on each side, the estimated number of eggs was 36.5 million.
    Description: funding from the National Sea Grant, Essential Fish Habitat Program, Sea Grant Project No. NA16RG2273.
    Keywords: Acoustic measurement ; Acoustic devices ; Sonar imaging ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2000. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 107 (2000): 3073-3083, doi:10.1121/1.429336.
    Description: Six sonic booms, generated by F-4 aircraft under steady flight at a range of altitudes (610–6100 m) and Mach numbers (1.07–1.26), were measured just above the air/sea interface, and at five depths in the water column. The measurements were made with a vertical hydrophone array suspended from a small spar buoy at the sea surface, and telemetered to a nearby research vessel. The sonic boom pressure amplitude decays exponentially with depth, and the signal fades into the ambient noise field by 30–50 m, depending on the strength of the boom at the sea surface. Low-frequency components of the boom waveform penetrate significantly deeper than high frequencies. Frequencies greater than 20 Hz are difficult to observe at depths greater than about 10 m. Underwater sonic boom pressure measurements exhibit excellent agreement with predictions from analytical theory, despite the assumption of a flat air/sea interface. Significant scattering of the sonic boom signal by the rough ocean surface is not detected. Real ocean conditions appear to exert a negligible effect on the penetration of sonic booms into the ocean unless steady vehicle speeds exceed Mach 3, when the boom incidence angle is sufficient to cause scattering on realistic open ocean surfaces.
    Description: This work was funded by the NASA Langley Research Center (Technical Monitor, Dr. Kevin Shepherd).
    Keywords: Shock waves ; Oceanography ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): 128-136, doi:10.1121/1.2917387.
    Description: When calibrating a broadband active acoustic system with a single standard target such as a sphere, the inherent resonances associated with the scattering by the sphere pose a significant challenge. In this paper, a method is developed which completely eliminates the source of resonances through isolating and exploiting the echo from the front interface of a sphere. This echo is relatively insensitive to frequency over a wide range of frequencies, lacking resonances, and is relatively insensitive to small changes in material properties and, in the case of spherical shells, shell thickness. The research builds upon the concept of using this echo for calibration in the work of Dragonette et al. [J. Acoust. Soc. Am. 69, 1186–1189 (1981)]. This current work generalizes that of Dragonette by (1) incorporating a pulse compression technique to significantly improve the ability to resolve the echo, and (2) rigorously accounting for the scattering physics of the echo so that the technique is applicable over a wide range of frequencies and material properties of the sphere. The utility of the new approach is illustrated through application to data collected at sea with an air-filled aluminum spherical shell and long broadband chirp signals (30–105 kHz).
    Description: This work was supported by the U.S. Office of Naval Research Grant Nos. N00014-04-1-0475 and N00014- 04-1-0440 and the J. Seward Johnson Chair at WHOI.
    Keywords: Acoustic resonance ; Acoustic wave scattering ; Calibration ; Echo ; Pulse compression
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2003. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 114 (2003): 2685-2697, doi:10.1121/1.1614258.
    Description: Acoustic scattering techniques provide a unique and powerful tool to remotely investigate the physical properties of the ocean interior over large spatial and temporal scales. With high-frequency acoustic scattering it is possible to probe physical processes that occur at the microstructure scale, spanning submillimeter to centimeter scale processes. An acoustic scattering model for turbulent oceanic microstructure is presented in which the current theory, which only accounts for fluctuations in the sound speed, has been extended to include fluctuations in the density as well. The inclusion of density fluctuations results in an expression for the scattering cross section per unit volume, σv, that is explicitly dependent on the scattering angle. By relating the variability in the density and sound speed to random fluctuations in oceanic temperature and salinity, σv has been expressed in terms of the temperature and salinity wave number spectra, and the temperature-salinity co-spectrum. A Batchelor spectrum for temperature and salinity, which depends on parameters such as the dissipation rates of turbulent kinetic energy and temperature variance, has been used to evaluate σv. Two models for the temperature-salinity co-spectrum have also been used. The predictions indicate that fluctuations in the density could be as important in determining backscattering as fluctuations in the sound speed. Using data obtained in the ocean with a high resolution vertical microstructure profiler, it is predicted that scattering from oceanic microstructure can be as strong as scattering from zooplankton.
