ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustic measurement  (4)
  • Astronomy
  • Fisheries
  • Industrial Chemistry
  • Inorganic Chemistry
  • Seismology
  • Acoustical Society of America  (6)
  • Accra : Marine Fisheries Research Division  (1)
  • 2005-2009  (7)
  • 1950-1954
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 125 (2009): 1971-1981, doi:10.1121/1.3089591.
    Description: The practical usefulness of long-range acoustic measurements of ocean acidity-linked sound absorption is analyzed. There are two applications: Determining spatially-averaged pH via absorption measurement and verifying absorption effects in an area of known pH. The method is a differential-attenuation technique, with the difference taken across frequency. Measurement performance versus mean frequency and range is examined. It is found that frequencies below 500 Hz are optimal. These are lower than the frequency where the measurement would be most sensitive in the absence of noise and signal fluctuation (scintillation). However, attenuation serves to reduce signal-to-noise ratio with increasing distance and frequency, improving performance potential at lower frequencies. Use of low frequency allows longer paths to be used, with potentially better spatial averaging. Averaging intervals required for detection of fluctuations or trends with the required precision are computed.
    Keywords: Acoustic measurement ; Acoustic wave absorption ; pH ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 777-785, doi:10.1121/1.2751268.
    Description: A highly efficient frequency-controlled sound source based on a tunable high-Q underwater acoustic resonator is described. The required spectrum width was achieved by transmitting a linear frequency-modulated signal and simultaneously tuning the resonance frequency, keeping the sound source in resonance at the instantaneous frequency of the signal transmitted. Such sound sources have applications in ocean-acoustic tomography and deep-penetration seismic tomography. Mathematical analysis and numerical simulation show the Helmholtz resonator's ability for instant resonant frequency switching and quick adjustment of its resonant frequency to the instantaneous frequency signal. The concept of a quick frequency adjustment filter is considered. The discussion includes the simplest lumped resonant source as well as the complicated distributed system of a tunable organ pipe. A numerical model of the tunable organ pipe is shown to have a form similar to a transmission line segment. This provides a general form for the principal results, which can be applied to tunable resonators of a different physical nature. The numerical simulation shows that the “state-switched” concept also works in the high-Q tunable organ pipe, and the speed of frequency sweeping in a high-Q tunable organ pipe is analyzed. The simulation results were applied to a projector design for ocean-acoustic tomography.
    Description: The work was supported by ONR.
    Keywords: Acoustic generators ; Underwater sound ; Acoustic resonators ; Oceanographic equipment ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2006. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 119 (2006): 844-856, doi:10.1121/1.2149840.
    Description: The squid Loligo opalescens is a key species in the nearshore pelagic community of California, supporting the most valuable state marine fishery, yet the stock biomass is unknown. In southern Monterey Bay, extensive beds occur on a flat, sandy bottom, water depths 20–60 m, thus sidescan sonar is a prima-facie candidate for use in rapid, synoptic, and noninvasive surveying. The present study describes development of an acoustic method to detect, identify, and quantify squid egg beds by means of high-frequency sidescan-sonar imagery. Verification of the method has been undertaken with a video camera carried on a remotely operated vehicle. It has been established that sidescan sonar images can be used to predict the presence or absence of squid egg beds. The lower size limit of detectability of an isolated egg bed is about 0.5 m with a 400-kHz sidescan sonar used with a 50-m range when towed at 3 knots. It is possible to estimate the abundance of eggs in a region of interest by computing the cumulative area covered by the egg beds according to the sidescan sonar image. In a selected quadrat one arc second on each side, the estimated number of eggs was 36.5 million.
    Description: funding from the National Sea Grant, Essential Fish Habitat Program, Sea Grant Project No. NA16RG2273.
    Keywords: Acoustic measurement ; Acoustic devices ; Sonar imaging ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 123 (2008): 667-678, doi:10.1121/1.2821975.
