ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
  • INGV  (4)
  • American Association for the Advancement of Science  (1)
  • Annual Reviews
  • Nature Publishing Group
  • Wiley
  • 2005-2009  (5)
  • 1980-1984
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-10-27
    Description: Primary and secondary surface deformation related to the 2001 Bhuj-Kachchh earthquake suggests that thrusting movement took place along an E-W fault near the western extension of the South Wagad Fault, a synthetic fault of the Kachchh Mainland Fault (KMF). Despite early reconnaissance reports that concluded there was no primary surface faulting, we describe an 830 m long, 15-35 cm high, east-west-trending thrust fault scarp near where the seismogenic fault plane would project to the surface, near Bharodiya village (between 23°34.912'N, 70°23.942'E and 23°34.304'N, 70°24.884'E). Along most of the scarp Jurassic bedrock is thrust over Quaternary deposits, but the fault scarp also displaces Holocene alluvium and an earth dam, with dips of 13° to 36° south. Secondary co-seismic features, mainly liquefaction and lateral spreading, dominate the area south of the thrust. Transverse right-lateral movement along the «Manfara Fault» and a parallel fault near Bharodiya suggests segmentation of the E-W master faults. Primary (thrust) surface rupture had a length of 0.8 km, maximum displacement of about 35 cm, and average displacement of about 15 cm. Secondary (strike-slip) faulting was more extensive, with a total end-to-end length of 15 km, maximum displacement of 35 cm, and average displacement of about 20 cm.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: surface rupture ; Kachchh earthquake ; thrust fault ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1530934 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2017-04-04
    Description: Episodes of nonvolcanic tremor and accompanying slow slip recently have been observed in the subduction zones of Japan and Cascadia. In Cascadia, such episodes typically last a few weeks, and differ from “normal” earthquakes in their source location and momentduration scaling. The three most recent episodes in the Puget Sound/Southern Vancouver Island portion of the Cascadia subduction zone have been exceptionally well recorded. In each episode, we see clear pulsing of tremor activity with periods of 12.4 and 24-25 hours, the same as the principal lunar and lunisolar tides. This indicates that the small stresses associated with the solid-earth and ocean tides influence the genesis of tremor much more effectively than they do “normal” earthquakes. Because the lithostatic stresses are 105 times larger than those associated with the tides, we argue that tremor occurs on very weak faults.
    Description: Published
    Description: 186 -189
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Nonvolcanic ; tremor ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-04
    Description: The evaluation of any earthquake forecast hypothesis requires the application of rigorous statistical methods. It implies a univocal definition of the model characterising the concerned anomaly or precursor, so as it can be objectively recognised in any circumstance and by any observer.A valid forecast hypothesis is expected to maximise successes and minimise false alarms. The probability gain associated to a precursor is also a popular way to estimate the quality of the predictions based on such precursor. Some scientists make use of a statistical approach based on the computation of the likelihood of an observed realisation of seismic events, and on the comparison of the likelihood obtained under different hypotheses. This method can be extended to algorithms that allow the computation of the density distribution of the conditional probability of earthquake occurrence in space, time and magnitude. Whatever method is chosen for building up a new hypothesis, the final assessment of its validity should be carried out by a test on a new and independent set of observations. The implementation of this test could, however, be problematic for seismicity characterised by long-term recurrence intervals. Even using the historical record, that may span time windows extremely variable between a few centuries to a few millennia, we have a low probability to catch more than one or two events on the same fault. Extending the record of earthquakes of the past back in time up to several millennia, paleoseismology represents a great opportunity to study how earthquakes recur through time and thus provide innovative contributions to time-dependent seismic hazard assessment. Sets of paleoseimologically dated earthquakes have been established for some faults in the Mediterranean area: the Irpinia fault in Southern Italy, the Fucino fault in Central Italy, the El Asnam fault in Algeria and the Skinos fault in Central Greece. By using the age of the paleoearthquakes with their associated uncertainty we have computed, through a Montecarlo procedure, the probability that the observed inter-event times come from a uniform random distribution (null hypothesis). This probability is estimated approximately equal to 8.4% for the Irpinia fault, 0.5% for the Fucino fault, 49% for the El Asnam fault and 42% for the Skinos fault. So, the null Poisson hypothesis can be rejected with a confidence level of 99.5% for the Fucino fault, but it can be rejected only with a confidence level between 90% and 95% for the Irpinia fault, while it cannot be rejected for the other two cases. As discussed in the last section of this paper, whatever the scientific value of any prediction hypothesis, it should be considered effective only after evaluation of the balance between the costs and benefits introduced by its practical implementation.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: precursors ; earthquake forecast ; statistical tests ; paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 507563 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-04
    Description: The effect of high-energy electromagnetic pulses emitted by a magnetohydrodynamic generator used as a source for deep electrical sounding of the crust on spatial-temporal structure of seismicity of the North Tien Shan is explored. Five-six years periodicity of changes in spatial distribution of seismicity was revealed. The effect of electromagnetic pulses increases the stability of the spatial distribution of seismicity over time and simultaneously speeds up cycles of its transformations, which develop on stabilization background. Increasing of seismic energy release after electromagnetic impacts is observed basically in most active zones. Periodic variation of efficiency of earthquakes triggering on the distance to the MHD-generator was detected. It was shown that electromagnetic pulses give rise to an appreciable increase in the rate of local earthquakes, occurring around 2-6 days after the pulses. Total earthquakes energy released after start-ups was by 2.03·1015 J greater than the energy released before them. At the same time, the total energy transmitted by the MHD-generator was 1.1·109 J, i.e. six orders of magnitude smaller. Consequently, the electromagnetic pulses initiated the release of the energy that had been stored in the crust due to activity of natural tectonic processes in the form of comparatively small earthquakes, which leads to an additional release of tectonic stresses.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: earthquake ; initiated ; seismicity ; electromagnetic ; pulse ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 718484 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-09
    Description: A sudden increase in the scale of seismicity has occurred as a long-term precursor to twelve major earthquakes in California and Northern Mexico. These include all earthquakes along the San Andreas system during 1960-2000 with magnitude M 6.4. The full list is as follows: Colorado Delta, 1966, M 6.3; Borrego Mt., 1968, M 6.5; San Fernando, 1971, M 6.6; Brawley, 1979, M 6.4; Mexicali, 1980, M 6.1; Coalinga, 1983, M 6.7; Superstition Hills, 1987, M 6.6; Loma Prieta, 1989, M 7.0; Joshua Tree, 1992, M 6.1; Landers, 1992, M 7.3; Northridge, 1994, M 6.6; Hector Mine, 1999, M 7.1. Such a Precursory Scale Increase () was inferred from the modelling of long-term seismogenesis as a three-stage faulting process against a background of self-organised criticality. The location, onset-time and level of are predictive of the location, time and magnitude of the future earthquake. Precursory swarms, which occur widely in subduction regions, are a special form of ; the more general form is here shownto occur frequently in a region of continental transform. Other seismicity precursors, including quiescence and foreshocks, contribute to or modulate the increased seismicity that characterises . The area occupied by is small compared with those occupied by the seismicity precursors known as AMR, M8 and LURR. Further work is needed to formulate as a testable hypothesis, and to carry out the appropriate forecasting tests.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: precursory seismicity ; seismogenesis ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 727164 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...