    Description: This work was supported in part by ONR, NSF, and the Woods Hole Oceanographic Institution.
    Keywords: Acoustic wave scattering ; Underwater acoustic propagation ; Oceanography ; Remote sensing ; Oceanographic techniques
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): EL97-EL103, doi:10.1121/1.2947630.
    Description: Using a moored source and horizontal/vertical line array combination, horizontal coherence properties of high signal to noise ratio (〉=20 dB) 100–1600 Hz signals have been measured. Internal waves in the area of the measurement created moving episodic sound-speed anomaly structures, influencing coherence length. Measured horizontal coherence scales for 100 Hz ranged from 5 to 20 acoustic wavelengths, and were inversely related to the sound-speed anomaly strength. Horizontal field properties were compared with fields computed using modal decompositions of the vertical signals. The comparison allows azimuthal field coherence properties to be studied apart from normal-mode interference effects.
    Description: This work was funded by grants to Boston University and the Woods Hole Oceanographic Institution from the Ocean Acoustics Program at the U.S. Office of Naval Research, including an ONR Postdoctoral Fellowship award to the first author.
    Keywords: Acoustic arrays ; Acoustic signal processing ; Acoustic wave velocity ; Ocean waves ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 123 (2008): 667-678, doi:10.1121/1.2821975.
    Description: This paper introduces a perturbative inversion algorithm for determining sea floor acoustic properties, which uses modal amplitudes as input data. Perturbative inverse methods have been used in the past to estimate bottom acoustic properties in sediments, but up to this point these methods have used only the modal eigenvalues as input data. As with previous perturbative inversion methods, the one developed in this paper solves the nonlinear inverse problem using a series of approximate, linear steps. Examples of the method applied to synthetic and experimental data are provided to demonstrate the method's feasibility. Finally, it is shown that modal eigenvalue and amplitude perturbation can be combined into a single inversion algorithm that uses all of the potentially available modal data.
    Description: Funding for the research presented here was provided by the Office of Naval Research, and the WHOI Academic Programs Office.
    Keywords: Geophysical techniques ; Inverse problems ; Sediments ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 1449-1462, doi:10.1121/1.2764475.
    Description: Laboratory measurements of high-frequency broadband acoustic backscattering (200–600 kHz) from the diffusive regime of double-diffusive microstructure have been performed. This type of microstructure, which was characterized using direct microstructure and optical shadowgraph techniques, is identified by sharp density and sound speed interfaces separating well-mixed layers. Vertical acoustic backscattering measurements were performed for a range of physical parameters controlling the double-diffusive microstructure. The echoes have been analyzed in both the frequency domain, providing information on the spectral response of the scattering, and in the time domain, using pulse compression techniques. High levels of variability were observed, associated with interface oscillations and turbulent plumes, with many echoes showing significant spectral structure. Acoustic estimates of interface thickness (1–3 cm), obtained for the echoes with exactly two peaks in the compressed pulse output, were in good agreement with estimates based on direct microstructure and optical shadowgraph measurements. Predictions based on a one-dimensional weak-scattering model that includes the actual density and sound speed profiles agree reasonably with the measured scattering. A remote-sensing tool for mapping oceanic microstructure, such as high-frequency broadband acoustic scattering, could lead to a better understanding of the extent and evolution of double-diffusive layering, and to the importance of double diffusion to oceanic mixing.
    Description: Funding for this project was provided by the Ocean Acoustics program at the Office of Naval Research and by the Woods Hole Oceanographic Institution Cecil and Ida Greene Technology Award. Tetjana Ross was supported by the WHOI Postdoctoral Scholarship through the generous support of the Doherty Foundation.
    Keywords: Acoustic measurement ; Acoustic wave scattering ; Echo ; Oceanographic techniques ; Pulse compression ; Remote sensing ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...