    Description: This paper introduces a perturbative inversion algorithm for determining sea floor acoustic properties, which uses modal amplitudes as input data. Perturbative inverse methods have been used in the past to estimate bottom acoustic properties in sediments, but up to this point these methods have used only the modal eigenvalues as input data. As with previous perturbative inversion methods, the one developed in this paper solves the nonlinear inverse problem using a series of approximate, linear steps. Examples of the method applied to synthetic and experimental data are provided to demonstrate the method's feasibility. Finally, it is shown that modal eigenvalue and amplitude perturbation can be combined into a single inversion algorithm that uses all of the potentially available modal data.
    Description: Funding for the research presented here was provided by the Office of Naval Research, and the WHOI Academic Programs Office.
    Keywords: Geophysical techniques ; Inverse problems ; Sediments ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 121 (2007): 1482-1490, doi:10.1121/1.2434244.
    Description: The problem of calibrating parametric sonar systems at low difference frequencies used in backscattering applications is addressed. A particular parametric sonar is considered: the Simrad TOPAS PS18 Parametric Sub-bottom Profiler. This generates difference-frequency signals in the band 0.5–6 kHz. A standard target is specified according to optimization conditions based on maximizing the target strength consistent with the target strength being independent of orientation and the target being physically manageable. The second condition is expressed as the target having an immersion weight less than 200 N. The result is a 280-mm-diam sphere of aluminum. Its target strength varies from −43.4 dB at 0.5 kHz to −20.2 dB at 6 kHz. Maximum excursions in target strength over the frequency band due to uncertainty in material properties of the sphere are of order ±0.1 dB. Maximum excursions in target strength due to variations in mass density and sound speed of the immersion medium are larger, but can be eliminated by attention to the hydrographic conditions. The results are also applicable to the standard-target calibration of conventional sonars operating at low-kilohertz frequencies.
    Keywords: Sonar ; Acoustic parametric devices ; Acoustic measurement ; Underwater sound ; Calibration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Acoustical Society of America
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 1449-1462, doi:10.1121/1.2764475.
    Description: Laboratory measurements of high-frequency broadband acoustic backscattering (200–600 kHz) from the diffusive regime of double-diffusive microstructure have been performed. This type of microstructure, which was characterized using direct microstructure and optical shadowgraph techniques, is identified by sharp density and sound speed interfaces separating well-mixed layers. Vertical acoustic backscattering measurements were performed for a range of physical parameters controlling the double-diffusive microstructure. The echoes have been analyzed in both the frequency domain, providing information on the spectral response of the scattering, and in the time domain, using pulse compression techniques. High levels of variability were observed, associated with interface oscillations and turbulent plumes, with many echoes showing significant spectral structure. Acoustic estimates of interface thickness (1–3 cm), obtained for the echoes with exactly two peaks in the compressed pulse output, were in good agreement with estimates based on direct microstructure and optical shadowgraph measurements. Predictions based on a one-dimensional weak-scattering model that includes the actual density and sound speed profiles agree reasonably with the measured scattering. A remote-sensing tool for mapping oceanic microstructure, such as high-frequency broadband acoustic scattering, could lead to a better understanding of the extent and evolution of double-diffusive layering, and to the importance of double diffusion to oceanic mixing.
    Description: Funding for this project was provided by the Ocean Acoustics program at the Office of Naval Research and by the Woods Hole Oceanographic Institution Cecil and Ida Greene Technology Award. Tetjana Ross was supported by the WHOI Postdoctoral Scholarship through the generous support of the Doherty Foundation.
    Keywords: Acoustic measurement ; Acoustic wave scattering ; Echo ; Oceanographic techniques ; Pulse compression ; Remote sensing ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Accra : Marine Fisheries Research Division
    Publication Date: 2021-05-19
    Description: Ministry of Food and Agriculture
    Description: Directorate of Fisheries
    Description: Published
    Description: Exploitation, Upwelling, Pelagic species, Demersal species, Atlantic Ocean
    Keywords: Fishery policy ; Marine environment ; Fisheries ; Exploitation
    Repository Name: AquaDocs
    Type: Report , Non-Refereed
    Format: 24520334 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...